Chapter 4: Data Mining Primitives, Languages, and System Architectures

• Data mining primitives: What defines a data mining task?
• A data mining query language
• Design graphical user interfaces based on a data mining query language
• Architecture of data mining systems
• Summary
Why Data Mining Primitives and Languages?

• Finding all the patterns autonomously in a database? — unrealistic because the patterns could be too many but uninteresting
• Data mining should be an interactive process
 – User directs what to be mined
• Users must be provided with a set of primitives to be used to communicate with the data mining system
• Incorporating these primitives in a data mining query language
 – More flexible user interaction
 – Foundation for design of graphical user interface
 – Standardization of data mining industry and practice
What Defines a Data Mining Task?

- Task-relevant data
- Type of knowledge to be mined
- Background knowledge
- Pattern interestingness measurements
- Visualization of discovered patterns
What Defines a Data Mining Task?

Task-relevant data
- Database or data warehouse name
- Database tables or data warehouse cubes
- Conditions for data selection
- Relevant attributes or dimensions
- Data grouping criteria

Knowledge type to be mined
- Characterization
- Discrimination
- Association
- Classification/prediction
- Clustering

Background knowledge
- Concept hierarchies
- User beliefs about relationships in the data

Pattern interestingness measures
- Simplicity
- Certainty (e.g., confidence)
- Utility (e.g., support)
- Novelty

Visualization of discovered patterns
- Rules, tables, reports, charts, graphs, decision trees, and cubes
- Drill-down and roll-up

Figure 4.2 Primitives for specifying a data mining task.
Task-Relevant Data (Minable View)

- Database or data warehouse name
- Database tables or data warehouse cubes
- Condition for data selection
- Relevant attributes or dimensions
- Data grouping criteria
Types of knowledge to be mined

- Characterization
- Discrimination
- Association
- Classification/prediction
- Clustering
- Evolution analysis
- Outlier analysis
- Other data mining tasks
Background Knowledge: Concept Hierarchies

- Schema hierarchy: a total/partial order among attributes
 - E.g., street < city < province_or_state < country
- Set-grouping hierarchy: organizes values for a given attribute/dimension into groups of constants/ranges
 - E.g., \{20-39\} = young, \{40-59\} = middle_aged
- Operation-derived hierarchy: specified by users/experts/systems
 - email address: login-name < department < university < country
- Rule-based hierarchy: defined by set of rules
 - low_profit_margin (X) <= price(X, P1) and cost (X, P2) and (P1 - P2) < $50
Figure 4.3 A concept hierarchy for the dimension location.
Measurements of Pattern Interestingness

- Simplicity
 e.g., (association) rule length, (decision) tree size
- Certainty
 e.g., confidence, $P(A|B) = \frac{n(A \text{ and } B)}{n(B)}$, classification reliability or accuracy, certainty factor, rule strength, rule quality, discriminating weight, etc.
- Utility
 potential usefulness, e.g., support (association), noise threshold (description)
- Novelty
 not previously known, surprising (used to remove redundant rules, e.g., Canada vs. Vancouver rule implication support ratio
Visualization of Discovered Patterns

- Different backgrounds/usages may require different forms of representation
 - E.g., rules, tables, crosstabs, pie/bar chart etc.
- Concept hierarchy is also important
 - Discovered knowledge might be more understandable when represented at high level of abstraction
 - Interactive drill up/down, pivoting, slicing and dicing provide different perspective to data
- Different kinds of knowledge require different representation: association, classification, clustering, etc.
Visualization of Discovered Patterns

Rules
age(X, "young") and income(X, "high") \Rightarrow class(X, "A")
age(X, "young") and income(X, "low") \Rightarrow class(X, "B")
age(X, "old") \Rightarrow class(X, "C")

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>class</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>young</td>
<td>high</td>
<td>A</td>
<td>1,402</td>
</tr>
<tr>
<td>young</td>
<td>low</td>
<td>B</td>
<td>1,038</td>
</tr>
<tr>
<td>old</td>
<td>high</td>
<td>C</td>
<td>786</td>
</tr>
<tr>
<td>old</td>
<td>low</td>
<td>C</td>
<td>1,374</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>class</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>young</td>
<td>high</td>
<td>A</td>
<td>1,402</td>
</tr>
<tr>
<td>young</td>
<td>low</td>
<td>B</td>
<td>1,038</td>
</tr>
<tr>
<td>old</td>
<td>high</td>
<td>C</td>
<td>786</td>
</tr>
<tr>
<td>old</td>
<td>low</td>
<td>C</td>
<td>1,374</td>
</tr>
</tbody>
</table>

Figure 4.4 Various forms of presenting and visualizing the discovered patterns.
Chapter 4: Data Mining Primitives, Languages, and System Architectures

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems
- Summary
A Data Mining Query Language (DMQL)

• Motivation
 – A DMQL can provide the ability to support ad-hoc and interactive data mining
 – By providing a standardized language like SQL
 • Hope to achieve a similar effect like that SQL has on relational database
 • Foundation for system development and evolution
 • Facilitate information exchange, technology transfer, commercialization and wide acceptance

• Design
 – DMQL is designed with the primitives described earlier
Syntax for DMQL

• Syntax for specification of
 – task-relevant data
 – the kind of knowledge to be mined
 – concept hierarchy specification
 – interestingness measure
 – pattern presentation and visualization

• Putting it all together — a DMQL query
Syntax for task-relevant data specification

- use database database_name, or use data warehouse data_warehouse_name
- from relation(s)/cube(s) [where condition]
- in relevance to att_or_dim_list
- order by order_list
- group by grouping_list
- having condition
Specification of task-relevant data

Example 4.11 This example shows how to use DMQL to specify the task-relevant data described in Example 4.1 for the mining of associations between items frequently purchased at *AllElectronics* by Canadian customers, with respect to customer *income* and *age*. In addition, the user specifies that she would like the data to be grouped by date. The data are retrieved from a relational database.

```sql
use database AllElectronics_db
in relevance to I.name, I.price, C.income, C.age
from customer C, item I, purchases P, items_sold S
where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID and P.cust_ID = C.cust_ID
    and C.address = “Canada”
group by P.date
```
Syntax for specifying the kind of knowledge to be mined

- Characterization
 \[
 \text{Mine_Knowledge_Specification} ::= \\
 \quad \text{mine characteristics [as pattern_name]} \\
 \quad \text{analyze measure(s)}
 \]

- Discrimination
 \[
 \text{Mine_Knowledge_Specification} ::= \\
 \quad \text{mine comparison [as pattern_name]} \\
 \quad \text{for target_class where target_condition} \\
 \quad \{\text{versus contrast_class_i where contrast_condition_i}\} \\
 \quad \text{analyze measure(s)}
 \]

- Association
 \[
 \text{Mine_Knowledge_Specification} ::= \\
 \quad \text{mine associations [as pattern_name]}
 \]
Syntax for specifying the kind of knowledge to be mined (cont.)

- **Classification**

 Mine_Knowledge_Specification ::=

 mine classification [as pattern_name]
 analyze classifying_attribute_or_dimension

- **Prediction**

 Mine_Knowledge_Specification ::=

 mine prediction [as pattern_name]
 analyze prediction_attribute_or_dimension
 \{set \{attribute_or_dimension_i=value_i\}\}
Syntax for concept hierarchy specification

- To specify what concept hierarchies to use
 use hierarchy `<hierarchy>` for `<attribute_or_dimension>`
- We use different syntax to define different type of hierarchies
 - schema hierarchies
 define hierarchy `time_hierarchy` on `date` as `[date, month quarter, year]`
 - set-grouping hierarchies
 define hierarchy `age_hierarchy` for `age` on `customer` as
 level1: `{young, middle_aged, senior}` < level0: all
 level2: `{20, ..., 39}` < level1: young
 level2: `{40, ..., 59}` < level1: middle_aged
 level2: `{60, ..., 89}` < level1: senior
Syntax for concept hierarchy specification (Cont.)

– operation-derived hierarchies

 define hierarchy age_hierarchy for age on customer as
 \{age_category(1), ..., age_category(5)\} := cluster(default, age, 5)
 < all(age)

– rule-based hierarchies

 define hierarchy profit_margin_hierarchy on item as
 level_1: low_profit_margin < level_0: all
 if (price - cost) < $50
 level_1: medium-profit_margin < level_0: all
 if ((price - cost) > $50) and ((price - cost) <= $250))
 level_1: high_profit_margin < level_0: all
 if (price - cost) > $250
Syntax for interestingness measure specification

- Interestingness measures and thresholds can be specified by the user with the statement:

  ```
  with <interest_measure_name> threshold = threshold_value
  ```

- Example:

  ```
  with support threshold = 0.05
  with confidence threshold = 0.7
  ```
Syntax for pattern presentation and visualization specification

• We have syntax which allows users to specify the display of discovered patterns in one or more forms

 display as <result_form>

• To facilitate interactive viewing at different concept level, the following syntax is defined:

```
Multilevel_Manipulation ::= roll up on attribute_or_dimension
                         | drill down on attribute_or_dimension
                         | add attribute_or_dimension
                         | drop attribute_or_dimension
```
Putting it all together: the full specification of a DMQL query

use database `AllElectronics_db`
use hierarchy `location_hierarchy` for `B.address`
mine characteristics as `customerPurchasing`
analyze `count%`
in relevance to `C.age, I.type, I.place_made`
from `customer C, item I, purchases P, items_sold S, works_at W, branch`
where `I.item_ID = S.item_ID and S.trans_ID = P.trans_ID`
 and `P.cust_ID = C.cust_ID and P.method_paid = `AmEx''`
 and `P.empl_ID = W.empl_ID and W.branch_ID = B.branch_ID and`
 `B.address = `Canada''` and `I.price >= 100`
with `noise` threshold = 0.05
display as `table`
Other Data Mining Languages & Standardization Efforts

- Association rule language specifications
 - MSQL (Imielinski & Virmani’99)
 - MineRule (Meo Psaila and Ceri’96)
 - Query flocks based on Datalog syntax (Tsur et al’98)
- OLEDB for DM (Microsoft’2000)
 - Based on OLE, OLE DB, OLE DB for OLAP
 - Integrating DBMS, data warehouse and data mining
- CRISP-DM (CRoss-Industry Standard Process for Data Mining)
 - Providing a platform and process structure for effective data mining
 - Emphasizing on deploying data mining technology to solve business problems
Chapter 4: Data Mining Primitives, Languages, and System Architectures

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems
- Summary
Designing Graphical User Interfaces based on a data mining query language

- What tasks should be considered in the design GUIs based on a data mining query language?
 - Data collection and data mining query composition
 - Presentation of discovered patterns
 - Hierarchy specification and manipulation
 - Manipulation of data mining primitives
 - Interactive multilevel mining
 - Other miscellaneous information
Chapter 4: Data Mining Primitives, Languages, and System Architectures

• Data mining primitives: What defines a data mining task?
• A data mining query language
• Design graphical user interfaces based on a data mining query language
• Architecture of data mining systems
• Summary
Data Mining System Architectures

- Coupling data mining system with DB/DW system
 - No coupling—flat file processing, not recommended
 - Loose coupling
 - Fetching data from DB/DW
 - Semi-tight coupling—enhanced DM performance
 - Provide efficient implement a few data mining primitives in a DB/DW system, e.g., sorting, indexing, aggregation, histogram analysis, multiway join, precomputation of some stat functions
 - Tight coupling—A uniform information processing environment
 - DM is smoothly integrated into a DB/DW system, mining query is optimized based on mining query, indexing, query processing methods, etc.
Chapter 4: Data Mining Primitives, Languages, and System Architectures

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems
- Summary
Summary

- Five primitives for specification of a data mining task
 - task-relevant data
 - kind of knowledge to be mined
 - background knowledge
 - interestingness measures
 - knowledge presentation and visualization techniques to be used for displaying the discovered patterns
- Data mining query languages
 - DMQL, MS/OLEDB for DM, etc.
- Data mining system architecture
 - No coupling, loose coupling, semi-tight coupling, tight coupling
References