Model-Based Symbian Test
Automation using Keywords
and Action Words

Dec 19, 2005 @ Mobiilipaiva, TUT

Mika Katara, TTY/OHJ
mika.katara@tut.fi

Mostly joint work with Antti Kervinen,
Mika Maunumaa and Tuula Paakkoénen

Background

« TEMA project
— Planned duration: Aug 2005 — Jul 2008

— Personnel: Mika Katara, Antti Kervinen and
Mika Maunumaa, Mikko Satama

— Funding: TEKES, Nokia, Conformiq,
F-Secure, Plenware, Mercury Interactive
e Disclaimer: the following slides represent

the views of the presenter, not necessarily
the views of the above or any other parties

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti
Institute of Software S ystems

Testing Is boring?

 The most boring parts of testing

1. Executing (regression) test case
2. Creating test cases

— The conventional test automation

solutions help you to automate the
execution of test cases (1)

— Model-based solutions help you to

automate also the generation of tests
(1&2)

$ TTTTTTTTTTTTTTTTTTTTTTTT 0LOGY http://practise.cs.tut.fti
Institute of Software S ystems

Finding bugs with automation

e Testing Is about finding bugs, isn’t it?

— A well known fact is that conventional
automation finds fewer bugs that manual
testing

* One reason for this is in the static and linear nature
of test scrips

— Model-based testing reveals errors already
when developing the models

— Smart generation heuristics enable finding
bugs also in the test execution phase

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti
Institute of Software Systems

Finding bugs with automation...

Conventional test automation
IS like programming without
"1f” statements and loops

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti

Institute of Software Systems

Maintaining test suites

* Another major problem with conventional
automation is the maintenance of the test
suites

— In worst case, you have to modify each test in
your suite whenever something changes in
the SUT (System Under Test)

— Using models, there are no test suites, and
you only have to change your model

 or few of the component models

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti
Institute of Software Systems

What is a model?

e Simple answer In our case: a state
machine

— More formal answer: labeled transition system
(LTS) consisting of states, transitions in
between them and labels attached to the
transitions

« Another types of models: UML state
charts, models enabling generation of
different data values etc.

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti
Institute of Software Systems

Testing through GUI vs. API

 The software architecture of the SUT almost never supports testing
by virtue

— Test interfaces are very rare

» For system level black-box testing, APIs are the often the second
best alternative

 However, suitable APIs do not always exist

— Testing tools need to be adapted to use an existing AP, if suitable one
exists

 GUI is often available and the interface is usually standard (e.g.
Windows)

« Unfortunately, GUI testing is much harder than API testing

— Finding certain bugs only succeeds when testing in a certain way, i.e.,
the bugs you will find will be somewhat dependent on the way you test

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti

Institute of Software Systems

Generations of System Level
Test Automation

Keywords,
Action words

Data-Driven
Scripts

Structured Test
Scripts

Capture Replay,
Spaghetti Scripts

$ TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Software Systems

See e.g. [Fewster&Graham 99]

http://practise.cs.tut.fi

53

Generations of System Level
Test Automation...

Manual
testing

TAMPERE UNIVERSITY OF TECHNOLOGY
Institute of Software Systems

Scripted
testing

Model-based
testing

http://practise.cs.tut.fi

Keywords and Action Words

 Consider a mobile phone with a keypad and a
graphical display with menus etc.

e Action words are “user stories” that describe
user’s actions at a high level of abstraction:

— Send an SMS, answer a call, add a new contact,
browse the calendar etc.

« Keywords map each action word to a series of
key strokes (menu navigation, inputting text etc.)

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti
Institute of Software Systems

 To achieve a good separation of concerns, we
use action words and keywords in separate
models at different levels of abstraction

e Action models containing action words are
composed with refinement models containing
key words
— The actions available define a domain-specific

language

e The resulting composite model is input to the
tools executing the model, I1.e. generating the
test cases

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti

Institute of Software Systems

Example Action Model

Series 60 Camera application

Camera s,
awstartCam awDeletePhoto ~ awCreateMMS
. ?T*’:’m . w“’b
'-..,]'EFI'"H qe.“H
) EN

awQuit T T~ awCancelMMS A
£
&
=
_|
PALLOW<Uselmage=
-ﬁ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti
Institute of Software Systems

Example Refinement Model

Camerag
start_aw\Verify Cam start_awStartCam .~ kwPressKey<SoftLeft>

o

kwselectMenu=Camera=

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti

Institute of Software Systems

TEMA 3-Tier Test Model Architecture

Test Control Tier:
Test Control Machines

Choose test model, set cov. objectivesl T Test finished, verdict

Action Tier;
Action Machines

Execute high level actioni T Execution finished

Keyword Tier:
Refinement Machines

Execute event l T Execution status: success or failure

Adapter and SUT
$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti

Institute of Software Systems

TEMA Tool Software architecture

<<SUT>>
<<owner>> Test Machine Model Machine
Symbian Mobile 1
. <<component>> coverage <<component>>
{owner = Allce} uees ° gl consulgation
<’<’b_}uetooth>> <<component > F——— Coverage] TestGuidance
o \ I
-7 \ TestVisualizen !
<<executables>> k-1 A .
X X H A -7 A
Mobile client s<executabl i coverage uisenes dnfEe”” Stepnlt g
for m-Test = TleEE x J coverage status ?rlterla et COHSF ation
! > ! \ === I
1 N ! \ =& 1
! \ : \ -7 !
_ A . \\ 1 <<component>> <<component>>
“ <<component>> \ 1 1 1..%
I \ 1 c 1
I TestController TestEngine
' I TestToolAdapter |[-ff - —c----L--—--- current test S
1
mobilpe network : I \\ :
! i \ 0 T T
! I A Vool 1 A trol t - ! S
uses i | calls f vl | \control status tegr’status | N
<<bluetoothp> \ 1 & & I AN ez 1 \
| NRY i S 52 | \
\ 1 i I
: \\ <<execut:able>>>'| E <<art1fact>D S : <<components> : :
: K-———_ i
! \ QulckTestPro: TestLog === TestLogger ! g
: \\ 1<<COM>> 1 1 :
1 J 1
1 <<component>> ' ,/ test model |
! q 1 - tedt data
! Keyword Library f Contr9l model 7 |
I
<<owners>> 1 ,' 4 yras A
<<SUT>> : I' <<artifact>> contains <<artifact> <<artifa
q q ! A G I e T e B DD R B > [l il >
Symbian Mobile N ! B | TestControlModel TestModel TestData
1 ! q
{owner - BoD}. ; | 8 TestToolAdapEg|| \ \ Al
J 1
4 1
47 1 //” \ \ II
1 - 1
<<executable> A - ‘\ \ Il
q q 4 . . 1
Mobile client <<artifac SSEEpeREE Design Machine prdduces
for m-Test TestScript [~-3TestReporter g 1
. !
produces <<art1fact>D creates 1
F-====—————————- > ESEEEEEES v
! LTS o4
<<executable>> <<executable>
Test model composer | _______ S Model designer
operates
use I
TestTechnician
TestEngineer

TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti
Institute of Software Systems

Conclusions

 Model-based testing is technically superior to
conventional test automation

» The tools are not necessarily more expensive;
you can start bug hunting with a piece of paper
and a pen

— For automatic generation of tests from models our
first prototype needed also a few hundred lines of

code

 Deployment of new and ground-breaking
development technologies is always hard:
management buy-in, training, how to reorganize
work, how to get trusted commercial support etc.

$ TAMPERE UNIVERSITY OF TECHNOLOGY http://practise.cs.tut.fti

Institute of Software Systems

\Field testing S60

camera application

