O(m log n) Time Algorithms for DFA Minimization and More

Antti Valmari
Tampere University of Technology

<table>
<thead>
<tr>
<th>Part I: DFA Minimization</th>
<th>Part II: and More</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Deterministic Finite Automata</td>
<td>10 Bisimilarity</td>
</tr>
<tr>
<td>2 Minimization of Deterministic</td>
<td>11 Minimal Bisimilar Graph</td>
</tr>
<tr>
<td>3 Block Splitting</td>
<td>12 Paige-Tarjan $O(m \log n)$ RCP Alg.</td>
</tr>
<tr>
<td>5 Gries’ Data Structures (Roughly)</td>
<td>14 Markov Chains and Markov Dec.</td>
</tr>
<tr>
<td>6 More Recent … Data Structure</td>
<td></td>
</tr>
<tr>
<td>7–9 DFA Min… in $O(m \log n)$ Time</td>
<td>15 Conclusions</td>
</tr>
</tbody>
</table>

AV
$O(m \log n)$ Time ...
2010-10-09
0/15
Part I:

DFA Minimization
1 Deterministic Finite Automata

- \(D = (Q, \Sigma, \delta, \hat{q}, F) \)
 - \(Q \) = states
 - \(\Sigma \) = labels (the alphabet)
 - \(\delta \) = transitions (\textit{partial function}!)
 - \(\hat{q} \) = initial state
 - \(F \) = final states

- Let \(n = |Q|, m = |\delta| = |\text{defined transitions}|, \alpha = |\Sigma| = |\text{available labels}| \)
 - technical convenience assumption: \(n = O(m) \) \((\text{e.g., } n \leq 2m + 1) \)

- Let \(q \in Q \)

- The \textbf{language} accepted by \(q \) is the set of strings of labels on the paths from \(q \) to final states
 - e.g., bottom middle state: \(\{aba, aaba, \ldots, ba, baaba, \ldots\} \)
 - e.g., bottom right state: \(\{\varepsilon, aba, aaba, aaaba, \ldots, \ldots\} \)

- Denote it with \(\mathcal{L}(q) \)

- The language accepted by \(D \) is \(\mathcal{L}(D) = \mathcal{L}(\hat{q}) \)
2 Minimization of Deterministic Finite Automata

- **The minimization problem:**
 Find the smallest DFA that accepts the same language as the given DFA.

- **solution:**
 1. Remove *irrelevant* states and transitions. (textbook stuff)
 - those that are not reachable from \hat{q}
 - those from which no final state can be reached (except \hat{q})
 2. Merge states that accept the same language.

- How can we test if $\mathcal{L}(q_1) = \mathcal{L}(q_2)$?
3 Block Splitting

- States are partitioned into blocks
- q_1 and q_2 go to different blocks only when it is certain that $\mathcal{L}(q_1) \neq \mathcal{L}(q_2)$
- Initially blocks are F and $Q \setminus F$ (or just one of them, if the other is \emptyset)
- Blocks are split as long as possible
- Reason for putting q_1 and q_2 to different blocks: for some label a and block B, q_1 has and q_2 does not have an a-transition to a state in B
- At most $n - 1$ successful splittings ($n = |\text{States}|$)
- Problem: vulnerable to lots of work

- $O(n^2)$ even if $\alpha = 1$ and $m = O(n)$
- Cost of “useless” “little” work may be important
4 Hopcroft’s Ideas [1971]

- Clarified and improved by Gries [1973] (and, e.g., Knuutila [2001])
- Assumes that δ is full
- **Idea:** Traverse transitions backwards
 - splitter = (block, label) = (B, a)
 - process one splitter at a time
 - find the q such that $\delta(q, a) \in B$, move them to tentative new blocks
 - each block splits to backwards-encountered and others (if both non-empty)
 \Rightarrow no futile scanning of states without relevant output transitions

- **Idea:** If (B, a) has been used and B splits to B_1 and B_2, then it suffices to use one of (B_1, a) and (B_2, a)
 - use the “smaller” one (meaning of “smaller” is less trivial than it seems!)
 \Rightarrow each state is used as a splitter state at most $\log_2 n$ instead of n times
- Both ideas \Rightarrow running time in $O(\alpha n \log n)$ $m \leq \alpha n$, often $m \ll \alpha n$
5 Gries’ Data Structures (Roughly)

- Partition of Q
 - for each block, there is a doubly linked list of the states in it
 - the block has a pointer to its main list and “tentative new” list
 - each state has a pointer to its block
 - the block knows its size (and the size of the “tentative new” list)

- Inverse transitions: for each q and a, the states q' such that $\delta(q', a) = q$

- Worksets for temporary storage
 - unprocessed splitters, and pointers to them for each (B, a)
 - backwards-encountered states — don’t cut the branch on which you sit!
 - backwards-encountered blocks = touched blocks

- $\Theta(\alpha n)$ memory
 while there are unprocessed splitters (B, a) do
 choose any and remove it from the workset
 compute its backwards-encountered states
 use backwards-encountered states to tentatively split blocks
 for each touched block B' do
 split or reset back to earlier status
 if B' is split then for $b \in \Sigma$ do update the (B', b)
6 More Recent Refinable Partition Data Structure

- Maintains a partition of \{1, 2, \ldots, N\}, for some \(N\)
- Like Gries, constant time \(\text{Mark}(e)\) and amortized constant time \(\text{Split}(s)\)

\[
\begin{array}{c}
\text{set} & \text{set} & \text{set} & \text{set} \\
\end{array}
\]

\[
\begin{array}{cccc}
elem & \vdots & \text{marked} & \text{unmarked} \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{loc}[e] & \text{first}[s] & \text{mid}[s] & \text{end}[s] \\
\end{array}
\]

- Also \(\text{sidx}[e]\)
- Of course, all arrays must be updated appropriately in each operation

- \(\text{Mark}(e)\) swaps \(e\) with the first unmarked element and increments \(\text{mid}[s]\)
 - **Trick 1 for the future:** returns set number iff all elements were unmarked

- **Trick 2 for the future:** \(\text{Split}(s)\) gives new block number to smaller half
 - earlier papers: marked states become the new block
 - does not affect amortized speed, as long as new \(\neq\) unmarked bigger half
7 DFA Minimization in $O(m \log n)$ Time 1/3

- Valmari & Lehtinen [2008], improvements Valmari [2010]
- **Problem**: How to avoid spending excessive time scanning empty splitters?
 - empty $(B, a) = \text{no } a\text{-transition ends at } B$
 - and how to avoid using and initializing $\Theta(\alpha n)$ memory?
 \Rightarrow cannot use, e.g., `in_trans[state, label]`
- **Idea**: Non-empty splitters constitute a partition of transitions that can be maintained similarly to blocks
 \Rightarrow Two refinable partitions in the same program
 - $B = \text{blocks, partition of states}$
 - $C = \text{cords, partition of transitions}$
- Inverse transitions: $In_trans[q] = \{ (q_1, a, q_2) \in \delta \mid q_2 = q \}$
 - numbers of input transitions of q *in arbitrary order*
 \Rightarrow no need for $\Theta(\alpha n)$ data structures, easy to initialize
- Worksets: only one, W
 - e.g., array of integers used as a stack
8 DFA Minimization in $O(m \log n)$ Time 2/3

• Algorithm *in great detail*

\[
c := 1; \ b := 2; \ W := \emptyset;
\]

while $c \leq |C|$ **do**

use cord \#\(c\) **to split blocks**

\[
c := c + 1; \ W := \emptyset
\]

while $b \leq |B|$ **do**

use block \#\(b\) **to split cords**

\[
b := b + 1; \ W := \emptyset
\]

• Earlier Trick 1

\Rightarrow \(b'\) and \(c'\) may be added to \(W\) without testing if they are already there

• Why is there no workset for unprocessed block-splitters and cord-splitters?

 – Hopcroft, Gries: either smaller or new half must be added to unprocessed
 – Trick 2: new number is given to smaller half \Rightarrow these cases are the same
 – unprocessed are chosen for processing in first in – first out order

\Rightarrow the unprocessed are always \(\{b, b + 1, \ldots, |B|\}\) and \(\{c, c + 1, \ldots, |C|\}\)
Problem: Not enough time to initially sort the transitions! \(O(m \log m)\)
- we aim at so fast an algorithm that ordinary things become too slow
- solution: counting sort + classification trick of Aho & al. [1974] exercise
- practical average-time solution: hash table
- engineer’s: don’t bother, \(O(m \log m)\) is not much worse than \(O(m \log n)\)

A prototype implementation
- 590 lines of C++ (+ libraries for formatted i/o and error messages)
- refinable partition data structure: 50 lines, other data structures: 20 lines
- block splitting: 40 lines
- Aho & al. [1974] & heapsorting as an alternative: 60 lines
- removal of irrelevant states: 70 lines, other initialization: 80 lines
- input and output: 130 lines
- heapsort: 40 lines, range-checking array: 60 lines, main comment: 40 lines

\(\Rightarrow\) Compared to general idea of the difficulty of programming fast DFA minimization, this is very simple

- 50 sec on a laptop when \(n = 10^5\), \(\alpha = 1000\), \(m = 5 \cdot 10^6\) (includes i/o)
Part II:

and More
10 Bisimilarity

- Weakest relation that satisfies:
 - \(q_1 \sim q_2 \Rightarrow \text{label}(q_1) = \text{label}(q_2) \)
 - \(q_1 \sim q_2 \land (q_1, a, q'_1) \in \Delta_1 \Rightarrow \exists q'_2 : q'_1 \sim q'_2 \land (q_2, a, q'_2) \in \Delta_2 \)
 - \(q_1 \sim q_2 \land (q_2, a, q'_2) \in \Delta_2 \Rightarrow \exists q'_1 : q'_1 \sim q'_2 \land (q_1, a, q'_1) \in \Delta_1 \)
 - \(q_1^{\text{init}} \sim q_2^{\text{init}} \), or \(\forall q_1 \in \text{Initials}_1 : \exists q_2 \in \text{Initials}_2 : q_1 \sim q_2 \), and ...

- Fundamental relation in concurrency theory

- Often much better “strong” equivalence than isomorphism
 - unifies states that only differ on \(x \), if the next thing on \(x \) is \(x := 0 \)
11 Minimal Bisimilar Graph

- Nondeterministic version of DFA minimization
- Remove what is not reachable from initial states
- Fuse bisimilar states
- Applications
 - smaller graph for further processing
 - bisimilarity test
- **Problem** due to nondeterminism: three-way splitting

![Diagram of bisimilar graph minimization process]
12 Paige–Tarjan $O(m \log n)$ RCP Algorithm [1987]

- **Relational coarsest partition problem:**
 Nondeterministic graph, only one label ($\alpha = 1$)

- **Idea:** Compound blocks, “q-B-counters”, and “q-counters”

- Compound block \approx
 union of blocks that has been used for splitting
 - let \hat{B} be the compound block that covers block B

- Biggest block in a compound block
 need not be used in further splitting
 \Rightarrow each state is used in a splitter at most $\log_2 n$ times

- **Problem:** How to implement three-way splitting?

 \Rightarrow Maintain, for each q and B, the number of transitions from q to B

- Each B' has (at most) three kinds of sub-blocks
 - **left block:** $\#(q, B) > 0 = \#(q, \hat{B} \setminus B)$
 - **middle block:** $\#(q, B) > 0 < \#(q, \hat{B} \setminus B)$
 - **right block:** $\#(q, B) = 0$
13 Extension to Bisimulation [2009, 2010]

- (Still RCP) cannot afford to represent counters that store 0
 ⇒ data structure trickery!

- Extend q-B-counters to q-a-B-counters
- Use cords (and the year 2010 DFA tricks)
- Initialization: sort each cord according to start states
 - $O(m_a \log m_a)$, where $m_a \leq n^2$
- Splitting
 - distinguish left blocks from middle blocks by counter values
 - extract left blocks like with DFAs
 - update old and create new counter when extracting middle block
 - main loop and splitting of cords are like with DFAs
- Tricky details here and there and in the correctness proof, but it works!
These ideas have also been applied to state lumping of Markov Chains by Valmari and Franceschinis [2010]—would be a story of its own—finds use for the elegant but mostly useless majority candidate algorithm.

Everything has been put together in a program for minimizing Markov Decision Processes.
Part III:

Conclusions
15 Conclusions

• $O(m \log n)$ time DFA, bisimulation, and MDP minimization are possible
 – such an algorithm for DFAs was found amazingly late, 1971 ↔ 2008
 – the other two problems are strictly more general
 – $O(m \log n)$ time Markov chain lumping was solved in 2003, but our results simplify it

• The breakthrough was the use of another partition, this time of transitions

• In the end the programs are relatively simple
 – we got rid of some data structures in earlier algorithms

• However, many tricky ideas had to be fine-tuned to make it all work
 – algorithms, correctness proofs, and programs
 – details are important for obtaining the promised performance!

• Hidden theme: representing a mapping where some result value is far more common than others
 – sparse mapping
 – avoid explicitly representing that value
Part IV:

Thank you for attention.

Questions?