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Background

« TEMA project
— Planned duration: Aug 2005 — Jul 2008

— Personnel: Mika Katara, Antti Kervinen and
Mika Maunumaa, Mikko Satama

— Funding: TEKES, Nokia, Conformiq,
F-Secure, Plenware, Mercury Interactive
e Disclaimer: the following slides represent

the views of the presenter, not necessarily
the views of the above or any other parties
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Testing Is boring?

 The most boring parts of testing

1. Executing (regression) test case
2. Creating test cases

— The conventional test automation

solutions help you to automate the
execution of test cases (1)

— Model-based solutions help you to

automate also the generation of tests
(1&2)
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Finding bugs with automation

e Testing Is about finding bugs, isn’t it?

— A well known fact is that conventional
automation finds fewer bugs that manual
testing

* One reason for this is in the static and linear nature
of test scrips

— Model-based testing reveals errors already
when developing the models

— Smart generation heuristics enable finding
bugs also in the test execution phase
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Finding bugs with automation...

Conventional test automation
IS like programming without
"1f” statements and loops
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Maintaining test suites

* Another major problem with conventional
automation is the maintenance of the test
suites

— In worst case, you have to modify each test in
your suite whenever something changes in
the SUT (System Under Test)

— Using models, there are no test suites, and
you only have to change your model

 or few of the component models
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What is a model?

e Simple answer In our case: a state
machine

— More formal answer: labeled transition system
(LTS) consisting of states, transitions in
between them and labels attached to the
transitions

« Another types of models: UML state
charts, models enabling generation of
different data values etc.
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Testing through GUI vs. API

 The software architecture of the SUT almost never supports testing
by virtue

— Test interfaces are very rare

» For system level black-box testing, APIs are the often the second
best alternative

 However, suitable APIs do not always exist

— Testing tools need to be adapted to use an existing AP, if suitable one
exists

 GUI is often available and the interface is usually standard (e.g.
Windows)

« Unfortunately, GUI testing is much harder than API testing

— Finding certain bugs only succeeds when testing in a certain way, i.e.,
the bugs you will find will be somewhat dependent on the way you test
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Generations of System Level
Test Automation

Keywords,
Action words

Data-Driven
Scripts

Structured Test
Scripts

Capture Replay,
Spaghetti Scripts
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Generations of System Level
Test Automation...

Manual
testing
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Scripted
testing

Model-based
testing
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Keywords and Action Words

 Consider a mobile phone with a keypad and a
graphical display with menus etc.

e Action words are “user stories” that describe
user’s actions at a high level of abstraction:

— Send an SMS, answer a call, add a new contact,
browse the calendar etc.

« Keywords map each action word to a series of
key strokes (menu navigation, inputting text etc.)
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 To achieve a good separation of concerns, we
use action words and keywords in separate
models at different levels of abstraction

e Action models containing action words are
composed with refinement models containing
key words
— The actions available define a domain-specific

language

e The resulting composite model is input to the
tools executing the model, I1.e. generating the
test cases
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Example Action Model

Series 60 Camera application
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Example Refinement Model

Camerag
start_aw\Verify Cam start_awStartCam .~ kwPressKey<SoftLeft>

o

kwselectMenu=Camera=
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TEMA 3-Tier Test Model Architecture

Test Control Tier:
Test Control Machines

Choose test model, set cov. objectivesl T Test finished, verdict

Action Tier;
Action Machines

Execute high level actioni T Execution finished

Keyword Tier:
Refinement Machines

Execute event l T Execution status: success or failure

Adapter and SUT
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TEMA Tool Software architecture
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Conclusions

 Model-based testing is technically superior to
conventional test automation

» The tools are not necessarily more expensive;
you can start bug hunting with a piece of paper
and a pen

— For automatic generation of tests from models our
first prototype needed also a few hundred lines of

code

 Deployment of new and ground-breaking
development technologies is always hard:
management buy-in, training, how to reorganize
work, how to get trusted commercial support etc.
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