Chapter 2: Data Warehousing and OLAP Technology for Data Mining

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Further development of data cube technology
- From data warehousing to data mining
What is Data Warehouse?

• Defined in many different ways, but not rigorously.
 – A decision support database that is maintained separately from the organization’s operational database
 – Support information processing by providing a solid platform of consolidated, historical data for analysis.
• “A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management’s decision-making process.”—W. H. Inmon
• Data warehousing:
 – The process of constructing and using data warehouses
Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales.
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing.
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.
Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.
Data Warehouse—Time Variant

• The time horizon for the data warehouse is significantly longer than that of operational systems.
 – Operational database: current value data.
 – Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)

• Every key structure in the data warehouse
 – Contains an element of time, explicitly or implicitly
 – But the key of operational data may or may not contain “time element”.
Data Warehouse—Non-Volatile

- A physically separate store of data transformed from the operational environment.
- Operational update of data does not occur in the data warehouse environment.
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data.
Data Warehouse vs. Heterogeneous DBMS

- Traditional heterogeneous DB integration:
 - Build *wrappers/mediators* on top of heterogeneous databases
 - *Query driven* approach
 - When a query is posed to a client site, a meta-dictionary is used to translate the query into queries appropriate for individual heterogeneous sites involved, and the results are integrated into a global answer set
 - Complex information filtering, compete for resources
- Data warehouse: *update-driven*, high performance
 - Information from heterogeneous sources is integrated in advance and stored in warehouses for direct query and analysis
What is Data Warehouse?

- A data warehouse is the main repository of the organization's historical data, its **corporate memory**. In other words, the data warehouse contains the raw material for management's **decision support system**.

- A **data mart (DM)** is a specialized version of a **data warehouse** (DW). Like **data warehouses**, data marts contain a snapshot of operational **data** that helps **business** people to strategize based on analyses of past trends and experiences. The key difference is that the creation of a data mart is predicated on a specific, predefined need for a certain grouping and configuration of select **data**. A data mart configuration emphasizes easy access to relevant information.

- **OLAP** stands for **On Line Analytical Processing**. It is an approach to quickly provide the answer to analytical queries that are dimensional in nature. It is part of the broader category **business intelligence**, which also includes **Extract transform load** (ETL), **relational reporting** and **data mining**.

- **Online Transaction Processing** (or **OLTP**) is a class of programs that facilitate and manage transaction-oriented applications, typically for data entry and retrieval **transaction processing**.
Data Warehouse vs. Operational DBMS

- **OLTP (on-line transaction processing)**
 - Major task of traditional relational DBMS
 - Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.

- **OLAP (on-line analytical processing)**
 - Major task of data warehouse system
 - Data analysis and decision making

- **Distinct features (OLTP vs. OLAP):**
 - User and system orientation: customer vs. market
 - Data contents: current, detailed <> historical, consolidated
 - DB design: Entity-Relationship + application <> star + subject
 - View: current, local vs. evolutionary, integrated
 - Access patterns: update vs. read-only but complex queries
OLTP vs. OLAP

<table>
<thead>
<tr>
<th></th>
<th>OLTP</th>
<th>OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>users</td>
<td>clerk, IT professional</td>
<td>knowledge worker</td>
</tr>
<tr>
<td>function</td>
<td>day to day operations</td>
<td>decision support</td>
</tr>
<tr>
<td>DB design</td>
<td>application-oriented</td>
<td>subject-oriented</td>
</tr>
<tr>
<td>data</td>
<td>current, up-to-date, detailed, flat relational, isolated</td>
<td>historical, summarized, multidimensional integrated, consolidated</td>
</tr>
<tr>
<td>usage</td>
<td>repetitive</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>access</td>
<td>read/write, index/hash on prim. key</td>
<td>lots of scans</td>
</tr>
<tr>
<td>unit of work</td>
<td>short, simple transaction</td>
<td>complex query</td>
</tr>
<tr>
<td># records accessed</td>
<td>tens</td>
<td>millions</td>
</tr>
<tr>
<td>#users</td>
<td>thousands</td>
<td>hundreds</td>
</tr>
<tr>
<td>DB size</td>
<td>100MB-GB</td>
<td>100GB-TB</td>
</tr>
<tr>
<td>metric</td>
<td>transaction throughput</td>
<td>query throughput, response</td>
</tr>
</tbody>
</table>
Why Separate Data Warehouse?

• High performance for both systems
 – DBMS—tuned for OLTP: access methods, indexing, concurrency control, recovery
 – Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation.

• Different functions and different data:
 – missing data: Decision support requires historical data which operational DBs do not typically maintain
 – data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 – data quality: different sources typically use inconsistent data representations, codes and formats which have to be reconciled
Chapter 2: Data Warehousing and OLAP Technology for Data Mining

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Further development of data cube technology
- From data warehousing to data mining
From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube.
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions:
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year).
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables.
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.
Cube: A Lattice of Cuboids

- 0-D (apex) cuboid
- 1-D cuboids
- 2-D cuboids
- 3-D cuboids
- 4-D (base) cuboid
Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - **Star schema**: A fact table in the middle connected to a set of dimension tables
 - **Snowflake schema**: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - **Fact constellations**: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called **galaxy schema** or **fact constellation**
Example of Star Schema

Dimension Tables:
- **time** (dimension table)
 - day
 - day_of_the_week
 - month
 - quarter
 - year
- **branch** (dimension table)
 - branch_name
 - branch_type
- **item** (dimension table)
 - item_key
 - item_name
 - brand
 - type
 - supplier_type
- **location** (dimension table)
 - street
 - city
 - province_or_street
 - country

Fact Table:
- Sales Fact Table
 - time_key
 - item_key
 - branch_key
 - location_key
 - units_sold
 - dollars_sold
 - avg_sales
Example of Snowflake Schema

time (dimension table)
- day
- day_of_the_week
- month
- quarter
- year

branch (dimension table)
- branch_name
- branch_type

item (dimension table)
- item_key
- item_name
- brand
- type
- supplier_key

supplier (dimension table)
- supplier_key
- supplier_type

location (dimension table)
- location_key
- street
- city_key

Sales Fact Table
- time_key
- item_key
- branch_key
- location_key
- units_sold
- dollars_sold
- avg_sales

Measures
A Data Mining Query Language, DMQL: Language Primitives

• Cube Definition (Fact Table)
 `define cube <cube_name> [<dimension_list>]:
 <measure_list>

• Dimension Definition (Dimension Table)
 `define dimension <dimension_name> as
 (<attribute_or_subdimension_list>)

• Special Case (Shared Dimension Tables)
 – First time as “cube definition”
 – `define dimension <dimension_name> as
 <dimension_name_first_time> in cube
 <cube_name_first_time>
defining a star schema in dmql

```
define cube sales_star [time, item, branch, location]:
  dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month, quarter, year)

define dimension item as (item_key, item_name, brand, type, supplier_type)

define dimension branch as (branch_key, branch_name, branch_type)

define dimension location as (location_key, street, city, province_or_state, country)
```
Defining a Snowflake Schema in DMQL

```sql
define cube sales_snowflake [time, item, branch, location]:
    dollars_sold = sum(sales_in_dollars),
    avg_sales = avg(sales_in_dollars),
    units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month,
    quarter, year)

define dimension item as (item_key, item_name, brand, type,
    supplier(supplier_key, supplier_type))

define dimension branch as (branch_key, branch_name,
    branch_type)

define dimension location as (location_key, street, city(city_key,
    province_or_state, country))
```
Defining a Fact Constellation in DMQL

```
define cube sales [time, item, branch, location]:
    dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars),
    units_sold = count( *)
define dimension time as (time_key, day, day_of_week, month, quarter, year)
define dimension item as (item_key, item_name, brand, type, supplier_type)
define dimension branch as (branch_key, branch_name, branch_type)
define dimension location as (location_key, street, city, province_or_state, country)
define cube shipping [time, item, shipper, from_location, to_location]:
    dollar_cost = sum(cost_in_dollars), unit_shipped = count( *)
define dimension time as time in cube sales
define dimension item as item in cube sales
define dimension shipper as (shipper_key, shipper_name, location as location in cube sales, shipper_type)
define dimension from_location as location in cube sales
define dimension to_location as location in cube sales
```
Measures: Three Categories

- **distributive**: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning.
 - E.g., count(), sum(), min(), max().
- **algebraic**: if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function.
 - E.g., avg(), min_N(), standard_deviation().
- **holistic**: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank().
A Concept Hierarchy: Dimension (location)
View of Warehouses and Hierarchies

- **Schema hierarchy**
 - day < {month < quarter; year}

- **Set grouping hierarchy**
 - {1..10} < inexpensive
Multidimensional Data

- Sales volume as a function of product, month, and region

Dimensions: Product, Location, Time
Hierarchical summarization paths

- Industry
- Region
- Year

- Category
- Country
- Quarter

- Product
- City
- Month

- Office
- Day

- Week
A Sample Data Cube

<table>
<thead>
<tr>
<th>Product</th>
<th>VCR</th>
<th>PC</th>
<th>TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Qtr</td>
<td>sum</td>
<td>sum</td>
<td>sum</td>
</tr>
<tr>
<td>2Qtr</td>
<td>sum</td>
<td>sum</td>
<td>sum</td>
</tr>
<tr>
<td>3Qtr</td>
<td>sum</td>
<td>sum</td>
<td>sum</td>
</tr>
<tr>
<td>4Qtr</td>
<td>sum</td>
<td>sum</td>
<td>sum</td>
</tr>
<tr>
<td>sum</td>
<td>sum</td>
<td>sum</td>
<td>sum</td>
</tr>
</tbody>
</table>

Total annual sales of TV in U.S.A.

<table>
<thead>
<tr>
<th>Country</th>
<th>Date</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.A</td>
<td>sum</td>
<td>TV, PC</td>
</tr>
<tr>
<td>Canada</td>
<td>sum</td>
<td>TV, PC</td>
</tr>
<tr>
<td>Mexico</td>
<td>sum</td>
<td>TV, PC</td>
</tr>
</tbody>
</table>

All, All, All
Cuboids Corresponding to the Cube

- 0-D (apex) cuboid
- 1-D cuboids
- 2-D cuboids
- 3-D (base) cuboid
Browsing a Data Cube

Visualization capabilities for interactive manipulation.
Typical OLAP Operations

- **Roll up (drill-up):** summarize data
 - *by climbing up hierarchy or by dimension reduction*
- **Drill down (roll down):** reverse of roll-up
 - *from higher level summary to lower level summary or detailed data, or introducing new dimensions*
- **Slice and dice:**
 - *project and select*
- **Pivot (rotate):**
 - *reorient the cube, visualization, 3D to series of 2D planes.*
- **Other operations**
 - **drill across:** involving (across) more than one fact table
 - **drill through:** through the bottom level of the cube to its back-end relational tables (using SQL)
A Star-Net Query Model

Each circle is called a footprint.
Chapter 2: Data Warehousing and OLAP Technology for Data Mining

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Further development of data cube technology
- From data warehousing to data mining
Design of a Data Warehouse: A Business Analysis Framework

• Four views regarding the design of a data warehouse
 – Top-down view
 • allows selection of the relevant information necessary for the data warehouse
 – Data source view
 • exposes the information being captured, stored, and managed by operational systems
 – Data warehouse view
 • consists of fact tables and dimension tables
 – Business query view
 • sees the perspectives of data in the warehouse from the view of end-user
Data Warehouse Design Process

• Top-down, bottom-up approaches or a combination of both
 – Top-down: Starts with overall design and planning (mature)
 – Bottom-up: Starts with experiments and prototypes (rapid)

• From software engineering point of view
 – Waterfall: structured and systematic analysis at each step before proceeding to the next
 – Spiral: rapid generation of increasingly functional systems, short turn around time, quick turn around

• Typical data warehouse design process
 – Choose a business process to model, e.g., orders, invoices, etc.
 – Choose the grain (atomic level of data) of the business process
 – Choose the dimensions that will apply to each fact table record
 – Choose the measure that will populate each fact table record
Multi-Tiered Architecture

Data Sources

- other sources
- Operational DBs

Data Storage

- Metadata
- Monitor & Integrator
- Extract
- Transform
- Load
- Refresh

OLAP Engine

- OLAP Server
- Serve
- Analysis
- Query
- Reports
- Data mining

Front-End Tools

- Data Marts
- Data Sources
- Front-End Tools
- Data Storage
Three Data Warehouse Models

- **Enterprise warehouse**
 - collects all of the information about subjects spanning the entire organization

- **Data Mart**
 - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart

- **Virtual warehouse**
 - A set of views over operational databases
 - Only some of the possible summary views may be materialized
Define a high-level corporate data model

Multi-Tier Data Warehouse

Enterprise Data Warehouse

Data Mart

Distributed Data Marts

Model refinement

Model refinement
OLAP Server Architectures

- **Relational OLAP (ROLAP)**
 - Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middleware to support missing pieces
 - Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
 - greater scalability
- **Multidimensional OLAP (MOLAP)**
 - Array-based multidimensional storage engine (sparse matrix techniques)
 - fast indexing to pre-computed summarized data
- **Hybrid OLAP (HOLAP)**
 - User flexibility, e.g., low level: relational, high-level: array
- **Specialized SQL servers**
 - specialized support for SQL queries over star/snowflake schemas
Chapter 2: Data Warehousing and OLAP Technology for Data Mining

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Further development of data cube technology
- From data warehousing to data mining
Efficient Data Cube Computation

- Data cube can be viewed as a lattice of cuboids
 - The bottom-most cuboid is the base cuboid
 - The top-most cuboid (apex) contains only one cell
 - How many cuboids in an n-dimensional cube with L levels?

\[T = \prod_{i=1}^{n} (L_i + 1) \]

- Materialization of data cube
 - Materialize every (cuboid) (full materialization), none (no materialization), or some (partial materialization)
 - Selection of which cuboids to materialize
 - Based on size, sharing, access frequency, etc.
Cube Operation

- Cube definition and computation in DMQL

 define cube sales[item, city, year]: sum(sales_in_dollars)

 compute cube sales

- Transform it into a SQL-like language (with a new operator cube by, introduced by Gray et al.'96)

 SELECT item, city, year, SUM (amount)

 FROM SALES

 CUBE BY item, city, year

- Need compute the following Group-Bys

 (date, product, customer),
 (date, product), (date, customer), (product, customer),
 (date), (product), (customer)
 ()
Cube Computation: ROLAP-Based Method

- Efficient cube computation methods
 - ROLAP-based cubing algorithms (Agarwal et al’96)
 - Array-based cubing algorithm (Zhao et al’97)
 - Bottom-up computation method (Bayer & Ramakrishnan’99)

- ROLAP-based cubing algorithms
 - Sorting, hashing, and grouping operations are applied to the dimension attributes in order to reorder and cluster related tuples
 - Grouping is performed on some subaggregates as a “partial grouping step”
 - Aggregates may be computed from previously computed aggregates, rather than from the base fact table
This is not in the textbook but in a research paper

Hash/sort based methods (Agarwal et. al. VLDB’96)

- **Smallest-parent:** computing a cuboid from the smallest cuboid previously computed cuboid.
- **Cache-results:** caching results of a cuboid from which other cuboids are computed to reduce disk I/Os
- **Amortize-scans:** computing as many as possible cuboids at the same time to amortize disk reads
- **Sharesorts:** sharing sorting costs across multiple cuboids when sort-based method is used
- **Share-partitions:** sharing the partitioning cost across multiple cuboids when hash-based algorithms are used
Multi-way Array Aggregation for Cube Computation

- Partition arrays into chunks (a small subcube which fits in memory).
- Compressed sparse array addressing: (chunk_id, offset)
- Compute aggregates in “multiway” by visiting cube cells in the order which minimizes the # of times to visit each cell, and reduces memory access and storage cost.

What is the best traversing order to do multi-way aggregation?
Multi-way Array Aggregation for Cube Computation
Multi-way Array Aggregation for Cube Computation
Multi-Way Array Aggregation for Cube Computation (Cont.)

• Method: the planes should be sorted and computed according to their size in ascending order.
 – See the details of Example 2.12 (pp. 75-78)
 – Idea: keep the smallest plane in the main memory, fetch and compute only one chunk at a time for the largest plane

• Limitation of the method: computing well only for a small number of dimensions
 If there are a large number of dimensions, “bottom-up computation” and iceberg cube computation methods can be explored

• MOLAP is faster than ROLAP
Indexing OLAP Data: Bitmap Index

- Index on a particular column
- Each value in the column has a bit vector: bit-op is fast
- The length of the bit vector: # of records in the base table
- The i-th bit is set if the i-th row of the base table has the value for the indexed column
- Not suitable for high cardinality domains

<table>
<thead>
<tr>
<th>Cust</th>
<th>Region</th>
<th>Type</th>
<th>Index on Region</th>
<th>Index on Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RecID</td>
<td>Asia</td>
</tr>
<tr>
<td>C1</td>
<td>Asia</td>
<td>Retail</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>Europe</td>
<td>Dealer</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>C3</td>
<td>Asia</td>
<td>Dealer</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>C4</td>
<td>America</td>
<td>Retail</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>C5</td>
<td>Europe</td>
<td>Dealer</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Indexing OLAP Data: Join Indices

- Join index: $JI(R\text{-id}, S\text{-id})$ where $R (R\text{-id}, ...)$ $\bowtie S (S\text{-id}, ...)$
- Traditional indices map the values to a list of record ids
 - It materializes relational join in JI file and speeds up relational join — a rather costly operation
- In data warehouses, join index relates the values of the dimensions of a start schema to rows in the fact table.
 - E.g. fact table: Sales and two dimensions city and product
 - A join index on city maintains for each distinct city a list of R-IDs of the tuples recording the Sales in the city
 - Join indices can span multiple dimensions

October 3, 2010 Data Mining: Concepts and Techniques 50
Efficient Processing OLAP Queries

- Determine which operations should be performed on the available cuboids:
 - transform drill, roll, etc. into corresponding SQL and/or OLAP operations, e.g., dice = selection + projection

- Determine to which materialized cuboid(s) the relevant operations should be applied.

- Exploring indexing structures and compressed vs. dense array structures in MOLAP
Metadata Repository

- Meta data is the data defining warehouse objects. It has the following kinds:
 - Description of the structure of the warehouse:
 - schema, view, dimensions, hierarchies, derived data defn, data mart locations and contents
 - Operational meta-data:
 - data lineage (history of migrated data and transformation path), currency of data (active, archived, or purged), monitoring information (warehouse usage statistics, error reports, audit trails)
 - The algorithms used for summarization
 - The mapping from operational environment to the data warehouse
 - Data related to system performance:
 - warehouse schema, view and derived data definitions
 - Business data:
 - business terms and definitions, ownership of data, charging policies
Data Warehouse Back-End Tools and Utilities

- **Data extraction:**
 - get data from multiple, heterogeneous, and external sources
- **Data cleaning:**
 - detect errors in the data and rectify them when possible
- **Data transformation:**
 - convert data from legacy or host format to warehouse format
- **Load:**
 - sort, summarize, consolidate, compute views, check integrity, and build indices and partitions
- **Refresh**
 - propagate the updates from the data sources to the warehouse
Chapter 2: Data Warehousing and OLAP Technology for Data Mining

• What is a data warehouse?
• A multi-dimensional data model
• Data warehouse architecture
• Data warehouse implementation
• Further development of data cube technology
• From data warehousing to data mining
Discovery-Driven Exploration of Data Cubes

- Hypothesis-driven: exploration by user, huge search space
- Discovery-driven (Sarawagi et al.’98)
 - pre-compute measures indicating exceptions, guide user in the data analysis, at all levels of aggregation
 - Exception: significantly different from the value anticipated, based on a statistical model
 - Visual cues such as background color are used to reflect the degree of exception of each cell
 - Computation of exception indicator (modeling fitting and computing SelfExp, InExp, and PathExp values) can be overlapped with cube construction
Examples: Discovery-Driven Data Cubes

Sum of Sales

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1%</td>
<td>-1%</td>
<td>0%</td>
<td>1%</td>
<td>3%</td>
<td>-1</td>
<td>-9%</td>
<td>-1%</td>
<td>2%</td>
<td>-4%</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

Avg Sales

<table>
<thead>
<tr>
<th>Item</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sony b/w printer</td>
<td>9%</td>
<td>-8%</td>
<td>2%</td>
<td>-5%</td>
<td>14%</td>
<td>-4%</td>
<td>0%</td>
<td>41%</td>
<td>-13%</td>
<td>-15%</td>
<td>-11%</td>
<td></td>
</tr>
<tr>
<td>Sony color printer</td>
<td>0%</td>
<td>0%</td>
<td>3%</td>
<td>2%</td>
<td>4%</td>
<td>-10%</td>
<td>-13%</td>
<td>0%</td>
<td>4%</td>
<td>-6%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>HP b/w printer</td>
<td>-2%</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>8%</td>
<td>0%</td>
<td>-12%</td>
<td>-9%</td>
<td>3%</td>
<td>-3%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>HP color printer</td>
<td>0%</td>
<td>0%</td>
<td>-2%</td>
<td>1%</td>
<td>0%</td>
<td>-1%</td>
<td>-7%</td>
<td>-2%</td>
<td>1%</td>
<td>-5%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>IBM home computer</td>
<td>1%</td>
<td>-2%</td>
<td>-1%</td>
<td>-1%</td>
<td>3%</td>
<td>3%</td>
<td>-10%</td>
<td>4%</td>
<td>1%</td>
<td>-4%</td>
<td>-1%</td>
<td></td>
</tr>
<tr>
<td>IBM laptop computer</td>
<td>0%</td>
<td>0%</td>
<td>-1%</td>
<td>3%</td>
<td>4%</td>
<td>2%</td>
<td>-10%</td>
<td>-2%</td>
<td>0%</td>
<td>-9%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Toshiba home computer</td>
<td>-2%</td>
<td>-5%</td>
<td>1%</td>
<td>1%</td>
<td>-1%</td>
<td>1%</td>
<td>5%</td>
<td>-3%</td>
<td>-5%</td>
<td>-1%</td>
<td>-1%</td>
<td></td>
</tr>
<tr>
<td>Toshiba laptop computer</td>
<td>1%</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
<td>-2%</td>
<td>-2%</td>
<td>-5%</td>
<td>3%</td>
<td>2%</td>
<td>-1%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Logitech mouse</td>
<td>3%</td>
<td>-2%</td>
<td>-1%</td>
<td>0%</td>
<td>4%</td>
<td>6%</td>
<td>-11%</td>
<td>2%</td>
<td>1%</td>
<td>-4%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Ergo-way mouse</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>3%</td>
<td>1%</td>
<td>-2%</td>
<td>-2%</td>
<td>-5%</td>
<td>0%</td>
<td>-5%</td>
<td>8%</td>
<td></td>
</tr>
</tbody>
</table>

IBM Home Computer

<table>
<thead>
<tr>
<th>Avg Sales</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region</td>
<td>Jan</td>
</tr>
<tr>
<td>North</td>
<td>-1%</td>
</tr>
<tr>
<td>South</td>
<td>-1%</td>
</tr>
<tr>
<td>East</td>
<td>-1%</td>
</tr>
<tr>
<td>West</td>
<td>4%</td>
</tr>
</tbody>
</table>
Multi-feature cubes (Ross, et al. 1998): Compute complex queries involving multiple dependent aggregates at multiple granularities

Ex. Grouping by all subsets of \{item, region, month\}, find the maximum price in 1997 for each group, and the total sales among all maximum price tuples

\[
\text{select item, region, month, max(price), sum(R.sales)}
\]

\[
\text{from purchases}
\]

\[
\text{where year = 1997}
\]

\[
\text{cube by item, region, month: R}
\]

\[
\text{such that R.price = max(price)}
\]

Continuing the last example, among the max price tuples, find the min and max shelf life, and find the fraction of the total sales due to tuple that have min shelf life within the set of all max price tuples
Chapter 2: Data Warehousing and OLAP Technology for Data Mining

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Further development of data cube technology
- From data warehousing to data mining
Data Warehouse Usage

• Three kinds of data warehouse applications
 – Information processing
 • supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
 – Analytical processing
 • multidimensional analysis of data warehouse data
 • supports basic OLAP operations, slice-dice, drilling, pivoting
 – Data mining
 • knowledge discovery from hidden patterns
 • supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools.

• Differences among the three tasks
From On-Line Analytical Processing to On Line Analytical Mining (OLAM)

• **Why online analytical mining?**
 – High quality of data in data warehouses
 • DW contains integrated, consistent, cleaned data
 – Available information processing structure surrounding data warehouses
 • ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools
 – OLAP-based exploratory data analysis
 • mining with drilling, dicing, pivoting, etc.
 – On-line selection of data mining functions
 • integration and swapping of multiple mining functions, algorithms, and tasks.

• **Architecture of OLAM**
An OLAM Architecture

Layer 1
Data Repository

Layer 2
MDDB

Layer 3
OLAP/OLAM

Layer 4
User Interface

Mining query

OLAM Engine

OLAP Engine

User GUI API

Data Cube API

Layer 1
Data Cleaning

Layer 2
Meta Data

Layer 3
Filtering & Integration

Layer 4
Mining result

User Interface

Database API

Data Warehouse

Data cleaning

Data integration

Filtering
Summary

• **Data warehouse**
 – A subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management’s decision-making process

• A **multi-dimensional model** of a data warehouse
 – Star schema, snowflake schema, fact constellations
 – A data cube consists of dimensions & measures

• **OLAP** operations: drilling, rolling, slicing, dicing and pivoting

• **OLAP** servers: ROLAP, MOLAP, HOLAP

• Efficient computation of data cubes
 – Partial vs. full vs. no materialization
 – Multiway array aggregation
 – Bitmap index and join index implementations

• **Further development of data cube technology**
 – Discovery-drive and multi-feature cubes
 – From OLAP to OLAM (on-line analytical mining)
References (I)

References (II)

