15.5 Optimal binary search trees

- We are designing a program to translate text
- Perform lookup operations by building a BST with n words as keys and their equivalents as satellite data
- We can ensure an $O(\log n)$ search time per occurrence by using a RBT or any other balanced BST
- A frequently used word may appear far from the root while a rarely used word appears near the root
- We want frequent words to be placed nearer the root
- How do we organize a BST so as to minimize the number of nodes visited in all searches, given that we know how often each word occurs?

What we need is an **optimal binary search tree**

- Formally, given a sequence $K = \langle k_1, k_2, \ldots, k_n \rangle$ of n distinct sorted keys ($k_1 < k_2 < \cdots < k_n$), we wish to build a BST from these keys
- For each key k_i, we have a probability p_i that a search will be for k_i
- Some searches may be for values not in K, so we also have $n + 1$ “dummy keys” d_0, d_1, \ldots, d_n representing values not in K
- In particular, d_0 represents all values less than k_1, d_n represents all values greater than k_n
For $i = 1, 2, \ldots, n - 1$, the dummy key d_i represents all values between k_i and k_{i+1}.

For each dummy key d_i, we have a probability q_i that a search will correspond to d_i.

Each key k_i is an internal node, and each dummy key d_i is a leaf.

Every search is either successful (finds a key k_i) or unsuccessful (finds a dummy key d_i), and so we have

$$\sum_{i=1}^{n} p_i + \sum_{i=0}^{n} q_i = 1$$

Because we have probabilities of searches for each key and each dummy key, we can determine the expected cost of a search in a given BST T.

<table>
<thead>
<tr>
<th>i</th>
<th>p_i</th>
<th>q_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>1</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Let us assume that the actual cost of a search equals the number of nodes examined, i.e., the depth of the node found by the search in $T + 1$.

Then the expected cost of a search in T,

$$E[\text{search cost in } T] = \sum_{i=1}^{n} (\text{depth}_T(k_i) + 1) \cdot p_i + \sum_{i=0}^{n} (\text{depth}_T(d_i) + 1) \cdot q_i$$

$$= 1 + \sum_{i=1}^{n} \text{depth}_T(k_i) \cdot p_i + \sum_{i=0}^{n} \text{depth}_T(d_i) \cdot q_i,$$

where depth_T denotes a node’s depth in tree T.

<table>
<thead>
<tr>
<th>Node</th>
<th>Depth</th>
<th>Probability</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_1</td>
<td>1</td>
<td>0.15</td>
<td>0.30</td>
</tr>
<tr>
<td>k_2</td>
<td>0</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>k_3</td>
<td>2</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>k_4</td>
<td>1</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>k_5</td>
<td>2</td>
<td>0.20</td>
<td>0.60</td>
</tr>
<tr>
<td>d_6</td>
<td>2</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>d_7</td>
<td>2</td>
<td>0.10</td>
<td>0.30</td>
</tr>
<tr>
<td>d_8</td>
<td>3</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>d_9</td>
<td>3</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>d_{10}</td>
<td>3</td>
<td>0.10</td>
<td>0.40</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2.80</td>
</tr>
</tbody>
</table>
For a given set of probabilities, we wish to construct a BST whose expected search cost is smallest.

We call such a tree an **optimal binary search tree**.

An optimal BST for the probabilities given has expected cost 2.75.

An optimal BST is not necessarily a tree whose overall height is smallest.

Nor can we necessarily construct an optimal BST by always putting the key with the greatest probability at the root.

The lowest expected cost of any BST with k_5 at the root is 2.85.
Step 1: The structure of an optimal BST

- Consider any subtree of a BST
- It must contain keys in a contiguous range k_i, \ldots, k_j, for some $1 \leq i \leq j \leq n$
- In addition, a subtree that contains keys k_i, \ldots, k_j must also have as its leaves the dummy keys d_{i-1}, \ldots, d_j
- If an optimal BST T has a subtree T' containing keys k_i, \ldots, k_j, then this subtree T' must be optimal as well for the subproblem with keys k_i, \ldots, k_j and dummy keys d_{i-1}, \ldots, d_j

- Given keys k_i, \ldots, k_j, one of them, say k_r, is the root of an optimal subtree containing these keys
- The left subtree of the root k_r contains the keys k_i, \ldots, k_{r-1} (and dummy keys d_{i-1}, \ldots, d_{r-1})
- The right subtree contains the keys k_{r+1}, \ldots, k_j (and dummy keys d_r, \ldots, d_j)
- As long as we
 - examine all candidate roots k_r, where $i \leq r \leq j$,
 - and determine all optimal BSTs containing k_i, \ldots, k_{r-1} and those containing k_{r+1}, \ldots, k_j,
we are guaranteed to find an optimal BST
• Suppose that in a subtree with keys k_i, \ldots, k_j, we select k_i as the root.
• k_i’s left subtree contains the keys k_i, \ldots, k_{i-1}.
• Interpret this sequence as containing no keys.
• Subtrees, however, also contain dummy keys.
• Adopt the convention that a subtree containing keys k_i, \ldots, k_{i-1} has no actual keys but does contain the single dummy key d_{i-1}.
• Symmetrically, if we select k_j as the root, then k_j’s right subtree contains no actual keys, but it does contain the dummy key d_j.

Step 2: A recursive solution
• We pick our subproblem domain as finding an optimal BST containing the keys k_i, \ldots, k_j, where $i \geq 1$, $j \leq n$, and $j \geq i - 1$.
• Let us define $e[i, j]$ as the expected cost of searching an optimal BST containing the keys k_i, \ldots, k_j.
• Ultimately, we wish to compute $e[1, n]$.
• The easy case occurs when $j = i - 1$.
• Then we have just the dummy key d_{i-1}.
• The expected search cost is $e[i, i - 1] = q_{i-1}$.
• When \(j > i \), we need to select a root \(k_r \) from among \(k_i, \ldots, k_j \) and make an optimal BST with keys \(k_i, \ldots, k_{r-1} \) as its left subtree and an optimal BST with keys \(k_{r+1}, \ldots, k_j \) as its right subtree.

• What happens to the expected search cost of a subtree when it becomes a subtree of a node?
 – Depth of each node increases by 1
 – Expected search cost of this subtree increases by the sum of all the probabilities in it

• For a subtree with keys \(k_i, \ldots, k_j \), let us denote this sum of probabilities as \(\omega = \sum_{t=i}^{j} p_t + \sum_{t=i-1}^{j-1} q_t \)

Thus, if \(k_r \) is the root of an optimal subtree containing keys \(k_i, \ldots, k_j \), we have
\[
e[i, j] = p_r + (e[i, r - 1] + w(i, r - 1)) + (e[r + 1, j] + w(r + 1, j))
\]

Noting that
\[
w(i, j) = w(i, r - 1) + p_r + w(r + 1, j)
\]
we rewrite
\[
e[i, j] = e[i, r - 1] + e[r + 1, j] + w(i, j)
\]

We choose the root \(k_r \) that gives the lowest expected search cost: \(e[i, j] = \min_{i \leq s \leq j} q_{i-1} \) if \(j = i - 1 \)
\[
\min_{i \leq s \leq j} e[i, j] = e[i, r - 1] + e[r + 1, j] + w(i, j)
\]
if \(i \leq j \).
• The $e[i,j]$ values give the expected search costs in optimal BSTs
• To help us keep track of the structure of optimal BSTs, we define $root[i,j]$, for $1 \leq i \leq j \leq n$, to be the index r for which k_r is the root of an optimal BST containing keys k_i,\ldots,k_j
• Although we will see how to compute the values of $root[i,j]$, we leave the construction of an optimal binary search tree from these values as an exercise

Step 3: Computing the expected search cost of an optimal BST
• We store $e[i,j]$ values in a table $e[1..n + 1, 0..n]$
• The first index needs to run to $n + 1$ because to have a subtree containing only the dummy key d_n, we need to compute and store $e[n + 1, n]$
• The second index needs to start from 0 because to have a subtree containing only the dummy key d_0, we need to compute and store $e[1,0]$
We use only the entries $e[i,j]$ for which $j \geq i - 1$
We also use a table $root[i,j]$, for recording the root of the subtree containing keys k_i, \ldots, k_j
This table uses only the entries $1 \leq i \leq j \leq n$
We also store the $w(i,j)$ values in a table $w[1..n + 1.0..n]$
For the base case, we compute $w[i, i - 1] = q_i$
For $j \geq i$, we compute $w[i,j] = w[i, j - 1] + p_j + q_j$
Thus, we can compute the $\Theta(n^2)$ values of $w[i,j]$ in $\Theta(1)$ time each

\textbf{OPTIMAL-BST}(p, q, n)
1. let $e[1..n + 1.0..n]$, $w[1..n + 1.0..n]$, $root[1..n,1..n]$ be new tables
2. for $i = 1$ to $n + 1$
3. $e[i, i - 1] = q_{i-1}$
4. $w[i, i - 1] = q_{i-1}$
5. for $l = 1$ to n
6. for $i = 1$ to $n - l + 1$
7. $j = i + l - 1$
8. $e[i,j] = \infty$
9. $w[i,j] = w[i,j-1] + p_j + q_j$
10. for $r = i$ to j
11. $t = e[i,r - 1] + e[r + 1,j] + w[i,j]$
12. if $t < e[i,j]$
13. $e[i,j] = t$
14. $root[i,j] = r$
15. return e and $root$
The **OPTIMAL-BST** procedure takes $\Theta(n^3)$ time, just like **MATRIX-CHAIN-ORDER**

- Its running time is $O(n^3)$, since its `for` loops are nested three deep and each loop index takes on at most n values
- The loop indices in **OPTIMAL-BST** do not have exactly the same bounds as those in **MATRIX-CHAIN-ORDER**, but they are within ≤ 1 in all directions
- Thus, like **MATRIX-CHAIN-ORDER**, the **OPTIMAL-BST** procedure takes $\Omega(n^3)$ time
16 Greedy Algorithms

- Optimization algorithms typically go through a sequence of steps, with a set of choices at each step.
- For many optimization problems, using dynamic programming to determine the best choices is overkill; simpler, more efficient algorithms will do.
- A *greedy algorithm* always makes the choice that looks best at the moment.
- That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.

16.1 An activity-selection problem

- Suppose we have a set $S = \{a_1, a_2, \ldots, a_n\}$ of n proposed activities that wish to use a resource (e.g., a lecture hall), which can serve only one activity at a time.
- Each activity a_i has a start time s_i and a finish time f_i, where $0 \leq s_i < f_i < \infty$.
- If selected, activity a_i takes place during the half-open time interval $[s_i, f_i)$.
• Activities \(a_i \) and \(a_j \) are compatible if the intervals \([s_i, f_i]\) and \([s_j, f_j]\) do not overlap.

• I.e., \(a_i \) and \(a_j \) are compatible if \(s_i \geq f_j \) or \(s_j \geq f_i \).

• We wish to select a maximum-size subset of mutually compatible activities.

• We assume that the activities are sorted in monotonically increasing order of finish time:
\[
f_1 \leq f_2 \leq f_3 \leq \ldots \leq f_{n-1} \leq f_n
\]

Consider, e.g., the following set \(S \) of activities:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>(f_i)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

• For this example, the subset \(\{a_3, a_9, a_{11}\} \) consists of mutually compatible activities.

• It is not a maximum subset, however, since the subset \(\{a_1, a_4, a_8, a_{11}\} \) is larger.

• In fact, it is a largest subset of mutually compatible activities; another largest subset is \(\{a_2, a_4, a_9, a_{11}\} \).
The optimal substructure of the activity-selection problem

- Let S_{ij} be the set of activities that start after a_i finishes and that finish before a_j starts.
- We wish to find a maximum set of mutually compatible activities in S_{ij}.
- Suppose that such a maximum set is A_{ij}, which includes some activity a_k.
- By including a_k in an optimal solution, we are left with two subproblems: finding mutually compatible activities in the set S_{ik} and finding mutually compatible activities in the set S_{kj}.

Let $A_{ik} = A_{ij} \cap S_{ik}$ and $A_{kj} = A_{ij} \cap S_{kj}$, so that
- A_{ik} contains the activities in A_{ij} that finish before a_k starts and
- A_{kj} contains the activities in A_{ij} that start after a_k finishes.

Thus, $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$, and so the maximum-size set A_{ij} in S_{ij} consists of $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$ activities.

The usual cut-and-paste argument shows that the optimal solution A_{ij} must also include optimal solutions for S_{ik} and S_{kj}.
This suggests that we might solve the activity-selection problem by dynamic programming.

If we denote the size of an optimal solution for the set S_{ij} by $c[i, j]$, then we would have the recurrence

$$c[i, j] = c[i, k] + c[k, j] + 1$$

Of course, if we did not know that an optimal solution for the set S_{ij} includes activity a_k, we would have to examine all activities in S_{ij} to find which one to choose, so that

$$c[i, j] = \begin{cases}
0 & \text{if } S_{ij} = \emptyset \\
\max_{a_k \in S_{ij}} \{c[i, j] = c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset
\end{cases}$$

Making the greedy choice

For the activity-selection problem, we need consider only the greedy choice.

We choose an activity that leaves the resource available for as many other activities as possible.

Now, of the activities we end up choosing, one of them must be the first one to finish.

Choose the activity in S with the earliest finish time, since that leaves the resource available for as many of the activities that follow it as possible.

Activities are sorted in monotonically increasing order by finish time; greedy choice is activity a_1.
• If we make the greedy choice, we only have to find activities that start after \(a_1 \) finishes
• \(s_1 < f_1 \) and \(f_1 \) is the earliest finish time of any activity \(\Rightarrow \) no activity can have a finish time \(\leq s_1 \)
• Thus, all activities that are compatible with activity \(a_1 \) must start after \(a_1 \) finishes
• Let \(S_k = \{ a_i \in S : s_i \geq f_k \} \) be the set of activities that start after activity \(a_k \) finishes
• Optimal substructure: if \(a_1 \) is in the optimal solution, then an optimal solution to the original problem consists of \(a_1 \) and all the activities in an optimal solution to the subproblem \(S_1 \)

Theorem 16.1 Consider any nonempty subproblem \(S_k \), and let \(a_m \) be an activity in \(S_k \) with the earliest finish time. Then \(a_m \) is included in some maximum-size subset of mutually compatible activities of \(S_k \).

Proof Let \(A_k \) be a max-size subset of mutually compatible activities in \(S_k \), and let \(a_j \) be the activity in \(A_k \) with the earliest finish time. If \(a_j = a_m \), we are done, since \(a_m \) is in a max-size subset of mutually compatible activities of \(S_k \).

If \(a_j \neq a_m \), let the set \(A'_k = A_k - \{ a_j \} \cup \{ a_m \} \). The activities in \(A'_k \) are disjoint because the activities in \(A_k \) are disjoint, \(a_j \) is the first activity in \(A_k \) to finish, and \(f_m \leq f_j \). Since \(|A'_k| = |A_k| \), we conclude that \(A'_k \) is a maximum-size subset of mutually compatible activities of \(S_k \) and includes \(a_m \). \(\blacksquare \)
We can repeatedly choose the activity that finishes first, keep only the activities compatible with this activity, and repeat until no activities remain.

Moreover, because we always choose the activity with the earliest finish time, the finish times of the activities we choose must strictly increase.

We can consider each activity just once overall, in monotonically increasing order of finish times.

A recursive greedy algorithm

RECURSIVE-ACTIVITY-SELECTOR\((s, f, k, n)\)

1. \(m \leftarrow k + 1\)
2. while \(m \leq n\) and \(s[m] < f[k]\) // find the first // activity in \(S_k\) to finish
3. \(m \leftarrow m + 1\)
4. if \(m \leq n\)
5. return \(\{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)\)
6. else return \(\emptyset\)
An iterative greedy algorithm

GREEDY-ACTIVITY-SELECTOR(s, f)

1. \(n \leftarrow s.\text{length} \)
2. \(A \leftarrow \{a_1\} \)
3. \(k \leftarrow 1 \)
4. **for** \(m \leftarrow 2 \) **to** \(n \)
5. \(\text{if } s[m] \geq f[k] \)
6. \(A \leftarrow A \cup \{a_m\} \)
7. \(k \leftarrow m \)
8. **return** \(A \)
The set A returned by the call $\text{GREEDY-ACTIVITY-SELECTOR}(s, f)$ is precisely the set returned by the call $\text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, k, n)$.

Both the recursive version and the iterative algorithm schedule a set of n activities in $\Theta(n)$ time, assuming that the activities were already sorted initially by their finish times.

16.3 Huffman codes

Huffman codes compress data very effectively—savings of 20% to 90% are typical, depending on the characteristics of the data being compressed.

We consider the data to be a sequence of characters.

Huffman’s greedy algorithm uses a table giving how often each character occurs (i.e., its frequency) to build up an optimal way of representing each character as a binary string.
We have a 100,000-character data file that we wish to store compactly.

We observe that the characters in the file occur with the frequencies given in the table above.

That is, only 6 different characters appear, and the character a occurs 45,000 times.

Here, we consider the problem of designing a binary character code (or code for short) in which each character is represented by a unique binary string, which we call a codeword.

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency (in thousands)</th>
<th>Fixed-length codeword</th>
<th>Variable-length codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>13</td>
<td>001</td>
<td>101</td>
</tr>
<tr>
<td>c</td>
<td>12</td>
<td>010</td>
<td>100</td>
</tr>
<tr>
<td>d</td>
<td>16</td>
<td>011</td>
<td>101</td>
</tr>
<tr>
<td>e</td>
<td>9</td>
<td>100</td>
<td>111</td>
</tr>
<tr>
<td>f</td>
<td>5</td>
<td>101</td>
<td>1101</td>
</tr>
</tbody>
</table>

Using a fixed-length code, requires 3 bits to represent 6 characters:

\[a = 000, \; b = 001, \ldots, \; f = 101 \]

We now need 300,000 bits to code the entire file.

A variable-length code gives frequent characters short codewords and infrequent characters long codewords.

Here the 1-bit string 0 represents a, and the 4-bit string 1100 represents f.

This code requires

\[
(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000 = 224,000 \text{ bits (savings } \approx \text{ 25\%)}
\]
Prefix codes

- We consider only codes in which no codeword is also a prefix of some other codeword.
- A prefix code can always achieve the optimal data compression among any character code, and so we can restrict our attention to prefix codes.
- Encoding is always simple for any binary character code; we just concatenate the codewords representing each character of the file.
- E.g., with the variable-length prefix code, we code the 3-character file abc as $0 \cdot 101 \cdot 100 = 0101100$.

Prefix codes simplify decoding

- No codeword is a prefix of any other, the codeword that begins an encoded file is unambiguous.
- We can simply identify the initial codeword, translate it back to the original character, and repeat the decoding process on the remainder of the encoded file.
- In our example, the string 001011101 parses uniquely as $0 \cdot 0 \cdot 101 \cdot 1101$, which decodes to $aabe$.
The decoding process needs a convenient representation for the prefix code so that we can easily pick off the initial codeword.

A binary tree whose leaves are the given characters provides one such representation.

We interpret the binary codeword for a character as the simple path from the root to that character, where 0 means “go to the left child” and 1 means “go to the right child”.

Note that the trees are not BSTs — the leaves need not appear in sorted order and internal nodes do not contain character keys.

The trees corresponding to the fixed-length code $a = 000, \ldots, f = 101$ and the optimal prefix code $a = 0, b = 101, \ldots, f = 1100$
An optimal code for a file is always represented by a full binary tree, in which every nonleaf node has two children.

The fixed-length code in our example is not optimal since its tree is not a full binary tree: it contains codewords beginning 10..., but none beginning 11...

Since we can now restrict our attention to full binary trees, we can say that if \(C \) is the alphabet from which the characters are drawn and:

- all character frequencies are positive, then
- the tree for an optimal prefix code has exactly \(|C|\) leaves, one for each letter of the alphabet, and
- exactly \(|C| - 1\) internal nodes

Given a tree \(T \) corresponding to a prefix code, we can easily compute the number of bits required to encode a file.

For each character \(c \) in the alphabet \(C \), let the attribute \(c.f_freq \) denote the frequency of \(c \) and let \(d_T(c) \) denote the depth of \(c \)'s leaf.

\(d_T(c) \) is also the length of the codeword for \(c \).

Number of bits required to encode a file is thus

\[
B(T) = \sum_{c \in C} c.f_freq \cdot d_T(c)
\]

which we define as the cost of the tree \(T \).
Constructing a Huffman code

- Let C be a set of n characters and each character $c \in C$ be an object with an attribute $c.freq$
- The algorithm builds the tree T corresponding to the optimal code bottom-up
- It begins with $|C|$ leaves and performs $|C| - 1$ “merging” operations to create the final tree
- We use a min-priority queue Q, keyed on $freq$, to identify the two least-frequent objects to merge
- The result is a new object whose frequency is the sum of the frequencies of the two objects

HUFFMAN(C)

1. $n \leftarrow |C|$
2. $Q \leftarrow C$
3. for $i \leftarrow 1$ to $n - 1$
 4. allocate a new node z
 5. $z.left \leftarrow x \leftarrow \text{EXTRACT-MIN}(Q)$
 6. $z.right \leftarrow y \leftarrow \text{EXTRACT-MIN}(Q)$
 7. $z.freq \leftarrow x.freq + y.freq$
 8. $\text{INSERT}(Q, z)$
9. return $\text{EXTRACT-MIN}(Q)$ // return the root of the tree
To analyze the running time of HUFFMAN, let Q be implemented as a binary min-heap.

For a set C of n characters, we can initialize Q (line 2) in $O(n)$ time using the BUILD-MIN-HEAP.

The for loop executes exactly $n - 1$ times, and since each heap operation requires time $O(\lg n)$, the loop contributes $O(n\lg n)$, to the running time.

Thus, the total running time of HUFFMAN on a set of n characters is $O(n\lg n)$.

We can reduce the running time to $O(n\lg \lg n)$ by replacing the binary min-heap with a van Emde Boas tree.
Correctness of Huffman's algorithm

• We show that the problem of determining an optimal prefix code exhibits the greedy-choice and optimal-substructure properties

Lemma 16.2 Let C be an alphabet in which each character $c \in C$ has frequency $c.freq$. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

Lemma 16.3 Let C, $c.freq$, x, and y be as in Lemma 16.2. Let $C' = C - \{x, y\} \cup \{z\}$. Define $f'freq$ for C' as for C, except that $z.freq = x.freq + y.freq$. Let T' be any tree representing an optimal prefix code for the alphabet C'. Then the tree T, obtained from T' by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for C.

Theorem 16.4 Procedure HUFFMAN produces an optimal prefix code.