Randomly permuting arrays

- We assume that we are given an array \(A \) which, w.l.g., contains the elements \(1, 2, \ldots, n \).
- Produce a random permutation of the array.
- Assign element \(A[i] \) a random priority \(P[i] \), and sort the elements according to priorities.
- E.g., if our initial array is \(A = \langle 1, 2, 3, 4 \rangle \) and we choose random priorities \(P = \langle 36, 3, 62, 19 \rangle \), we would produce array \(B = \langle 2, 4, 1, 3 \rangle \).
- We call this procedure PERMUTE-BY-SORTING.

Permute-By-Sorting(A)

1. \(n = A.length \)
2. let \(P[1..n] \) be a new array
3. for \(i = 1 \) to \(n \)
4. \(P[i] = \text{RANDOM}(1, n^3) \)
5. sort \(A \), using \(P \) as sort keys
- We use a range of \(1 \) to \(n^3 \) for random numbers to make it likely that all the priorities in \(P \) are unique.
• It remains to prove that the procedure produces a *uniform random permutation*,
 – It is equally likely to produce every permutation of the numbers 1 through n

Lemma 5.4 *PERMUTE-BY-SORTING* produces a uniform random permutation of the input, assuming that all priorities are distinct

Proof See the book.

• It is better to permute the given array in place
• *RANDOMIZE-IN-PLACE* does so in $O(n)$ time
• In its ith iteration, it chooses the element $A[i]$ randomly from among elements $A[i]$ through $A[n]$
• After the ith iteration, $A[i]$ is never altered

RANDOMIZE-IN-PLACE(A)
1 $n = A\. length$
2 for $i = 1$ to n
3 swap $A[i]$ with $A[RANDOM(i, n)]$
A k-permutation on a set of n elements is a sequence containing k of the n elements, with no repetitions.

There are $n!/(n-k)!$ k-permutations.

Loop invariant:

Just prior to the ith iteration of the for loop of lines 2–3, for each possible $(i-1)$-permutation of the n elements, the subarray $A[1..i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/n!$.

Initialization: loop invariant trivially holds

Maintenance:

- Consider a particular i-permutation, and denote the elements in it by $\langle x_1, x_2, \ldots, x_i \rangle$.
- This permutation consists of an $(i-1)$-permutation $\langle x_1, x_2, \ldots, x_{i-1} \rangle$ followed by the value x_i that the algorithm places in $A[i]$.
- Let E_1 denote the event in which the first $(i-1)$ iterations have created the particular $(i-1)$-permutation $\langle x_1, x_2, \ldots, x_{i-1} \rangle$ in $A[1..i-1]$.
• By the loop invariant, $Pr\{E_1\} = (n - i + 1)!/n!$

• Let E_2 be the event that ith iteration puts x_i in position $A[i]$

• The i-permutation (x_1, x_2, \ldots, x_i) appears in $A[1..i]$ precisely when both E_1 and E_2 occur

$$Pr\{E_2 \cap E_1\} = Pr\{E_2 | E_1\}Pr\{E_1\}$$

• $Pr\{E_2 | E_1\} = 1/(n - i + 1)$ because in line 3 the algorithm chooses x_i randomly from the $n - i + 1$ values in positions $A[i..n]$

$$Pr\{E_2 \cap E_1\} = \frac{1}{n - i + 1} \cdot \frac{(n - i + 1)!}{n!} = \frac{(n - i)!}{n!}$$

Termination:

• At termination, $i = n + 1$, and we have that the subarray $A[1..n]$ is a given n-permutation with probability

$$(n - (n + 1) + 1)!/n! = 0!/n! = 1/n!$$

• Thus, RANDOMIZE-IN-PLACE produces a uniform random permutation
5.4.1 The birthday paradox

• How many people must there be in a room before there is a 50% chance that two of them were born on the same day of the year?

• The answer is surprisingly few
• The paradox is that it is in fact far fewer
 – than the number of days in a year, or
 – even half the number of days in a year

An analysis using indicator random variables

• We use indicator random variables to provide a simple but approximate analysis of the birthday paradox
• For each pair \((i, j)\) of the \(k\) people in the room, define the indicator random variable \(X_{ij}\), for \(1 \leq i < j \leq k\), by

\[
X_{ij} = \begin{cases}
1 & \text{if } i \text{ and } j \text{ have the same birthday} \\
0 & \text{otherwise}
\end{cases}
\]
Once birthday \(b_i \) for \(i \) is chosen, the probability that \(b_j \) is chosen to be the same day is \(1/n \), where \(n = 365 \).

\[
E[X_{ij}] = \Pr \{ i \text{ and } j \text{ have the same birthday} \} = 1/n
\]

Let \(X \) be a random variable counting the number of pairs of individuals having the same birthday

\[
X = \sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{ij}
\]

Taking expectations of both sides and applying linearity of expectation, we obtain

\[
E[X] = E \left[\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{ij} \right]
= \sum_{i=1}^{k} \sum_{j=i+1}^{k} E[X_{ij}]
= \binom{k}{2} \frac{1}{n} = \frac{k(k-1)}{2n}
\]

When \(k(k-1) \geq 2n \), the expected number of pairs of people with the same birthday is at least 1.
Thus, if we have at least $\sqrt{2n} + 1$ individuals in a room, we can expect at least two to have the same birthday.

For $n = 365$, if $k = 28$, the expected number of pairs with the same birthday is $(28 \cdot 27)/(2 \cdot 365) \approx 1.0356$.

With at least 28 people, we expect to find at least one matching pair of birthdays.

Analysis using only probabilities gives a different exact number of people, but same asymptotically: $\Theta(\sqrt{n})$.

5.4.2 Balls and bins

Consider tossing identical balls randomly into b bins, numbered $1,2,\ldots,b$.

Tosses are independent, and on each toss the ball is equally likely to end up in any bin.

The probability that a tossed ball lands in any given bin is $1/b$.

The ball-tossing process is a sequence of Bernoulli trials with a probability $1/b$ of success \equiv the ball falls in the given bin.
• **How many balls fall in a given bin?**
 – The number of balls that fall in a given bin follows the binomial distribution \(b(k; n, 1/b) \)
 – If we toss \(n \) balls, the expected number of balls that fall in the given bin is \(n/b \)

• **How many balls must we toss, on the average, until a given bin contains a ball?**
 – The number of tosses until the given bin receives a ball follows the geometric distribution with probability \(1/b \) and
 – the expected number of tosses until success is \(1/(1/b) = b \)

• **How many balls must we toss until every bin contains at least one ball?**
 – Call a toss in which a ball falls into an empty bin a “hit”
 – We want to know the expected number \(n \) of tosses required to get \(b \) hits
 – We can partition the \(n \) tosses into stages
 – The \(i \)th stage consists of the tosses after the \((i - 1) \)st hit until the \(i \)th hit
 – The first stage consists of the first toss, since we are guaranteed to have a hit when all bins are empty
- During the ith stage, $i - 1$ bins contain balls and $b - i + 1$ bins are empty.
- For each toss in the ith stage, the probability of obtaining a hit is $(b - i + 1)/b$.
- n_i is the number of tosses in the ith stage.
- The number of tosses required to get b hits is $n = \sum_{i=1}^{b} n_i$.
- Each n_i has a geometric distribution with probability of success $(b - i + 1)/b$.

$$E[n_i] = \frac{b}{b - i + 1}$$

$$E[n] = E\left[\sum_{i=1}^{b} n_i\right] = \sum_{i=1}^{b} E[n_i]$$

$$= \sum_{i=1}^{b} \frac{b}{b - i + 1}$$

$$= b \sum_{i=1}^{b} \frac{1}{i}$$

$$= b(\ln b + O(1))$$

- By harmonic series.
It therefore takes approximately $b \ln b$ tosses before we can expect that every bin has a ball.

This problem is also known as the **coupon collector’s problem**, which says that a person trying to collect each of b different coupons expects to acquire approximately $b \ln b$ randomly obtained coupons in order to succeed.
6 Heapsort

- Heapsort’s running time is $O(n \lg n)$
- It sorts in place
 - only a constant number of array elements are stored outside the input array at any time
- Heapsort combines the better attributes of the sorting algorithms we have already discussed
- Heapsort also introduces another algorithm design technique: using a data structure

6.1 Heaps

- The (binary) heap data structure is an array object that we can view as a nearly complete binary tree
- Each node of the tree corresponds to an element of the array
- The tree is completely filled on all levels except possibly the lowest, which is filled from the left up to a point
An array A that represents a heap is an object with two attributes:

- $A.\text{length}$ gives the number of elements in the array, and
- $A.\text{heap-size}$ represents how many elements in the heap are stored within array A

Although $A[1..A.\text{length}]$ may contain numbers, only the elements in $A[1..A.\text{heap-size}]$, where $0 \leq A.\text{heap-size} \leq A.\text{length}$, are valid elements of the heap.

The root of the tree is $A[1]$, and given the index i of a node, we can easily compute the indices of its parent, left child, and right child:

- $\text{PARENT}(i) \equiv \text{return } [i/2]$
- $\text{LEFT}(i) \equiv \text{return } 2i$
- $\text{RIGHT}(i) \equiv \text{return } 2i + 1$
There are two kinds of binary heaps:
- max-heaps and min-heaps

In both, the values in the nodes satisfy a **heap property**

- The max-heap property is that for every node \(i \) other than the root
 \[
 A[\text{PARENT}(i)] \geq A[i]
 \]
- The largest element in a max-heap is stored at the root
- The subtree rooted at node \(n \) contains values no larger than that contained at \(n \) itself

The **height** of a node in a heap is the number of edges on the longest simple downward path from the node to a leaf, and
- We define the height of the heap to be the height of its root
- Since a heap of \(n \) elements is based on a complete binary tree, its height is \(\Theta(\lg n) \)
- The basic operations on heaps run in time at most proportional to the height of the tree and thus take \(O(\lg n) \) time
6.2 Maintaining the heap property

- MAX-HEAPIFY maintains the heap property
- Its inputs are an array A and index i into it
- It assumes that the binary trees rooted at $\text{LEFT}(i)$ and $\text{RIGHT}(i)$ are max-heaps, but that $A[i]$ might be smaller than its children
- MAX-HEAPIFY lets the value at $A[i]$ “float down” in the max-heap so that the subtree rooted at index i obeys the max-heap property

MAX-HEAPIFY(A, i)

1. $l = \text{LEFT}(i)$
2. $r = \text{RIGHT}(i)$
3. if $l \leq A.\text{heap-size}$ and $A[l] > A[i]$
 4. $\text{largest} = l$
5. else $\text{largest} = i$
6. if $r \leq A.\text{heap-size}$ and $A[r] > A[\text{largest}]$
 7. $\text{largest} = r$
8. if $\text{largest} \neq i$
9. exchange $A[i]$ with $A[\text{largest}]$
10. MAX-HEAPIFY($A, \text{largest}$)
At each step, the largest of the elements \(A[i] \), \(A[\text{LEFT}(i)] \), and \(A[\text{RIGHT}(i)] \) is determined, and its index is stored in \textit{largest}.

- If \(A[i] \) is largest, then the subtree rooted at node \(i \) is already a max-heap.
- Otherwise, one child has the largest element, and \(A[i] \) is swapped with \(A[\text{largest}] \).
- The node indexed by \textit{largest} now has the original value \(A[i] \), and thus the subtree rooted at \textit{largest} might violate the max-heap property => call \textsc{MAX-HEAPIFY} recursively.
• Running time of MAX-HEAPIFY on a subtree of size n rooted at a given node i is
 – the $\Theta(1)$ time to fix up the relationships of $A[i], A[\text{LEFT}(i)],$ and $A[\text{RIGHT}(i)]$
 – plus the time to run MAX-HEAPIFY on a subtree rooted at one of the children of node i
• The children’s subtrees have size at most $\frac{2n}{3}$
 • the worst case occurs when the bottom level of the tree is exactly half full
• We have the recurrence $T(n) = T(2n/3) + \Theta(1) = O(\lg n)$

6.3 Building a heap

• We can use the procedure MAX-HEAPIFY bottom-up to convert an array $A[1..n]$, where $n = A.length$, into a max-heap
• Elements in the subarray $A[(\lfloor n/2 \rfloor + 1)..n]$ are all leaves of the tree, and so each is a 1-element heap to begin with
• BUILD-MAX-HEAP goes through the remaining nodes of the tree and runs MAX-HEAPIFY on each one
BUILD-MAX-HEAP(\(A\))

1. \(A.\text{heap-size} = A.\text{length}\)
2. **for** \(i = \lfloor A.\text{length}/2 \rfloor \textbf{ downto } 1\)
3. **MAX-HEAPIFY(\(A, i\))**

- A simple upper bound on the running time:
 - Each call to **MAX-HEAPIFY** costs \(O(\lg n)\) time
 - **BUILD-MAX-HEAP** makes \(O(n)\) such calls
 - Thus, the running time is \(O(n \lg n)\)
- This upper bound is not asymptotically tight
• Observe that the time for MAX-HEAPIFY to run at a node varies with the height of the node in the tree
• The heights of most nodes are small
• The time required by MAX-HEAPIFY when called on a node of height h is $O(h)$
• The total cost of BUILD-MAX-HEAP is bounded by $O(n)$
• Hence, we can build a max-heap from an unordered array in linear time

6.4 The heapsort algorithm

• The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap on the input array $A[1..n]$
• The maximum element of the array is stored at the root $A[1]$, we can put it into its correct final position by exchanging it with $A[n]$
• We can now discard node n from the heap by simply decrementing $A.heap-size$
• The children of the root remain max-heaps, but the new root element might violate the max-heap property
• To restore the max-heap property call MAX-HEAPIFY\((A,1)\), which leaves a max-heap in
\(A[1..n-1]\)
• The heapsort algorithm then repeats this process for the max-heap of size \(n-1\) down to a heap of size 2

HEAPSORT\((A)\)
1. BUILD-MAX-HEAP\((A)\)
2. for \(i = A.\text{length} \) downto 2
3. exchange \(A[1]\) with \(A[i]\)
4. \(A.\text{heap-size} = A.\text{heap-size} - 1\)
5. MAX-HEAPIFY\((A,1)\)

• The procedure takes time \(O(n \lg n)\), since the call to BUILD-MAX-HEAP takes time \(O(n)\) and each of the \(n-1\) calls to MAX-HEAPIFY takes time \(O(\lg n)\)
6.5 Priority queues

- Maintain a set S of elements, each with an associated value called a **key**
- **INSERT**(S, x) insert x into S: $S = S \cup \{x\}$
- **MAXIMUM**(S) return element with largest key
- **EXTRACT-MAX**(S) removes and returns the element of S with the largest key
- **INCREASE-KEY**(S, x, k) increases the value of element x’s key to the new value k, which is at least as large as x’s current key value

We can use max-priority queues, e.g., to schedule jobs on a shared computer
- The max-priority queue keeps track of the jobs to be performed and their relative priorities
- When a job is finished or interrupted, the scheduler selects the highest-priority job from among pending ones by calling **EXTRACT-MAX**
- The scheduler can add a new job to the queue at any time by calling **INSERT**
• It is easy to implement \textsc{Maximum} operation in $\Theta(1)$ time using a heap

\begin{verbatim}
\textsc{Heap-Maximum}(A) \equiv \text{return } A[1]
\end{verbatim}

\textsc{Heap-Extract-Max}(A)

1. \text{if } A.\text{heap-size} < 1
2. \text{error “heap underflow”}
3. \text{max = } A[1]
5. \text{ } A.\text{heap-size} = A.\text{heap-size} - 1
6. \text{ } \textsc{Max-Heapify}(A, 1)
7. \text{return } \text{max}

• Running time of \textsc{Heap-Extract-Max} is $O(\lg n)$; it performs a constant amount of work on top of the $O(\lg n)$ for \textsc{Max-Heapify}

• In \textsc{Heap-Increase-Key} index i identifies the element whose key we wish to increase
• Increasing the key of $A[i]$ might violate the max-heap property
• The procedure traverses a simple path from this node toward the root to find a proper place for the newly increased key
The procedure repeatedly compares an element to its parent, exchanging their keys and continuing if the element’s key is larger, and terminating otherwise.

HEAP-INCREASE-KEY \((A, i, key)\)

1. If \(key < A[i]\)
2. **error** “new key is smaller than current key”
3. \(A[i] = key\)
4. **while** \(i > 1\) **and** \(A[\text{PARENT}(i)] < A[i]\)
5. exchange \(A[i]\) with \(A[\text{PARENT}(i)]\)
6. \(i = \text{PARENT}(i)\)
• The running time of \textsc{Heap-Increase-Key} on an \(n \)-element heap is \(O(\lg n) \), since the path traced to the root has length \(O(\lg n) \)

\textsc{Max-Heap-Insert}(\(A, key \))
1. \(A.\text{heap-size} = A.\text{heap-size} + 1 \)
2. \(A[A.\text{heap-size}] = -\infty \)
3. \textsc{Heap-Increase-Key} \((A, A.\text{heap-size}, key) \)

• Also this procedure has running time \(O(\lg n) \)

7 Quicksort

• Quicksort has a worst-case running time of \(\Theta(n^2) \) on an array of \(n \) numbers

• Despite this, quicksort is often the best practical choice for sorting because it is remarkably efficient on the average:
 – Its expected running time is \(\Theta(n \lg n) \), and the constant factors are quite small

• It also sorts in place and it works well even in virtual-memory environments
7.1 Description of quicksort

- **Divide**: Rearrange the array \(A[p..r] \) into two (possibly empty) subarrays \(A[p..q-1] \) and \(A[q+1..r] \)
 - such that each element of \(A[p..q-1] \leq A[q] \), which in turn \(\leq \) each element of \(A[q+1..r] \)

 Compute the index \(q \) as part of this partitioning procedure

- **Conquer**: Sort the two subarrays by recursive calls to quicksort

- **Combine**: Because the subarrays are already sorted, no work is needed to combine them: the entire array \(A[p..r] \) is now sorted

QUICKSORT\((A, p, r) \)

1. if \(p < r \)
2. \(q = \text{PARTITION}(A, p, r) \)
3. **QUICKSORT**\((A, p, q-1) \)
4. **QUICKSORT**\((A, q+1, r) \)

• To sort an entire array \(A \), the initial call is **QUICKSORT**\((A, 1, A.length) \)
Partitioning the array

\textbf{PARTITION}(A, p, r)

1. \(x = A[r] \)
2. \(i = p - 1 \)
3. \textbf{for} \(j = p \) \textbf{to} \(r - 1 \)
4. \textbf{if} \(A[j] \leq x \)
5. \(i = i + 1 \)
7. \textbf{exchange} \(A[i + 1] \) \textbf{with} \(A[r] \)
8. \textbf{return} \(i + 1 \)
• **PARTITION** always selects an element \(x = A[r] \) as a *pivot* element around which to partition the subarray \(A[p..r] \).

• As the procedure runs, it partitions the array into four (possibly empty) regions.

• At the start of each iteration of the **for** loop in lines 3–6, the regions satisfy properties, shown above.

• At the beginning of each iteration of the loop of lines 3–6, for any array index \(k \),
 1. If \(p \leq k \leq i \), then \(A[k] \leq x \)
 2. If \(i + 1 \leq k \leq j - 1 \), then \(A[k] > x \)
 3. If \(k = r \), then \(A[k] = x \)

• Indices between \(j \) and \(r - 1 \) are not covered by any case, and the values in these entries have no particular relationship to the pivot \(x \).

• The running time of **PARTITION** on the subarray \(A[p..r] \) is \(\Theta(n) \), \(n = p - r + 1 \).
7.2 Performance of quicksort

- Running time of quicksort depends on whether the partitioning is balanced or unbalanced
 - which in turn depends on which elements are used for partitioning.
 - Balanced: the algorithm runs asymptotically as fast as merge sort
 - Unbalanced: it can run asymptotically as slowly as insertion sort

Worst-case partitioning

- The worst-case behavior occurs when the partitioning routine produces one subproblem with \(n - 1 \) elements and one with 0 elements
- Let us assume that this unbalanced partitioning arises in each recursive call
- Partitioning costs \(\Theta(n) \), time
- The recursive call on an array of size 0 just returns, \(T(0) = \Theta(1) \)
The recurrence for the running time is
\[T(n) = T(n - 1) + T(0) + \Theta(n) \]
\[= T(n - 1) + \Theta(n) \]
- The substitution method proves that this recurrence has the solution \(T(n) = \Theta(n^2) \)
- The worst-case running time of quicksort is no better than that of insertion sort
- The \(\Theta(n^2) \) running time occurs when the input array is already completely sorted
 – a common situation in which insertion sort runs in \(O(n) \) time

Best-case partitioning
- In the most even possible split, \textsc{partition} produces two subproblems, each of size at most \(n/2 \): of sizes \([n/2] \) and \([n/2] - 1 \)
- The recurrence for the running time is then
 \[T(n) = 2T(n/2) + \Theta(n) \]
- By case 2 of the master theorem, this recurrence has the solution \(T(n) = \Theta(n \log n) \)
- By balancing the two sides of the partition, we get an asymptotically faster algorithm
Balanced partitioning

- Average-case running time of quicksort is closer to the best case than to the worst case
- Suppose, that the partitioning algorithm always produces a 9-to-1 proportional split – at first blush this seems quite unbalanced
- We then obtain the recurrence
 \[T(n) = T(9n/10) + T(n/10) + cn, \]
 where we have explicitly included the constant \(c \) hidden in the \(\Theta(n) \) term
In the recursion tree every level of the tree has cost cn, until the recursion reaches a boundary condition at depth $\log_{10} n = \Theta(lg n)$, and then the levels have cost $\leq cn$

- Recursion terminates at $\log_{10/9} n = \Theta(lg n)$
- Total cost of quicksort is therefore $O(n \lg n)$
- Thus, with this intuitively quite unbalanced seeming split quicksort runs asymptotically as if the split were right down the middle
- In fact, any split of constant proportionality leads to $O(n \lg n)$ running time