B-Trees
Binomial Heaps
Fibonacci Heaps

18 B-Trees

• B-trees are similar to RBTs, but they are better at minimizing disk I/O operations
• Many database systems use B-trees, or variants of them, to store information
• B-tree nodes may have many children, from a few to thousands
• The branching factor of a B-tree can be quite large, although it usually depends on characteristics of the disk unit used
- B-trees are similar to RBTs in that every \(n \)-node B-tree has height \(O(\lg n) \)
- The exact height of a B-tree can be considerably less than that of a RBT, because its branching factor – the base of the logarithm that expresses its height – can be much larger
- Therefore, we can also use B-trees to implement many dynamic-set operations in time \(O(\lg n) \)
- B-trees generalize BSTs in a natural manner
 - If an internal B-tree node \(x \) contains \(x \cdot n \) keys, then \(x \) has \(x \cdot n + 1 \) children
18.1 Definition of B-trees

A B-tree T is a rooted tree (whose root is $T.\text{root}$) having the following properties:

1. Every node x has the following attributes:
 a) $x.n$, the number of keys currently stored in x,
 b) the $x.n$ keys themselves, $x.key_1, x.key_2, \ldots, x.key_{x.n}$, stored in nondecreasing order, so that $x.key_1 \leq x.key_2 \leq \ldots \leq x.key_{x.n}$,
 c) $x.leaf$, a boolean value that is TRUE if x is a leaf and FALSE if x is an internal node

2. Each internal node x also contains $x.n + 1$ pointers $x.c_1, x.c_2, \ldots, x.c_{x.n+1}$ to its children. Leaf nodes have no children, and so their c_i attributes are undefined.

3. The keys $x.key_i$ separate the ranges of keys stored in each subtree: if k_i is any key stored in the subtree with root $x.c_i$, then $k_1 \leq x.key_1 \leq k_2 \leq x.key_2 \leq \ldots \leq x.key_{x.n} \leq k_{x.n+1}$

4. All leaves have the same depth, which is the tree’s height h
5. Nodes have lower and upper bounds on the number of keys they can contain. We express these bounds in terms of a fixed integer \(t \geq 2 \) called the **minimum degree** of the B-tree:

a) Every node (except the root) must have at least \(t - 1 \) keys. Every internal node (except the root) thus has at least \(t \) children. If the tree is nonempty, the root must have at least one key.

b) Every node may contain at most \(2t - 1 \) keys. Therefore, an internal node may have at most \(2t \) children. We say that a node is **full** if it contains exactly \(2t - 1 \) keys.

The height of a B-tree

- The simplest B-tree occurs when \(t = 2 \)
- Every internal node then has either 2, 3, or 4 children, and we have a 2-3-4 tree
- In practice, however, much larger values of \(t \) yield B-trees with smaller height

Theorem 18.1
\[h \leq \log_t \frac{n + 1}{2} \]

 _If \(n \geq 1 \), then for any \(n \)-key B-tree \(T \) of height \(h \) and minimum degree \(t \geq 2 \),
Proof The root of a B-tree T contains at least one key, and all other nodes contain at least $t - 1$ keys. Thus, T, whose height is h, has at least 2 nodes at depth 1, at least $2t$ nodes at depth 2, at least $2t^2$ nodes at depth 3, and so on, until at depth h it has at least $2t^{h-1}$ nodes. Thus, the number n of keys satisfies the inequality
\[n \geq 1 + (t - 1) \sum_{i=1}^{h} 2t^{i-1} = 1 + 2(t - 1) \left(\frac{t^h - 1}{t - 1} \right) = 2t^h - 1 \]
We get $t^h \leq (n + 1)/2$. Taking base-t logarithms of both sides proves the theorem.
18.2 Basic operations on B-trees

- Searching a B-tree, at each internal node \(x \), we make an \((x.n + 1)\)-way branching decision
- B-TREE-SEARCH is a simple generalization of the TREE-SEARCH procedure defined for BSTs
- B-TREE-SEARCH inputs are a pointer to the root node \(x \) and key \(k \) to be searched in that subtree
- The top-level call is B-TREE-SEARCH\((T\. root, k)\)
- If \(k \) is in the tree, it returns the ordered pair \((y, i)\) of a node \(y \) and an index \(i \) s.t. \(y.key_i = k \)

B-TREE-SEARCH\((x, k)\)

1. \(i = 1 \)
2. while \(i \leq x.n \) and \(k > x.key_i \)
3. \(i = i + 1 \)
4. if \(i \leq x.n \) and \(k == x.key_i \)
5. return \((x, i)\)
6. elseif \(x.leaf \)
7. return NIL
8. else DISK-READ\((x.c_i)\)
9. return B-TREE-SEARCH\((x.c_i, k)\)
As in the TREE-SEARCH procedure for BSTs, the nodes encountered during the recursion form a simple path downward from the root of the tree.

B-TREE-SEARCH accesses $O(h) = O(\log_t n)$ disk pages, where h is the height of the B-tree and n is the number of keys.

Since $x \cdot n < 2t$, the while loop of lines 2–3 takes $O(t)$ time within each node, and the total CPU time is $O(th) = O(t \log_t n)$.

Creating an empty B-tree

- ALLOCATE-NODE allocates one disk page to be used as a new node in $O(1)$ time.
- It requires no DISK-READ, since there is as yet no useful information stored on the disk.

B-TREE-CREATE(T)
1. $x = \text{ALLOCATE-NODE}()$
2. $x.\text{leaf} = \text{TRUE}$
3. $x.\text{n} = 0$
4. $\text{DISK-WRITE}(x)$
5. $T.\text{root} = x$
Inserting a key into a B-tree

- We insert the new key into an existing leaf node.
- We need an operation that splits a full node \(y \) (having \(2t - 1 \) keys) around its median key \(y.\text{key}_t \) into two nodes having only \(t - 1 \) keys.
- Median key moves up into \(y \)’s parent to identify the dividing point between the two new trees.
- But if \(y \)’s parent is also full, we must split it before we can insert the new key; we could end up splitting full nodes all the way up the tree.

As with a BST, we can insert a key into a B-tree in a single pass down from the root to a leaf.
- We do not wait to find out whether we will actually need to split a full node in order to do the insertion.
- As we travel down the tree, we split each full node we come to along the way (including the leaf itself).
- Thus whenever we want to split a full node \(y \), we are assured that its parent is not full.
Splitting a node in a B-tree

- **B-TREE-SPLIT-CHILD** takes as input a *nonfull* internal node \(x \) (in main memory) and an index \(i \) such that \(x.c_i \) (in main memory) is full.
- The procedure then splits this child in two and adjusts \(x \) so that it has an additional child.
- To split a full root, we will first make the root a child of a new empty root node, so that we can use **B-TREE-SPLIT-CHILD**.
- The tree thus grows in height by one; splitting is the only means by which the tree grows.
B-TREE-SPLIT-CHILD\((x,t)\)
1. \(z = \text{ALLOCATE-NODE()}\)
2. \(y = x.c_t\)
3. \(z.leaf = y.leaf\)
4. \(z.n = t - 1\)
5. for \(j = 1\) to \(t - 1\)
6. \(z.key_j = y.key_{j+t}\)
7. if not \(y.leaf\)
8. for \(j = 1\) to \(t\)
9. \(z.c_j = y.c_{j+t}\)
10. \(y.n = t - 1\)
11. for \(j = x.n + 1\)
12. \(x.c_{j+1} = x.c_j\)
13. \(x.c_{i+1} = z\)
14. for \(j = x.n\)
15. \(x.key_{j+1} = x.key_j\)
16. \(x.key_t = y.key_t\)
17. \(x.n = x.n + 1\)
18. \(\text{DISK-WRITE}(y)\)
19. \(\text{DISK-WRITE}(z)\)
20. \(\text{DISK-WRITE}(x)\)

B-TREE-INSERT\((T,k)\)
1. \(r = T.root\)
2. if \(r.n == 2t - 1\)
3. \(s = \text{ALLOCATE-NODE()}\)
4. \(T.root = s\)
5. \(s.leaf = \text{FALSE}\)
6. \(s.n = 0\)
7. \(s.c_1 = r\)
8. B-TREE-SPLIT-CHILD\((s,1)\)
9. B-TREE-INSERT-NONFULL\((s,k)\)
10. else B-TREE-INSERT-NONFULL\((r,k)\)
B-TREE-INSERT-NONFULL\((x, k) \)
1. \(i = x.n \)
2. if \(x.leaf \)
3. while \(i \geq 1 \) and \(k < x.key_i \)
4. \(x.key_{i+1} = x.key_i \)
5. \(i = i - 1 \)
6. \(x.key_{i+1} = k \)
7. \(x.n = x.n + 1 \)
8. DISK-WRITE\((x) \)
9. else while \(i \geq 1 \) and \(k < x.key_i \)
10. \(i = i - 1 \)
11. \(i = i + 1 \)
12. DISK-READ\((x.c_i) \)
13. if \(x.c_i.n == 2t - 1 \)
14. B-TREE-SPLIT-CHILD\((x, i) \)
15. if \(k > x.key_i \)
16. \(i = i + 1 \)
17. B-TREE-INSERT-
NONFULL\((x.c_i, k) \)
- For a B-tree of height h, B-TREE-INSERT performs $O(h)$ disk accesses, since only $O(1)$ DISK-READ and DISK-WRITE operations occur between calls to B-TREE-INSERT-NONFULL.
- The total CPU time used is $O(th) = O(t \log_t n)$.
- B-TREE-INSERT-NONFULL is tail-recursive, and can alternatively be implemented as a `while` loop.
 - the number of pages that need to be in main memory at any time is $O(1)$.