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1 Introduction

In modern science and technology, phase and wavefield imaging are a popular and well established

technique for high-accuracy measuring, recording and reconstructing of 2D and 3D objects. The

areas of applications are varying from astronomy and engineering to medicine and biology1, 2 .

In engineering, phase and wavefield sensing methods serve for nondestructive testing/control and

precise measurements (e.g.3, 4). In medicine and biology, phase measurements are exploited in

microscopy and coherent tomography.

Phase imaging is a unique instrument to study details of internal structure of transparent or

semitransparent specimens. While only intensity of light fields can be measured, visualization of

phase from intensity observations is an important issue. In phase contrast microscopy, methods of

wavefront modulation in the Fourier plane have been developed to resolve the visualization prob-

lem (Frits Zernike 1930s, Nobel prize 1953). Despite the revolutionary success of these methods
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only qualitative visualization of phase can be achieved in this way, where features of specimens

even visible maybe be so distorted that accurate measurements and even proper interpretations can

be problematic.

Quantitative visualization is targeted on direct phase imaging and precise phase measuring.

Roughly speaking, there are two ways to achieve this goal. The first one is holography with

measurements given as intensities of the sums of reference and object beams. The second one is

phase retrieval, treated as an inverse diffusion imaging, essential alternative to holography, which

does not require a reference beam. In modern science and technology, the quantitative phase

imaging techniques are fundamentally based on digital data processing.

Let us start from the following general formalization of the phase retrieval problem:

ys= |Ps{uo}|2, s = 1, ..., L, (1)

where: uo∈ CN×N is an N × N complex-valued 2D image of an object (specimen); Ps:

CN×N 7−→ CM×M is a complex-valued operator of wavefront propagation from object to sen-

sor plane, ys∈ RM×M
+ are M ×M intensity images of the wavefronts at the sensor plane.

L experiments are assumed in (1), where s indicates the result for each of them. The equations

(1) define relations between the complex-valued wavefronts at the object plane and the power of the

wavefronts at the sensor plane. It is convenient to introduce also a notation for the complex-valued

wavefront at the sensor plane:

us=Ps{uo}, s = 1, ..., L, (2)
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The observations for the noiseless case corresponding to (1) are of the form

ys= |us|2, s = 1, ..., L, (3)

and for noisy observations

zs=G{|us|2}, s = 1, ..., L, (4)

where G stands for a generator of random observations.

In this paper we assume that the observations have a Poissonian distribution typical for optics

with observations based on photon counting.

Reconstruction of the complex-valued object uo (phase and amplitude) from noiseless or noisy

observations is phase retrieval problem. Here phase emphasizes that the object phase is a variable

of the first priority, while the object amplitude is treated as an auxiliary variable often useful only

in order to improve phase imaging.

Note, that the term phase retrieval is originated from the following mathematical problem. Let

us be the Fourier transform (FT) of uo, us = F(uo). If us is given, uo can be precisely calculated

as the inverse FT, uo = F−1(us). Now let the absolute value |us| of us be given and the phase of

us is unknown. Is it possible to reconstruct the phase of us and in this way the original uo from the

amplitude of FT |us| ? In general, the answer is negative and positive only for the special classes

of uo, in particular, for the so-called minimum phase signals, or provided some restrictions. In this

phase retrieval formulation, the term phase points on the phase of the Fourier transform, us.

In optics, the priority is different. The phase to be retrieved is phase of the object uo. The

image formation operators Ps in (1) depend on optical setups. Various methods are developed in
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order to make these Ps sufficiently different for different s and gain observation diversity, enabling

finding uo from observations {ys}L1 . Defocussing of the registered images is one of the popular

instruments to get a sufficient phase diversity5–8 . In a recent development a spatial light modulator

(SLM) is exploited for defocussing (e.g.9, 10). The 4f-optical configuration with SLM in the Fourier

plane for defocus imitation is proposed in11 and further studied in12 .

Random phase modulation of the wavefront is another tool to achieve a desirable phase diver-

sity. It results in observations known as coded diffraction patterns (e.g.13–15):

ys= |P{Ms · uo}|2, s = 1, ..., L, (5)

where P , CN×N 7−→ CM×M , denotes the propagation operator from the object to sensor planes

fixed for all L experiments and the items of the phase masksMs∈ CN×N are complex exponents

Ms(k, l) = exp(jφk,l(s)).

The phases φk,l(s) inMs can be generated as deterministic or random. The phase modulation

is able to dramatically change the diffraction pattern of P{uo} by redistribution of the observed

intensities from low to high frequencies.

1.1 Phase retrieval algorithms

There is a growing flow of publications on phase retrieval. Various versions of the Gerchberg-

Saxton (GS) techniques are quite universal and applicable for different setups (e.g.7, 8, 16–18). These

algorithms based on alternating projections between the object and observations planes allow to

incorporate any information available for the variables in these planes. Recent developments in

this area as well as a review can be seen in19 .
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Contrary to this type of the intuitive heuristic algorithms the variational formulations have a

strong mathematical background and lead to algorithms solving optimization problems. In partic-

ular, in20 one can find constrains sufficient for uniqueness of the solution and algorithms which are

very different from GS such as the semidefinite programming phase lifting using matrix comple-

tion (PhaseLift algorithm)21 and the greedy sparse phase retrieval (GESPAR algorithm)22 .

There are many publications on revisions of the GS techniques by using optimization formula-

tions. In particular, the links between the conventional GS and variational formulations are studied

in23, 24 .

Concerning variational formulations for algorithm design we wish to note the recent Wirtin-

gling flow (WF) and truncated Wirtingling flow (TWF) algorithms14, 25 . Methodologically, these

algorithms are developed for the Poissonian likelihood criterion, i.e. for Poissonian noisy obser-

vations. Simulation experiments confirm that these algorithm works precisely provided nearly

noiseless observations. However, they are not so efficient for noisy observations26 .

Phase retrieval from coded diffraction patterns of the type (5) is of special interest in the recent

publications (e.g.14, 27). The uniqueness of solution for this scenario is proved in the later paper.

A new variational algorithm for phase retrieval from noisy data based on transform domain

sparsity for the object phase and amplitude is developed in26 . Simulation experiments demon-

strate that this algorithm enables the accuracy identical to the accuracy of the TWF algorithm for

noiseless data and the principal advantage for noisy data. The sparsity concept as a tool for phase

retrieval is a topic of the paper28 , where an original sparsifying learning transform is developed.

The spatial resolution in phase retrieval is limited by two principal factors: low-pass filtering

by the propagation operator P and by pixel size in the pixelated discrete sensor and modulation

phase masks. Due to these factors, high-frequency spatial information is lost in intensity observa-
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tions, which can be treated as observations of the sub-sampled true object uo. Various methods for

super-resolution imaging allowing to compensate these sub-sampling effects are of special interest.

One of the straightforward approaches to overcome the pixel size limitations is to use a sequence

of laterally shifted holograms (e.g.29–31). Compressed sensing (CS) or sparse imaging is a compu-

tational approach for restoration of sub-sampled data based on a special mathematical modelling

of uo. Applications of this sort of the techniques in optics can be seen in32–36 .

Other factors limiting the spatial resolution concerns observation errors. First, we need to

mention that a Poissonian noise appears due to measurement process in optics counting the photons

hitting the sensor. Second, the use of digital camera introduces the readout noise usually modelled

by a Gaussian distribution and quantization errors. The later ones can be modelled as a uniform

distribution random variables. The quantization effects for phase retrieval are studied37 , and it is

shown that a low-bit quantization may seriously diminish the accuracy of the phase retrieval.

1.2 Contribution and structure of this paper

In this paper we consider phase retrieval from Poissonian noisy phase coded diffraction patterns

with the optical setup shown in Fig.1. The complex-valued object uo to be reconstructed is placed

against the SLM applied for phase modulation of the wavefront. A distance between the object

and the digital sensor is equal to 2f , where f is a focal length of the this lens, located in the middle

between the object and lens. The system is illuminated by a uniform monochromatic coherent

laser beam of wavelength λ and intensity equal to 1. The forward propagation operator P in (5)

is calculated as a rescaled FT, provided that the axial Fresnel approximation for the propagation is

assumed. In this setup the object, the SLM and lens are considered as phase transformers of the

wavefronts. The Super-Resolution Sparse Phase and Amplitude Reconstruction (SR-SPAR) algo-
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rithm proposed in this paper is designed for super-resolution phase/amplitude imaging, which is

optimal for Poissonian observations. It is shown by computational experiments that high-accuracy

super-resolution reconstructions can be achieved with spacial resolution going up to a quarter of

wavelength. The super-resolution GS (SR-GS) algorithm is introduced as a simplified and faster

version of SR-SPAR efficient for noiseless data. For the later case, both SR-GS and SR-SPAR

demonstrate identical accuracy. SR-SPAR design is based on the methodology developed in26 for

pixel-resolution phase retrieval (SPAR algorithm).

Fig 1 A sketch of single lens optical setup: Object (o), Spatial light modulator (SLM), Lens and Sensor (s).

This paper is organized as follows. In Subsections 1.3 and 1.4 image formation and noisy

observation modeling are presented. The sparsity in the complex domain and the SR-SPAR and

SR-GS algorithms are given in Section 2. Section 3 concerns the experimental study of the pro-

posed algorithms.

1.3 Image formation

For wavefront propagation from the object to sensor planes we use the paraxial Fresnel modeling.

It gives the following link between the object wavefront uo and the wavefront at the sensor plane
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us (38 , Eq.(5.19)):

us(ξ, η) = µ

∫ ∞
−∞

∫ ∞
−∞

uo(x, y)Ms(x, y) exp{j−2π

λf
(xξ + vη)}dxdy, (6)

where µ = 1/(j · fλ).

Here uo(x, y), us(ξ, η) are complex-valued distributions of the wavefronts at the object plane

(lateral coordinates (x, y)) and the sensor plane (lateral coordinates (ξ, η)). M(x, y) is a complex

valued transmission function of SLM. Using FT the input-output model (6) can be given in the

form

us(ξ, η) = µFuo·Ms(ξ/λf, η/λf), (7)

where Fuo·M stands for FT of the product uo(x, y)Ms(x, y).

The formulas (6)-(7) define the forward propagation operatorPs in Eq.(2). Note, that the model

(6) as used in (5) is discrete-continuous with continuous uo and a physical discretization imposed

on us(ξ, η) by the pixelated sensor and by the pixelated SLM onMs.

It is useful to mention that the forward propagation (6) is valid also for a single lens system,

provided that the lens is located in the object/SLM plane and the distance between this plane and

the sensor is equal to f .

1.4 Poissonian observations

The measurement process in optics amounts to count the photons hitting the sensor. This process

is well modeled by independent Poisson random variables in the following form

p(zs[l] = k) = exp(−ys[l]χ)
(ys[l]χ)k

k!
, (8)
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where p(zs[l] = k) is the probability that the random observation zs[l] takes integer value k ≥ 0

and ys[l] is the intensity of the wavefront at the pixel l defined by (1).

The parameter χ > 0 in (8) is the scaling factor of the Poisson distribution. Recall that the

mean and the variance of Poisson random variable zs are equal and are given by ysχ, i.e., E{zs} =

var{zs} = ysχ. Defining the observation signal-to-noise ratio (SNR) as the ratio between the

square of the mean and the variance of zs, we have SNR = E2{zs}/var{zs} = ysχ. It follows,

that the relative noisiness of observations becomes stronger as χ→ 0 (SNR→ 0) and approaches

zero when χ → ∞ (SNR → ∞). The later case corresponds to the noiseless scenario, i.e.

zs/χ→ ys with the probability 1.

The scale parameter χ is of particular importance for modeling as it allows to control the level

of noise in the observations.

2 Super-resolution sparse phase retrieval

2.1 Sparse wavefront representations

Image sparsity is the commonly observed self-similarity of small fragments (patches) of images,

meaning that similar features can be found in patches located in different parts of the image. It

follows that an image may admit sparse representations: it can be well approximated by linear

combinations of a small number of basic functions. Sparsity has been a hot topic in the last years

for various imaging problems (e.g.39).

For the complex domain images, such as the object uo = Bo exp(iϕo), sparse modeling can

be presented in a number of ways essentially different from the methods standard for real-valued

variables. This principal difference starts from the fact that uo is defined by two variables: phase

ϕo and amplitude Bo.
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The sparse representation can be imposed on complex-valued uo directly by using complex-

valued basic functions or on the following pairs of real-valued variables:

(1) Phase ϕ (interferometric or absolute) and amplitude Bo;

(2) Real and imaginary parts of uo.

Remember that an interferometric (wrapped) phase is restricted to the interval [−π, π), while

an absolute (unwrapped) phase is different by adding an integer number of 2π to the interferometric

phase. In what follows, we denote the interferometric (wrapped) phase of the object as ϕo and the

corresponding absolute phase as ϕo,abs. We introduce the phase-wrap operatorW : R 7→ [−π, π),

linking the absolute and principal phase as ϕo=W(ϕo,abs). We also define the unwrapped phase as

ϕo,abs = W−1(ϕo). Notice thatW−1 is not an inverse operator forW because the later is highly

non-linear and for signals of dimension two and higher there is no one-to-one relation between

ϕo,abs and ϕo.

In principle, the absolute phase always can be reconstructed as the interferometric one with the

application of unwrapping as post-processing. However, for objects with phase varying beyond

the interval [−π, π), the absolute phase sparse modeling brings essential advantage. It is because,

wrapped phases are complicated by fringes, making images more difficult for sparse approxima-

tion.

The success of the sparsity approach depends on how rich and redundant are the used dictionar-

ies/transforms (sets of basic functions). In this paper, the sparsity analysis and synthesis is based

on the recent, and proved to be very efficient, Block-Matching 3D (BM3D) denoising algorithm40

.

Let us mention the basic steps of this advanced technique known as nonlocal self-similarity

sparsity. At the first stage, the image is partitioned into small overlapping square patches. For
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each patch a group of similar patches is collected which are stacked together to form a 3D array

(group). This stage is called grouping. The entire 3D group-array is projected onto a 3D predefined

transform basis. The spectral coefficients obtained as a result of this transform are hard-thresholded

(small coefficients are zeroed) and the inverse 3D transform gives the filtered patches, which are

returned to the original position of these patches in the image. This stage is called collaborative

filtering. This process is repeated for all patches of the entire image and obtained overlapped

filtered patches are aggregated in the final image estimate. This last stage is called aggregation.

The details of this algorithm can be seen in40 .

The links of the BM3D algorithm with the general sparsity concept are revealed in41 , where

it is shown that the grouping operations define the data adaptive analysis and synthesis image

transforms (frames) and these transforms combined with the thresholding define the thresholding

stage of the BM3D algorithm. It is emphasized that sparsity is achieved mainly due to the grouping,

which allows the joint analysis of similar patched and, in this way, to guaranty the sparsity (self-

similarity of patches), at least for each of the 3D groups.

Note that the standard BM3D algorithm, as it is presented in the40 , is composed of two succes-

sive stages: thresholding and Wiener filtering. In this paper we use a simplified version of BM3D,

as it is introduced in41 , including grouping, transforms and thresholding without Wiener filtering.

In what follows, we exploit, for the complex-valued uo, the sparsity imposed on phase and

amplitude. The variational formulation for reconstruction of a complex valued uo, optimal for

noisy data, results in the likelihood type criteria and optimization with the constrained imposed

on sparsity. It has been shown for various optical problems (e.g.42–44), that the algorithms are

iterative and the sparsity is appeared as BM3D filtering applied separately to estimates of phase

and amplitude.
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This filtering can be represented in the form:

ϕ̂o = BM3Dphase(ϕo, thϕ), (9)

B̂o = BM3Dampl(Bo, thB), (10)

where the filters are applied to the phase and amplitude of uo:

Here ϕ̂o and B̂o are sparse approximations of ϕo and Bo; phase and ampl as indices of BM3D

are used in order to emphasize that the parameters of BM3D can be different for phase and ampli-

tude; thϕ and thB are threshold parameters of the algorithms. The phase in (9) can be interfero-

metric or absolute depending on the sparsity formulation.

The implementation of the sparsity hypothesis in the form of the special filters (9)-(10) is in-

line with the recent concept plug-and-play 45–47 , stating that any efficient filter can serve as a good

prior and efficient regularizator in variational design of data processing algorithms.

2.2 Super-resolution SPAR algorithm

2.2.1 Discretization

The computational wavefront restoration is going from the continuous domain wavefront propaga-

tion (7) to the corresponding discrete model based on pixelation of the object uo, thus, we arrive

to the discrete modeling of the system linking discrete values of the sensor output (observations)

with the discrete values of the object uo.

Conventionally the pixels are square of the size ∆SLM × ∆SLM and ∆s × ∆s for the SLM

and sensor, respectively. In what follows, for simplicity, ∆SLM = ∆s. A continuous object is

discretized by pixels of the size ∆o × ∆o. This discretization is necessary both for digital data
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processing as well as for modeling of wavefront propagation and image formation. Contrary to

the pixels of SLM and sensor defined by the corresponding optical-electronic devices, the object

pixels are computational, which maybe be taken arbitrary small.

Assuming for a moment that ∆o = ∆s = ∆SLM , the reconstruction of uo from the observations

{zs} is the standard phase retrieval problem with an object resolution dictated by the pixel size of

the sensor and the SLM.

Let us term this case pixel-resolution imaging.

If ∆o < ∆s we arrive to a much more challenging problem of pixel super-resolution or sub-

pixel resolution imaging. Further, if ∆o is so small that ∆o ' λ, then it is wavelength resolution.

Going further to ∆o < λ we arrive to sub-wavelength or wavelength super-resolution. The super-

resolution phase retrieval with smaller and very small ∆o as compared with ∆s and λ is the goal

of this paper.

It is convenient to assume that ∆s = rs ·∆o, where rs ≥ 1 is an integer pixel super-resolution

factor. In this case, the SLM pixel ∆SLM × ∆SLM covers r2s computational object pixels and

provides the same modulation phase-shift to all object pixels in this group.

Using for calculation the fast Fourier transform (FFT) we arrive to the discrete analog of (7),

within an invariant factor µ, in the form

us[k, l] = FFT{uo[s, t] · Ms[s, t]}
∆2
o

λf
, (11)

∆s∆o =
λf

ND

, (12)

where FFT stands for 2D FFT and ND is a side length of a square-support for [k, l] and [s, t].

Here the variables us[k, l] and uo[s, t] ·Ms[s, t] are sampled with the computational period ∆o.
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Then, in particular, the modulation functionMs[s, t] is a piece-wise invariant with rs× rs squares

of invariant values covering the corresponding pixels of SLM.

The constraint (12) is typical for use of FFT for calculation of discrete Fourier transform. All

functions and FFT in (11) are calculated for the square support ND × ND, where ND is always

higher (even much higher) than the pixelated sizes of the object, the SLM and the sensor.

According to (5), the discrete diffraction pattern is calculated as ys[k, l] = |us[k, l]|2 with the

noisy observations obtained according to the Poissonian distribution (8). Note that these compu-

tational ys[k, l] are given with the computational period ∆o, while the observations are introduced

with the sampling period ∆s. The equations (11)-(12) define the discrete forward propagation

model of the system shown in Fig.1. In order to simplify the presentation we preserve the notation

P for this discrete model initially introduced for the continuous domain variables.

2.2.2 SR-SPAR algorithm

The presented SR-SPAR algorithm is derived from the variational formulation introduced for op-

timal reconstruction of uo from Poissonian observations {zs[k, l]}. The corresponding minus log-

likelihood for Poissonian observations according to (8) is as follows

L =
L∑
s=1

∑
k,l

[|us[k, l]|2χ− zs[k, l] log(|us[k, l]|2χ)]. (13)

This criterion should be minimized with respect to uo[k, l], provided the equations (11) linking

uo and us and restrictions imposed by the sparsity requirements.

The derivation of the algorithm is similar to the technique developed in26 for the pixel-resolution

phase retrieval. The difference mainly concerns the sampling rates: ∆o = ∆s in26 and in this paper
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∆o = ∆s/rs meaning that the observations should be upsampled by a factor rs.

We present the SR-SPAR algorithm in the form given in Table 1 referring to26 . It is emphasized

that SR-SPAR, being based on the minimization of (13), is optimal, in the statistical sense, for

Poissonian observations.

Table 1 SR-SPAR Phase Retrieval Algorithm

Input: {z̃s}, s = 1, ..., L, x1;
for t = 1, .., T ;

1. Forward propagation:
vts = P{Ms · xt}, vts ∈ SD, s = 1, ..., L;

2. Poissonian noise suppression:

uts =

{
bts exp(j · angle(vts)), v

t
s ∈ SS ,

vts, v
t
s ∈ SD\SS , s = 1, ..., L; ;

3. Backward propagation:
xt = 1

L

∑L
s=1M∗

s · P−1{uts};
4. Phase unwrapping:

ϕtabs =W−1(angle(xt));
5. Sparse phase and amplitude filtering:

ϕt+1
abs = BM3Dphase(ϕ

t
abs, thϕ),

Bt+1 = BM3Dampl(abs(x
t), tha);

6. Object wavefront update:
xt+1 = Bt+1 exp(jϕt+1

abs );

Output: ϕ̂o,abs = ϕT+1
abs , B̂o = BT+1.

The inputs z̃s in this algorithm are the observations zs upsampled by factor rs. We use the

zero-order upsampling giving z̃s as piece-wise invariant function with the invariant values for com-

putational pixels corresponding to each of the larger size pixels of the sensor. All calculations in

the SR-SPAR algorithm are produced for high-resolution variables with the sampling ∆o.

At Step 1, the object wavefront estimate xt is multiplied by the phase maskMs and propagated

by the operatorP to the sensor plane, with the result denoted as vts. These wavefronts are calculated

for the diffraction area ND ×ND denoted as SD.

At Step 2, the wavefront is updated to the variable uts by filtering the amplitude of vts according
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to the given observations z̃s. The following formula, as derived in26 , defines the rule on how the

updated amplitude bs is calculated:

bs =
|vs|+

√
|vs|2 + 4z̃sγ(1 + γ1χ)

2(1 + γ1χ)
. (14)

These calculations are pixel-wise; γ1 > 0 is the parameter of the algorithm. This update

is produced provided known observation z̃s, i.e. for the pixels belonging to the sensor area SS ,

vs ∈ SS . In our modeling the computational diffraction area SD is always equal or larger than the

sensor area, SS ⊆ SD. For the area out of the sensor, the wavefront values are preserved, us = vs

for vs ∈ SD\SS .

At Step 3, the estimates {uts} backpropagate to the object plane and update the object wavefront

estimate xt+1. HereM∗
s means a complex conjugateMs andP−1{uts} = FFT−1{uts[k, l]}λf/∆2

o.

The sparsification (filtering on the base of sparse approximations) is produced in Step 5. The

unwrapping of the phase with reconstruction of the absolute phase in Step 4 is necessary only if

the range of the object phase goes beyond 2π.

Following to26 , we introduce also a simplified version of SR-SPAR named the super-resolution

GS algorithm (SR-GS). It differs in two points from SR-SPAR in Table 1: the phase unwrapping

and BM3D filtering (Steps 4 and 5) are omitted and the Poissonian filtering in Step 2 is replaced

by the rule bs →
√
z̃s/χ, which corresponds to the amplitude update standard for the GS style

algorithms. This later rule follows from the optimal solution (14) provided that the data is noiseless,

i.e. χ is very large.

It was demonstrated in42 that using the update shown in Step 2 and different for vts ∈ SD\SS

and vts ∈ SS allows to improve the accuracy of the wavefront reconstruction. In48 , this effect is
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interpreated as a self-extrapolation of holograms applied for resolution enhancement.

We make publicly available the MATLAB demo-codes http://www.cs.tut./sgn/imaging/sparse

of the developed SR-GS and SR-SPAR algorithms, which can be used to reproduce the experiments

presented in this paper as well as for further tests.

3 Numerical experiments

Both algorithms, SR-SPAR and SR-GS, were tested for various models of uo. In what follows,

we are restricted mainly to 256 × 256 phase-objects of invariant amplitude and three types of

varying phase: test-images Lena normalized to the interval [0, π/2]; Gaussian shape absolute phase

(phase range 50 radians) and discontinuous Shear Plane (phase range 65 radians). Respectively,

we treat experiments with Lena as interferometric phase imaging, as they do not require phase

unwrapping, and experiments with Gaussian and Shear Plane as absolute phase imaging requiring

the unwrapping operation in SR-SPAR. The PUMA algorithm49 is used for phase unwrapping in

Step 4 of SR-SPAR.

The fixed parameters of the experiments are: ∆s = ∆SLM = 5.2µm, λ = 632.8 nm, sensor

size, in pixels, 4096 × 4096, computational diffraction area SD of size 5120 × 5120. The main

varying parameters are the computational sampling period ∆o, the Poissonian noise parameter χ

and computational resolution factor calculated with respect to the sensor as rs = ∆s/∆o. It is

assumed that rs is integer and take values rs = 1, 8, 16 and 32. The rs = 1 corresponds to the

pixel-resolution and larger rs mean super-resolution of the higher order. The sensor of much larger

size than the object is taken in order to enable a good quality of super-resolution with large values

of the super-resolution factors rs.

It is natural to measure also the super-resolution with respect to the wavelength λ as the ratio
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rλ = ∆o/λ = ∆s/(rsλ). Then, rs = 1 gives the pixel-resolution with rλ = 8.21, i.e. the sensor

and SLM pixels are about eight times larger than the wavelength λ. For rs = 8 we obtain the wave-

length resolution with rλ = 1.03, the higher values rs = 16, 32 correspond to the sub-wavelength

resolution with computational pixels ∆o smaller than the wavelength with the wavelength resolu-

tion factors rλ = 0.515, and 0.257.

Note that according to the restriction (11) smaller ∆o (larger rs) assumes that the lens with a

smaller focal distance should be used in the considered optical setup. For the introduced set rs we

obtain the following focal distances f = [54.7, 6.8, 3.4, 1.7] mm, respectively.

In our experiments the phase modulation masksMs(k, l) = exp(jφk,l(s)) are random with the

Gaussian independent zero-mean phase values, φk,l(s)˜N (0, π/4).

The accuracy of the wavefront reconstruction is characterized by RMSE criteria calculated

independently for amplitude and phase. The object phase image can be estimated at least within an

invariant global phase-shift ϕshift. It is estimated using as reference the phase of the true object.

This correction of the phase is done only for calculation of the criteria and for result imaging and

is not used in the algorithm iterations.

In what follows we produce calculations for noisy and nearly noiseless data with the Poissonian

scale parameter χ taking values in the internal [1, 1000]. The smallest χ results in the noisiest

observations. The corresponding Signal-to-Noise Ratio (SNR) is calculated in dB as

SNR = 10 log10(χ
2

L∑
s=1

||ys||2F/
L∑
s=1

||ysχ− zs||2F ) dB. (15)

For the super-resolution experiments we use the objects with a fixed number of computational

pixels of size ∆o = ∆s/rs, thus larger rs means a smaller physical size of the object. The success-
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ful super-resolution imaging, in particular the wavelength resolution, requires a sensor size being

much larger than the object size.

3.1 Modulation phase mask and sparsity

Let us start from qualitative observations concerning the effects of the basic ingredients of the

considered setup and the developed algorithm. Fig.2 shows the reconstruction of the object phase

for noiseless data (χ = 1000), provided that only a single experiment is produced, L = 1. The left

image shows the true phase. The next completely destroyed image in Fig.2 is obtained from the

experiment with no phase modulation and without the sparse modeling for phase and amplitude.

Thus, the diffraction pattern is a squared amplitude of FT of the object complex exponent. The

third image is obtained from a single experiment, where the phase modulation is employed and no

BM3D filters are used (SR-GS algorithm). This modulation makes the main features of the phase

distribution at least visible but quite noisy. This noise is a result of the used phase modulation.

The fourth image is obtained by the SR-SPAR algorithm, i.e. with phase modulation and BM3D

filtering for the phase and amplitude. It shows nearly perfect reconstruction of the object phase.

Fig 2 Phase reconstructions from left-to-right: (a) true Lena image, (b) reconstruction without phase modulation and
BM3D filtering, (c) reconstruction with phase modulation but without BM3D filtering (SR-GS), (d) reconstruction
with phase modulation and with BM3D filtering (SR-SPAR), L = 1, χ = 1000.

For a larger number of experiments (L > 1) the accuracy of the phase reconstruction with the

phase modulation is improves quickly both for processing with SR-SPAR and with SR-GS. Fig.2
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and above comments are given for the pixel-resolution imaging, rs = 1, and for nearly noiseless

observations.

3.2 Super-resolution for interferometric phase

The reconstruction results for the Lena phase test-image with super-resolution factor rs = 8 are

shown in Figs.3 and 4. The cross-sections for phase and amplitude are shown for middle horizontal

lines, where the red (solid) and blue (dotted) curves correspond to the reconstructions and true

images, respectively. The reconstructions in Fig.3 are of the high accuracy. They are obtained

for the low level noise (χ = 1000, SNR = 60 dB). The results in Fig.4 are much worse but

we need take into account that the observations are very noisy (χ = 1, SNR = 30.5 dB) for

super-resolution with the factor rs = 8. Thus, we can treat these results as of acceptable quality.

It can be noted that the low level noise reconstruction is, visually, nearly perfect. The accuracy

of reconstruction is good for both phase and amplitude. The experiments produced for higher

order resolution (not shown) demonstrate a noticeable degradation of results for rs = 16 and fail

completely for rs = 32.

3.3 Absolute phase imaging

SR-SPAR phase imaging for Shear Plane phase distribution (256× 256) with the maximum value

of about 65 rad is shown in Figs.5-7. In Fig.5 the results are shown for the resolution factor rs = 8.

Visually, the obtained 3D surface is very close to the true one, thus, it is not necessary to show

it. The 2D images in these figures show the wrapped phase and amplitude reconstructions. As it

is seen from the wrapped phase, the errors in the reconstruction can be noticed. Nevertheless, the

quality of this super-resolution reconstruction is very good. In Fig.6, the similar results are shown
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Fig 3 SR-SPAR, Lena phase image and amplitude reconstructions: super-resolution with rs = 8, for nearly noiseless
observations, χ = 1000. In the cross-sections (middle horizontal line), the solid (red) curves are for the reconstructions
and the dotted (blue) ones for the true data.

for the much higher resolution factor rs = 16. The shown 3D surface is of a quite acceptable

quality, while the wrapped phase and amplitude reconstruction, shown as 2D images, definitely

demonstrate that these results are of a much lower quality than those achieved for rs = 8. In the

final Fig.7 we show the attempt to get reconstruction for the super-resolution factor rs = 32. These

results are definitely negative, the phase reconstruction failed.

Phase imaging for Gaussian phase distribution (256 × 256) with maximum value of about 50

rad is shown in Figs.8-9. The reconstructions are obtained for quite noisy data χ = 100 and the

super-resolution factors rs = 8 and rs = 16. For rs = 8 (Fig.8) the quality of the reconstruction

is very good and the 3D phase reconstruction is very close to the true Gaussian phase object. The
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Fig 4 SR-SPAR, Lena phase image and amplitude reconstructions: super-resolution with rs = 8, noisy observations,
χ = 1. In the cross-sections (middle horizontal line), the solid (red) curves are for the reconstructions and the dotted
(blue) ones for the true data.

situation becomes much worse for the super-resolution factor rs = 16 (Fig.9). The errors in the

phase reconstruction are obvious and quite large. The attempt to get reconstruction for the super-

resolution factor rs = 32 failed and we do not show these images.

In conclusion of this subsection we wish to note that we are talking about very high levels of the

pixel super-resolution rs = 8 and rs = 16 corresponding to the wavelength and half wavelength

super-resolution.
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Fig 5 SR-SPAR, Shear Plane phase image, phase and amplitude reconstructions: nearly noiseless data, χ = 1000.
The super-resolution reconstruction is produced for rs = 8. The 3D image is very close to the true phase image. The
2D images are given for the wrapped phase and amplitude reconstructions.

Fig 6 SR-SPAR, Shear Plane phase image, phase and amplitude reconstructions: nearly noiseless data, χ = 1000.
The super-resolution reconstruction is produced for rs = 16. The 2D images are given for the wrapped phase and
amplitude reconstructions. The 3D image surface is covered by well seen square blocks 16 × 16. This discretization
of the surface is due to SLM pixels having size 16× 16 in the computational pixels.

3.4 More on sub-wavelength resolution

Let us demonstrate a few interesting tests on sub-wavelength imaging with rs = 32 corresponding

to rλ = 0.257 with the object size 128× 128.

In Figs.10 and 11 the reconstructions for the two-peak phase object are shown. The four squares

clearly seen in the amplitude reconstructions are patterns of four pixels of SLM each covering 32×

32 computational pixels of the object. These images confirms that the both developed algorithms

SR-GS and SR-SPAR are able to reconstruct two point-wise phase peaks separated by the distance
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Fig 7 SR-SPAR, Shear Plane phase image, phase and amplitude reconstructions: nearly noiseless data, χ = 1000.
The super-resolution reconstruction is produced for rs = 32. The 2D images are given for the wrapped phase and
amplitude reconstructions. The algorithm failed.

Fig 8 SR-SPAR, Gaussian Plane phase image, phase and amplitude reconstructions: noisy data, χ = 100. The super-
resolution reconstruction is produced for rs = 8. The 2D images are given for the wrapped phase and amplitude
reconstructions.

equal to 0.257λ. It is a demonstration of the sub-wavelength resolution.

3.5 Parameters of the SR-SPAR algorithm

The performance of the SR-SPAR algorithm essentially depends on its parameters. Optimization

can be produced for each magnitude/phase distribution and noise level. However, in our experi-

ments, the parameters are fixed. The image patches in BM3D are of size 8 × 8. The group size

is limited to 39 patches. The step size between the neighboring patches is equal to 3. The trans-

forms DCT (for patches) and Haar (for the group length) are used for 3D group data processing in
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Fig 9 SR-SPAR, Gaussian Plane phase image, phase and amplitude reconstructions: noisy data, χ = 100. The super-
resolution reconstruction is produced for rs = 16. The 2D images are given for the wrapped phase and amplitude
reconstructions.

Fig 10 Two-picks reconstructions, SR-GS algorithms: distance between peaks 0.257 λ, χ = 1000. The four 32× 32

squares well seen in the amplitude reconstruction correspond to four pixels of SLM.

BM3D. In the shown results as an initial guess for the iterative SR-GS and SR-SPAR algorithm

we use an image with the invariant amplitude equal to 1.3 and zero phase.

The parameters defining the iterations of the algorithm are as follows: γ1 = 1/χ ; tha = 4.0;

thϕ = 4.0. The number of the iterations is fixed to 50.

For our experiments we use MATLAB R2015a and a computer with the processor Intel(R)

Core(TM) i7-4800MQ@ 2.7 GHz.

The complexity of the algorithm is characterized by the time required for processing. For 50

iterations, L = 12 and 256 × 256 images this time is as follows: SR-GS' 2500 sec.; SR-SPAR

25



Fig 11 Two-picks reconstructions, SR-SPAR algorithms: distance between peaks 0.257 λ, χ = 1000. The four 32×32
squares well seen in the amplitude reconstruction correspond to four pixels of SLM.

without phase unwrapping ' 3300 sec; SR-SPAR with phase unwrapping ' 1500 sec.

4 Conclusion

Computational super-resolution phase retrieval is considered for phase-coded intensity observa-

tions. The proposed algorithm is derived as an optimal solution for Poissonian noisy observations.

One of the essential instruments of the algorithm is a sparsity hypothesis applied to both phase and

amplitude. The efficiency of the algorithm is confirmed by simulation experiments. It is shown

that high level super-resolution can be achieved with the pixel super-resolution factor up to 32, i.e.

the pixel size of the reconstructed object in 32 times smaller that the pixel size of the sensor and the

SLM. In comparison with the wavelength, the super-resolution up to one quarter of the wavelength

is demonstrated.
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1 A sketch of single lens optical setup: Object (o), Spatial light modulator (SLM),

Lens and Sensor (s).

2 Phase reconstructions from left-to-right: (a) true Lena image, (b) reconstruction

without phase modulation and BM3D filtering, (c) reconstruction with phase mod-

ulation but without BM3D filtering (SR-GS), (d) reconstruction with phase modu-

lation and with BM3D filtering (SR-SPAR), L = 1, χ = 1000.
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3 SR-SPAR, Lena phase image and amplitude reconstructions: super-resolution with

rs = 8, for nearly noiseless observations, χ = 1000. In the cross-sections (middle

horizontal line), the solid (red) curves are for the reconstructions and the dotted

(blue) ones for the true data.

4 SR-SPAR, Lena phase image and amplitude reconstructions: super-resolution with

rs = 8, noisy observations, χ = 1. In the cross-sections (middle horizontal line),

the solid (red) curves are for the reconstructions and the dotted (blue) ones for the

true data.

5 SR-SPAR, Shear Plane phase image, phase and amplitude reconstructions: nearly

noiseless data, χ = 1000. The super-resolution reconstruction is produced for

rs = 8. The 3D image is very close to the true phase image. The 2D images are

given for the wrapped phase and amplitude reconstructions.

6 SR-SPAR, Shear Plane phase image, phase and amplitude reconstructions: nearly

noiseless data, χ = 1000. The super-resolution reconstruction is produced for

rs = 16. The 2D images are given for the wrapped phase and amplitude recon-

structions. The 3D image surface is covered by well seen square blocks 16 × 16.

This discretization of the surface is due to SLM pixels having size 16 × 16 in the

computational pixels.

7 SR-SPAR, Shear Plane phase image, phase and amplitude reconstructions: nearly

noiseless data, χ = 1000. The super-resolution reconstruction is produced for rs =

32. The 2D images are given for the wrapped phase and amplitude reconstructions.

The algorithm failed.

33



8 SR-SPAR, Gaussian Plane phase image, phase and amplitude reconstructions: noisy

data, χ = 100. The super-resolution reconstruction is produced for rs = 8. The

2D images are given for the wrapped phase and amplitude reconstructions.

9 SR-SPAR, Gaussian Plane phase image, phase and amplitude reconstructions: noisy

data, χ = 100. The super-resolution reconstruction is produced for rs = 16. The

2D images are given for the wrapped phase and amplitude reconstructions.

10 Two-picks reconstructions, SR-GS algorithms: distance between peaks 0.257 λ,

χ = 1000. The four 32 × 32 squares well seen in the amplitude reconstruction

correspond to four pixels of SLM.

11 Two-picks reconstructions, SR-SPAR algorithms: distance between peaks 0.257 λ,

χ = 1000. The four 32 × 32 squares well seen in the amplitude reconstruction

correspond to four pixels of SLM.
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