Data Mining: Concepts and Techniques

— Slides for Textbook —

— Chapter 4 —

©Jiawei Han and Micheline Kamber
Intelligent Database Systems Research Lab Simon Fraser University,
Ari Visa, Institute of Signal Processing
Tampere University of Technology
Top languages for analytics/data mining programming (KDD Nuggets Poll)

What programming/statistics languages you used for an analytics / data mining / data science work in 2013? [713 votes total]

<table>
<thead>
<tr>
<th>Language</th>
<th>% users in 2013</th>
<th>% users in 2012</th>
<th>% users in 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (434 voters in 2013)</td>
<td>60.9%</td>
<td>52.5%</td>
<td>45.1%</td>
</tr>
<tr>
<td>Python (277)</td>
<td>38.8%</td>
<td>36.1%</td>
<td>24.6%</td>
</tr>
<tr>
<td>SQL (261)</td>
<td>36.6%</td>
<td>32.1%</td>
<td>32.3%</td>
</tr>
<tr>
<td>SAS (148)</td>
<td>20.8%</td>
<td>19.7%</td>
<td>21.2%</td>
</tr>
<tr>
<td>Java (118)</td>
<td>16.5%</td>
<td>21.2%</td>
<td>24.4%</td>
</tr>
<tr>
<td>High-level data mining suite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unix shell/awk/sed</td>
<td></td>
<td>14.7%</td>
<td>11.1%</td>
</tr>
<tr>
<td>C/C++</td>
<td></td>
<td>14.3%</td>
<td>9.3%</td>
</tr>
<tr>
<td>Pig Latin/Hive/other Hadoop-based languages</td>
<td></td>
<td>6.7%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Other low-level language</td>
<td></td>
<td>11.4%</td>
<td>5.9%</td>
</tr>
<tr>
<td>GNU Octave</td>
<td></td>
<td>5.9%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Perl</td>
<td></td>
<td>9.0%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Ruby</td>
<td></td>
<td>3.8%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Scala</td>
<td></td>
<td>2.4%</td>
<td>2.2%</td>
</tr>
<tr>
<td>F#</td>
<td></td>
<td>1.7%</td>
<td>not asked in 2012</td>
</tr>
<tr>
<td>Lisp/Clojure</td>
<td></td>
<td>4.3%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Julia</td>
<td></td>
<td>0.3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>0.7%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>
Chapter 4: Data Mining Primitives, Languages, and System Architectures

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems
- Summary
Why Data Mining Primitives and Languages?

- Finding all the patterns autonomously in a database? — unrealistic because the patterns could be too many but uninteresting
- Data mining should be an interactive process
 - User directs what to be mined
- Users must be provided with a set of primitives to be used to communicate with the data mining system
- Incorporating these primitives in a data mining query language
 - More flexible user interaction
 - Foundation for design of graphical user interface
 - Standardization of data mining industry and practice
What Defines a Data Mining Task?

- Task-relevant data
- Type of knowledge to be mined
- Background knowledge
- Pattern interestingness measurements
- Visualization of discovered patterns
What Defines a Data Mining Task?

- Task-relevant data
 - Database or data warehouse name
 - Database tables or data warehouse cubes
 - Conditions for data selection
 - Relevant attributes or dimensions
 - Data grouping criteria

- Knowledge type to be mined
 - Characterization
 - Discrimination
 - Association
 - Classification/prediction
 - Clustering

- Background knowledge
 - Concept hierarchies
 - User beliefs about relationships in the data

- Pattern interestingness measures
 - Simplicity
 - Certainty (e.g., confidence)
 - Utility (e.g., support)
 - Novelty

- Visualization of discovered patterns
 - Rules, tables, reports, charts, graphs, decision trees, and cubes
 - Drill-down and roll-up

Figure 4.2 Primitives for specifying a data mining task.
Task-Relevant Data (Minnieable View)

- Database or data warehouse name
- Database tables or data warehouse cubes
- Condition for data selection
- Relevant attributes or dimensions
- Data grouping criteria
Types of knowledge to be mined

- Characterization
- Discrimination
- Association
- Classification/prediction
- Clustering
- Evolution analysis
- Outlier analysis
- Other data mining tasks
Background Knowledge: Concept Hierarchies

- Schema hierarchy: a total/partial order among attributes
 - E.g., street < city < province_or_state < country
- Set-grouping hierarchy: organizes values for a given attribute/dimension into groups of constants/ranges
 - E.g., \{20-39\} = young, \{40-59\} = middle_aged
- Operation-derived hierarchy: specified by users/experts/systems
 - email address: login-name < department < university < country
- Rule-based hierarchy: defined by set of rules
 - low_profit_margin (X) <= price(X, P1) and cost (X, P2) and (P1 - P2) < $50
Figure 4.3 A concept hierarchy for the dimension location.
Measurements of Pattern Interestingness

- **Simplicity**

 e.g., (association) rule length, (decision) tree size

- **Certainty**

 e.g., confidence, \(P(A|B) = \frac{n(A \text{ and } B)}{n(B)} \), classification reliability or accuracy, certainty factor, rule strength, rule quality, discriminating weight, etc.

- **Utility**

 potential usefulness, e.g., support (association), noise threshold (description)

- **Novelty**

 not previously known, surprising (used to remove redundant rules, e.g., Canada vs. Vancouver rule implication support ratio)
Visualization of Discovered Patterns

- Different backgrounds/usages may require different forms of representation
 - E.g., rules, tables, crosstabs, pie/bar chart etc.
- Concept hierarchy is also important
 - Discovered knowledge might be more understandable when represented at high level of abstraction
 - Interactive drill up/down, pivoting, slicing and dicing provide different perspective to data
- Different kinds of knowledge require different representation: association, classification, clustering, etc.
Visualization of Discovered Patterns

Rules

- age(X, “young”) and income(X, “high”) -> class(X, “A”)
- age(X, “young”) and income(X, “low”) -> class(X, “B”)
- age(X, “old”) -> class(X, “C”)

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>income</th>
<th>class</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>young</td>
<td>high</td>
<td>A</td>
<td>1,402</td>
</tr>
<tr>
<td></td>
<td>young</td>
<td>low</td>
<td>B</td>
<td>1,038</td>
</tr>
<tr>
<td></td>
<td>old</td>
<td>high</td>
<td>C</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>old</td>
<td>low</td>
<td>C</td>
<td>1,374</td>
</tr>
</tbody>
</table>

Crosstab

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>income</th>
<th>class</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>young</td>
<td>high</td>
<td>A</td>
<td>1,402</td>
</tr>
<tr>
<td></td>
<td>young</td>
<td>low</td>
<td>B</td>
<td>1,038</td>
</tr>
<tr>
<td></td>
<td>old</td>
<td>high</td>
<td>C</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>old</td>
<td>low</td>
<td>C</td>
<td>1,374</td>
</tr>
<tr>
<td>age</td>
<td>high</td>
<td>low</td>
<td>A</td>
<td>1,402</td>
</tr>
<tr>
<td></td>
<td>1,038</td>
<td>1,374</td>
<td>B</td>
<td>1,038</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>C</td>
<td>2,160</td>
</tr>
</tbody>
</table>

Pie chart

Bar chart

Decision tree

Data cube

Figure 4.4 Various forms of presenting and visualizing the discovered patterns.
Chapter 4: Data Mining Primitives, Languages, and System Architectures

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems
- Summary
A Data Mining Query Language (DMQL)

Motivation

- A DMQL can provide the ability to support ad-hoc and interactive data mining
- By providing a standardized language like SQL
 - Hope to achieve a similar effect like that SQL has on relational database
 - Foundation for system development and evolution
 - Facilitate information exchange, technology transfer, commercialization and wide acceptance

Design

- DMQL is designed with the primitives described earlier
Syntax for DMQL

- Syntax for specification of
 - task-relevant data
 - the kind of knowledge to be mined
 - concept hierarchy specification
 - interestingness measure
 - pattern presentation and visualization
- Putting it all together — a DMQL query
Syntax for task-relevant data specification

- `use database` database_name, or `use data warehouse` data_warehouse_name
- `from relation(s)/cube(s)` [`where` condition]
- `in relevance` to att_or_dim_list
- `order by` order_list
- `group by` grouping_list
- `having` condition
Specification of task-relevant data

Example 4.11 This example shows how to use DMQL to specify the task-relevant data described in Example 4.1 for the mining of associations between items frequently purchased at *AllElectronics* by Canadian customers, with respect to customer *income* and *age*. In addition, the user specifies that she would like the data to be grouped by date. The data are retrieved from a relational database.

```
use database AllElectronics_db
in relevance to I.name, I.price, C.income, C.age
from customer C, item I, purchases P, items_sold S
where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID and P.cust_ID = C.cust_ID
    and C.address = "Canada"
group by P.date
```
Syntax for specifying the kind of knowledge to be mined

- **Characterization**

  ```
  Mine_Knowledge_Specification ::= mine characteristics [as pattern_name] 
  analyze measure(s)
  ```

- **Discrimination**

  ```
  Mine_Knowledge_Specification ::= mine comparison [as pattern_name] 
  for target_class where target_condition 
  {versus contrast_class_i where contrast_condition_i} 
  analyze measure(s)
  ```

- **Association**

  ```
  Mine_Knowledge_Specification ::= mine associations [as pattern_name]
  ```
Syntax for specifying the kind of knowledge to be mined (cont.)

- **Classification**

 Mine_Knowledge_Specification ::=

 mine classification [as pattern_name]
 analyze classifying_attribute_or_dimension

- **Prediction**

 Mine_Knowledge_Specification ::=

 mine prediction [as pattern_name]
 analyze prediction_attribute_or_dimension
 \{set \{attribute_or_dimension_i != value_i\}\}
Syntax for concept hierarchy specification

- To specify what concept hierarchies to use, use hierarchy `<hierarchy>` for `<attribute_or_dimension>`.
- We use different syntax to define different type of hierarchies:
 - Schema hierarchies
 define hierarchy `time_hierarchy` on `date` as `[date, month, quarter, year]`
 - Set-grouping hierarchies
 define hierarchy `age_hierarchy` for `age` on `customer` as
 - `level1`: `{young, middle_aged, senior}` < `level0`: all
 - `level2`: `{20, ..., 39}` < `level1`: `young`
 - `level2`: `{40, ..., 59}` < `level1`: `middle_aged`
 - `level2`: `{60, ..., 89}` < `level1`: `senior`
Syntax for concept hierarchy specification (Cont.)

- operation-derived hierarchies
 define hierarchy **age_hierarchy** for **age** on **customer** as
 \{age_category(1), ..., age_category(5)} :=
 cluster(default, age, 5) < all(age)

- rule-based hierarchies
 define hierarchy **profit_margin_hierarchy** on **item** as
 level_1: low_profit_margin < **level_0**: all
 if (price - cost) < $50
 level_1: medium-profit_margin < **level_0**: all
 if ((price - cost) > $50) and ((price - cost) <= $250)
 level_1: high_profit_margin < **level_0**: all
 if (price - cost) > $250
Interestingness measures and thresholds can be specified by the user with the statement:

```
with <interest_measure_name> threshold = threshold_value
```

Example:

```
with support threshold = 0.05
with confidence threshold = 0.7
```
Syntax for pattern presentation and visualization specification

- We have syntax which allows users to specify the display of discovered patterns in one or more forms display as `<result_form>`

- To facilitate interactive viewing at different concept level, the following syntax is defined:

```plaintext
Multilevel_Manipulation ::= roll up on attribute_or_dimension 
  | drill down on attribute_or_dimension 
  | add attribute_or_dimension 
  | drop attribute_or_dimension
```
Putting it all together: the full specification of a DMQL query

use database AllElectronics_db
use hierarchy location_hierarchy for B.address
mine characteristics as customerPurchasing
analyze count% in relevance to C.age, I.type, I.place_made
from customer C, item I, purchases P, items_sold S, works_at W, branch
where I.item_ID = S.item_ID and S.trans_ID = P.trans_ID and P.cust_ID = C.cust_ID and P.method_paid = ```AmEx```
 and P.empl_ID = W.empl_ID and W.branch_ID = B.branch_ID and B.address = ```Canada``" and I.price >= 100
with noise threshold = 0.05
display as table
Introduction to R for Data Mining

- https://www.youtube.com/watch?v=6jT6Rit_5EQ
- https://www.youtube.com/watch?v=7cGwYMhPDUY
Introduction to Python for Data Mining

http://www.lleess.com/2013/03/python-data-mining-resources.html#.VAyRChCOuZQ
Data Mining Extensions (DMX) is a query language for Data Mining Models supported by Microsoft's SQL Server Analysis Services product.

Introduction to SQL for Data Mining

- **Data Definition Language**
- The *Data Definition Language* (DDL) part of DMX can be used to
 - Create new data mining models and mining structures - CREATE MINING STRUCTURE, CREATE MINING MODEL
 - Delete existing data mining models and mining structures - DROP MINING STRUCTURE, DROP MINING MODEL
 - Export and import mining structures - EXPORT, IMPORT
 - Copy data from one mining model to another - SELECT INTO
Introduction to SQL for Data Mining

- **Data Manipulation Language**
- The Data Manipulation Language (DML) part of DMX can be used to
 - Train mining models - INSERT INTO
 - Browse data in mining models - SELECT FROM
 - Make predictions using mining model - SELECT ... FROM PREDICTION JOIN
Other Data Mining Languages & Standardization Efforts

- Association rule language specifications
 - MSQL (Imielinski & Virmani’99, Hughes Technologies)
 - MineRule (Meo Psaila and Ceri’96)
 - Query flocks based on Datalog syntax (Tsur et al’98)
- OLEDB for DM (Microsoft’2000)
 - Based on OLE, OLE DB, OLE DB for OLAP
 - Integrating DBMS, data warehouse and data mining
- CRISP-DM (CRoss-Industry Standard Process for Data Mining)
 - Providing a platform and process structure for effective data mining
 - Emphasizing on deploying data mining technology to solve business problems
Chapter 4: Data Mining Primitives, Languages, and System Architectures

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems
- Summary
Designing Graphical User Interfaces based on a data mining query language

- What tasks should be considered in the design GUIs based on a data mining query language?
 - Data collection and data mining query composition
 - Presentation of discovered patterns
 - Hierarchy specification and manipulation
 - Manipulation of data mining primitives
 - Interactive multilevel mining
 - Other miscellaneous information
Chapter 4: Data Mining Primitives, Languages, and System Architectures

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems
- Summary
Data Mining System Architectures

- Coupling data mining system with DB/DW system
 - No coupling—flat file processing, not recommended
 - Loose coupling
 - Fetching data from DB/DW
 - Semi-tight coupling—enhanced DM performance
 - Provide efficient implement a few data mining primitives in a DB/DW system, e.g., sorting, indexing, aggregation, histogram analysis, multiway join, precomputation of some stat functions
 - Tight coupling—A uniform information processing environment
 - DM is smoothly integrated into a DB/DW system, mining query is optimized based on mining query, indexing, query processing methods, etc.
Chapter 4: Data Mining Primitives, Languages, and System Architectures

- Data mining primitives: What defines a data mining task?
- A data mining query language
- Design graphical user interfaces based on a data mining query language
- Architecture of data mining systems
- Summary
Summary

- Five primitives for specification of a data mining task
 - task-relevant data
 - kind of knowledge to be mined
 - background knowledge
 - interestingness measures
 - knowledge presentation and visualization techniques to be used for displaying the discovered patterns

- Data mining query languages
 - DMQL, MS/OLEDB for DM, etc.

- Data mining system architecture
 - No coupling, loose coupling, semi-tight coupling, tight coupling
References