
Model-Based Symbian Test
Automation using Keywords

and Action Words

Dec 19, 2005 @ Mobiilipäivä, TUT

Mika Katara, TTY/OHJ
mika.katara@tut.fi

Mostly joint work with Antti Kervinen,
Mika Maunumaa and Tuula Pääkkönen

http://practise.cs.tut.fi

Background

• TEMA project
– Planned duration: Aug 2005 – Jul 2008
– Personnel: Mika Katara, Antti Kervinen and

Mika Maunumaa, Mikko Satama
– Funding: TEKES, Nokia, Conformiq,

F-Secure, Plenware, Mercury Interactive
• Disclaimer: the following slides represent

the views of the presenter, not necessarily
the views of the above or any other parties

http://practise.cs.tut.fi

Testing is boring?

• The most boring parts of testing
1. Executing (regression) test case
2. Creating test cases

– The conventional test automation
solutions help you to automate the
execution of test cases (1)

– Model-based solutions help you to
automate also the generation of tests
(1&2)

http://practise.cs.tut.fi

Finding bugs with automation

• Testing is about finding bugs, isn’t it?
– A well known fact is that conventional

automation finds fewer bugs that manual
testing

• One reason for this is in the static and linear nature
of test scrips

– Model-based testing reveals errors already
when developing the models

– Smart generation heuristics enable finding
bugs also in the test execution phase

http://practise.cs.tut.fi

Finding bugs with automation…

Conventional test automation
is like programming without
”if” statements and loops

http://practise.cs.tut.fi

Maintaining test suites

• Another major problem with conventional
automation is the maintenance of the test
suites
– In worst case, you have to modify each test in

your suite whenever something changes in
the SUT (System Under Test)

– Using models, there are no test suites, and
you only have to change your model

• or few of the component models

http://practise.cs.tut.fi

What is a model?

• Simple answer in our case: a state
machine
– More formal answer: labeled transition system

(LTS) consisting of states, transitions in
between them and labels attached to the
transitions

• Another types of models: UML state
charts, models enabling generation of
different data values etc.

http://practise.cs.tut.fi

Testing through GUI vs. API
• The software architecture of the SUT almost never supports testing

by virtue
– Test interfaces are very rare

• For system level black-box testing, APIs are the often the second
best alternative

• However, suitable APIs do not always exist
– Testing tools need to be adapted to use an existing API, if suitable one

exists
• GUI is often available and the interface is usually standard (e.g.

Windows)
• Unfortunately, GUI testing is much harder than API testing

– Finding certain bugs only succeeds when testing in a certain way, i.e.,
the bugs you will find will be somewhat dependent on the way you test

http://practise.cs.tut.fi

Capture Replay,
Spaghetti Scripts

Structured Test
Scripts

Data-Driven
Scripts

Keywords,
Action words

Generations of System Level
Test Automation

See e.g. [Fewster&Graham 99]

http://practise.cs.tut.fi

Manual
testing

Scripted
testing

Model-based
testing

Generations of System Level
Test Automation…

http://practise.cs.tut.fi

Keywords and Action Words

• Consider a mobile phone with a keypad and a
graphical display with menus etc.

• Action words are “user stories” that describe
user’s actions at a high level of abstraction:
– Send an SMS, answer a call, add a new contact,

browse the calendar etc.
• Keywords map each action word to a series of

key strokes (menu navigation, inputting text etc.)

http://practise.cs.tut.fi

• To achieve a good separation of concerns, we
use action words and keywords in separate
models at different levels of abstraction

• Action models containing action words are
composed with refinement models containing
key words
– The actions available define a domain-specific

language
• The resulting composite model is input to the

tools executing the model, i.e. generating the
test cases

http://practise.cs.tut.fi

Example Action Model
Series 60 Camera application

http://practise.cs.tut.fi

Example Refinement Model

http://practise.cs.tut.fi

TEMA 3-Tier Test Model Architecture

Test Control Tier:
Test Control Machines

Action Tier:
Action Machines

Keyword Tier:
Refinement Machines

Adapter and SUT

Choose test model, set cov. objectives Test finished, verdict

Execute high level action Execution finished

Execute event Execution status: success or failure

http://practise.cs.tut.fi

TEMA Tool Software architecture
Model Machine

<<artifact>>

TestControlModel

<<artifact>>

TestModel

<<artifact>>

TestLog

<<artifact>>

TestData

Test Machine

Design Machine

<<artifact>>

LTS

<<executable>>

QuickTestPro

<<component>>

Keyword Library

<<component>>

TestReporter

<<artifact>>

TestScript

<<SUT>>
<<owner>>

Symbian Mobile 1

{owner = Alice}

<<owner>>
<<SUT>>

Symbian Mobile N

{owner = Bob}

<<executable>>

Test model composer

<<component>>

TestLogger

<<component>>

TestEngine

<<component>>

TestGuidance

: TestToolAdapter

Mobile client
for m-Test

<<executable>>

<<component>>

Coverage

<<component>>

TestController

Mobile client
for m-Test

<<executable>>

<<component>>

TestToolAdapter

<<executable>>

Model designer

<<component>>

TestVisualizer

TestTechnician

<<executable>>

m-Test

TestEngineer

contains

uses

coverage status

calls

control model

test model

coverage
consultation

guidance info

produces

current test

1 1..*

<<bluetooth>>
uses

status

coverage
criteria

step
consultation

test statuscontrol status

use

<<bluetooth>>
uses

operates

mobile network

<<COM>>

test data

produces

creates

http://practise.cs.tut.fi

Conclusions
• Model-based testing is technically superior to

conventional test automation
• The tools are not necessarily more expensive;

you can start bug hunting with a piece of paper
and a pen
– For automatic generation of tests from models our

first prototype needed also a few hundred lines of
code

• Deployment of new and ground-breaking
development technologies is always hard:
management buy-in, training, how to reorganize
work, how to get trusted commercial support etc.

http://practise.cs.tut.fi

Field testing S60
camera application

