Course Prerequisites

- A seven credit unit course
- We take things a bit further than basic algorithms / data structures courses that you might have attended
- We will assume familiarity with
 - Necessary mathematics
 - Elementary data structures
 - Programming
Course Basics

- There will be 4 hours of lectures per week
- Weekly exercises start in a week’s time
- We will not have a programming exercise this year (unless you demand to have one)
- We might consider organizing a seminar with voluntary presentations (yielding extra points) at the end of the course

Organization & Timetable

- **Lectures**: Prof. Tapio Elomaa
 - Mon & Wed 12–14 PM in TB216

- **Exercises**: M.Sc. Juho Lauri
 Thu 12–14 TB224, Start: Sept. 8

- **Exam**: Fri Dec. 16, 2016 @ 13—16
Course Grading

- **Exam**: Maximum of 30 points
- **Weekly exercises** yield extra points
 - 40% of questions answered: 1 point
 - 80% answered: 6 points
 - In between: linear scale (so that decimals are possible)
- Final grading depends on what we agree as course components

Material

- The textbook of the course is
- There is no prepared material, the slides appear in the web as the lectures proceed
- The exam is based on the lectures (i.e., not on the slides only)
Content (Plan)

I. Foundations
II. (Sorting and) Order Statistics
III. Data Structures
IV. Advanced Design and Analysis Techniques
V. Advanced Data Structures
VI. Graph Algorithms
VII. Selected Topics

I Foundations

The Role of Algorithms in Computing
Getting Started
Growth of Functions
Recurrences
Probabilistic Analysis and Randomized Algorithms
II (Sorting and) Order Statistics

Heapsort
Quicksort
Sorting in Linear Time
Medians and Order Statistics

III Data Structures

Elementary Data Structures
Hash Tables
Binary Search Trees
Red-Black Trees
IV Advanced Design and Analysis Techniques

Dynamic Programming
Greedy Algorithms
Amortized Analysis

V Advanced Data Structures

B-Trees
Binomial Heaps
Fibonacci Heaps
VI Graph Algorithms

Elementary Graph Algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths
Maximum Flow

VII Selected Topics

Matrix Operations
Linear Programming
Number-Theoretic Algorithms
Approximation Algorithms

Part of these could also be student presentation topics
The sorting problem

- **Input:** A sequence of n numbers
 \[a_1, a_2, \ldots, a_n \]

- **Output:** A permutation (reordering)
 \[a'_1, a'_2, \ldots, a'_n \]
 of the input sequence such that
 \[a'_1 \leq a'_2 \leq \cdots \leq a'_n \]

- The numbers that we wish to sort are also known as **keys**

Insertion-Sort(A)

1. for $j \leftarrow 2$ to $A.length$
2. $key \leftarrow A[j]$
3. // Insert $A[j]$ into the sorted sequence $A[1..j-1]$
4. $i \leftarrow j - 1$
5. while $i > 0$ and $A[i] > key$
6. $A[i + 1] \leftarrow A[i]$
7. $i \leftarrow i - 1$
8. $A[i + 1] \leftarrow key$
Correctness of the Algorithm

- The following loop invariant helps us understand why the algorithm is correct:

At the start of each iteration of the for loop of lines 1–8, the subarray $A[1..j−1]$ consists of the elements originally in $A[1..j−1]$ but in sorted order.
Initialization

- The loop invariant holds before the first loop iteration, when $j = 2$:
 - The subarray, therefore, consists of just the single element $A[1]$
 - It is the original element in $A[1]$
 - This subarray is trivially sorted
 - Therefore, the loop invariant holds prior to the first iteration of the loop

Maintenance

- Each iteration maintains the loop invariant:
 - The body of the for loop works by moving $A[j-1], A[j-2], A[j-3], ...$ by one position to the right until the proper position for $A[j]$ is found (lines 4–7)
 - At this point the value of $A[j]$ is inserted (line 8)
 - The subarray $A[1..j]$ then consists of the elements originally in $A[1..j]$, but in sorted order
Termination

- The condition causing the for loop to terminate is that $j > A.length = n$
- Because each loop iteration increases j by 1, we must have $j = n + 1$ at that time
- Substituting $n + 1$ for j in the wording of loop invariant, we have that the subarray $A[1..n]$ consists of the elements originally in $A[1..n]$, but in sorted order
- $A[1..n]$ is the entire array

Analysis of insertion sort

- The time taken by the INSERTION-SORT depends on the input:
 - sorting a thousand numbers takes longer than sorting three numbers
- Moreover, the procedure can take different amounts of time to sort two input sequences of the same size
 - depending on how nearly sorted they already are
Input size

- The time taken by an algorithm grows with the size of the input
- Traditional to describe the running time of a program as a function of the size of its input
- For many problems, such as sorting most natural measure for input size is the number of items in the input—i.e., the array size n

- For, e.g., multiplying two integers, the best measure is the total number of bits needed to represent the input in binary notation
- Sometimes, more appropriate to describe the size with two numbers rather than one
- E.g., if the input to an algorithm is a graph, the input size can be described by the numbers of vertices and edges in it
Running time

- Running time of an algorithm on an input:
 - The number of primitive operations ("steps")
 executed
- Step as machine-independent as possible
- For the moment:
 - Constant amount of time to execute each line
 of pseudocode
 - We assume that each execution of the ith line
 takes time c_i, where c_i is a constant

<table>
<thead>
<tr>
<th>INSERTION-SORT(A)</th>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $\text{for } j \leftarrow 2 \text{ to } A.\text{length}$</td>
<td>c_1</td>
<td>n</td>
</tr>
<tr>
<td>2 $key \leftarrow A[j]$</td>
<td>c_2</td>
<td>$n-1$</td>
</tr>
<tr>
<td>3 // Insert $A[j]$ into the sorted sequence $A[1..j]$</td>
<td>0</td>
<td>$n-1$</td>
</tr>
<tr>
<td>4 $i \leftarrow j-1$</td>
<td>c_4</td>
<td>$n-1$</td>
</tr>
<tr>
<td>5 $\text{while } i > 0 \text{ and } A[i] > key$</td>
<td>c_5</td>
<td>$\sum_{j=2}^{n} t_j$</td>
</tr>
<tr>
<td>6 $A[i+1] \leftarrow A[i]$</td>
<td>c_6</td>
<td>$\sum_{j=2}^{n} (t_j - 1)$</td>
</tr>
<tr>
<td>7 $i \leftarrow i-1$</td>
<td>c_7</td>
<td>$\sum_{j=2}^{n} (t_j - 1)$</td>
</tr>
<tr>
<td>8 $A[i+1] \leftarrow key$</td>
<td>c_8</td>
<td>$n-1$</td>
</tr>
</tbody>
</table>
• t_j denotes the number of times the **while** loop test in line 5 is executed for that value of j
• When a **for** or **while** loop exits in the usual way, the test is executed one time more than the loop body
• Comments are not executable statements, so they take no time
• Running time of the algorithm is the sum of those for each statement executed

To compute $T(n)$, the running time of **INSERTION-SORT** on an input of n values,
– we sum the products of the cost and times columns, obtaining

$$T(n) = c_1n + c_2(n - 1) + c_4(n - 1) + c_5 \sum_{j=2}^{n} t_j$$
$$+ c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n - 1)$$
Best case

- The best case occurs if the array is already sorted
- For each $j = 2, 3, \ldots, n$, we then find that $A[i] < key$ in line 5 when i has its initial value of $j - 1$
- Thus $t_j = 1$ for $j = 2, 3, \ldots, n$, and the best-case running time is

$$T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 (n - 1) + c_8 (n - 1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

Worst case

- We can express this as $an + b$ for constants a and b that depend on the statement costs c_i
- It is a **linear function** of n
- The worst case results when the array is in reverse sorted order — in decreasing order
- We must compare each element $A[j]$ with each element in the entire sorted subarray $A[1..j-1]$, and so $t_j = j$ for $j = 2, 3, \ldots, n$
• Note that
\[\sum_{j=2}^{n} j = \frac{n(n + 1)}{2} - 1 \]
and
\[\sum_{j=2}^{n} (j - 1) = \frac{n(n - 1)}{2} \]
by the summation of an arithmetic series
\[\sum_{j=1}^{n} j = \frac{n(n + 1)}{2} \]

• The worst-case running time of INSERTION-SORT is
\[
T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) \\
+ c_5 \left(\frac{n(n + 1)}{2} - 1 \right) + c_6 \left(\frac{n(n - 1)}{2} \right) \\
+ c_7 \left(\frac{n(n - 1)}{2} \right) + c_8 (n - 1) \\
= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2} \right) n^2 + (c_1 + \cdots + c_8) n \\
- (c_2 + \cdots + c_8)
\]
We can express this worst-case running time as $an^2 + bn + c$ for constants a, b, and c that depend on the statement costs c_i.

- It is a **quadratic function** of n.
- The **rate of growth**, or **order of growth**, of the running time really interests us.
- We consider only the leading term of a formula (an^2); the lower-order terms are relatively insignificant for large values of n.

We also ignore the leading term’s coefficient, constant factors are less significant than the rate of growth in determining computational efficiency for large inputs.

- For insertion sort, we are left with the factor of n^2 from the leading term.
- We write that insertion sort has a worst-case running time of $\Theta(n^2)$ ("theta of n-squared")
2.3 Designing algorithms

- Insertion sort is an incremental approach: having sorted \(A[1\ldots j-1] \), we insert \(A[j] \) into its proper place, yielding sorted subarray \(A[1\ldots j] \)
- Let us examine an alternative design approach, known as “divide-and-conquer”
- We design a sorting algorithm whose worst-case running time is much lower
- The running times of divide-and-conquer algorithms are often easily determined

The divide-and-conquer approach

- Many useful algorithms are recursive:
 - to solve a problem, they call themselves to deal with closely related subproblems
- These algorithms typically follow a divide-and-conquer approach:
 - Break the problem into subproblems that resemble the original problem but are smaller,
 - Solve the subproblems recursively,
 - Combine these solutions to create a solution to the original problem
The paradigm involves three steps at each level of the recursion:

1. **Divide** the problem into a number of subproblems that are smaller instances of the same problem
2. **Conquer** the subproblems by solving them recursively
 - If the sizes are small enough, just solve the subproblems in a straightforward manner
3. **Combine** the solutions to the subproblems into the solution for the original problem

The merge sort algorithm

- **Divide:** Divide the \(n \)-element sequence into two subsequences of \(n/2 \) elements each
- **Conquer:** Sort the two subsequences recursively using merge sort
- **Combine:** Merge the two sorted subsequences to produce the sorted answer
 - Recursion “bottoms out” when the sequence to be sorted has length 1: a sequence of length 1 is already in sorted order
• The key operation is the merging of two sorted sequences in the “combine” step
• We call auxiliary procedure MERGE(A, p, q, r), where A is an array and $p, q,$ and r are indices such that $p \leq q < r$
• The procedure assumes that the subarrays $A[p..q]$ and $A[q+1..r]$ are in sorted order and
• merges them to form a single sorted subarray that replaces the current subarray $A[p..r]$

MERGE(A, p, q, r)
1. $n_1 \leftarrow q - p + 1$
2. $n_2 \leftarrow r - q$
3. Let $L[1..n_1 + 1]$ and $R[1..n_2 + 1]$ be new arrays
4. for $i \leftarrow 1$ to n_1
5. $L[i] \leftarrow A[p + i - 1]$
6. for $j \leftarrow 1$ to n_2
7. $R[j] \leftarrow A[q + j]$
8. $L[n_1 + 1] \leftarrow \infty$
9. $R[n_2 + 1] \leftarrow \infty$
10. $i \leftarrow 1$
11. $j \leftarrow 1$
12. for $k \leftarrow p$ to r
13. if $L[i] \leq R[j]$
14. $A[k] \leftarrow L[i]$
15. $i \leftarrow i + 1$
16. else $A[k] \leftarrow R[j]$
17. $j \leftarrow j + 1$
• Line 1 computes the length n_1 of the subarray $A[p..q]$; similarly for n_2 and $A[q + 1..r]$ on line 2.
• Line 3 creates arrays L (left) and R (right), of lengths $n_1 + 1$ and $n_2 + 1$, respectively – the extra position will hold the sentinel ∞.
• The for loop of lines 4–5 copies $A[p..q]$ into $L[1..n_1]$;
• Lines 6–7 copy $A[q + 1..r]$ into $R[1..n_2]$;
• Lines 8–9 put the sentinels at the ends of L and R.

• Lines 10–17 perform the $r - p + 1$ basic steps by maintaining the following loop invariant:
 – At the start of each iteration of the for loop of lines 12–17, $A[p..k - 1]$ contains the $k - p$ smallest elements of $L[1..n_1 + 1]$ and $R[1..n_2 + 1]$, in sorted order.
 – Moreover, $L[i]$ and $R[j]$ are the smallest elements of their arrays that have not been copied back into A.
MERGE\((A, 9, 12, 16)\)
The needed $r-p+1$ iterations of the last for loop have been executed:

- $A[9..16]$ is sorted, and
- the two sentinels in L and R are the only two elements in these arrays that have not been copied into A

MERGE procedure runs in $\Theta(n)$ time, where $n = r-p+1$

- each of lines 1–3 and 8–11 takes constant time
- the for loops of lines 4–7 take $\Theta(n_1 + n_2) = \Theta(n)$ time
- there are n iterations of the for loop of lines 12–17, each of which takes constant time
Merge sort

- The procedure MERGE-SORT\((A,p,r)\) sorts the elements in \(A[p..r]\)
- If \(p \geq r\), the subarray has at most one element and is therefore already sorted
- Otherwise, the divide step computes an index \(q\) that partitions \(A[p..r]\) into two subarrays:
 - \(A[p..q]\), containing \([n/2]\) elements
 - \(A[q+1..r]\), containing \([n/2]\) elements

\[
\text{MERGE-SORT}(A,p,r) \\
1. \text{ if } p < r \\
2. \quad q \leftarrow \lfloor (p + r)/2 \rfloor \\
3. \quad \text{MERGE-SORT}(A,p,q) \\
4. \quad \text{MERGE-SORT}(A,q+1,r) \\
5. \quad \text{MERGE}(A,p,q,r)
\]
Analysis of merge sort

- Our analysis assumes that the original problem size is a power of 2
- Each divide step then yields two subsequences of size exactly $n/2$
- We set up the recurrence for $T(n)$, the worst-case running time of merge sort on n numbers
- Merge sort on just one element takes constant time

When we have $n > 1$ elements, we break down the running time as follows:

- **Divide**: The step just computes the middle of the subarray, which takes constant time: $D(n) = \Theta(1)$
- **Conquer**: We recursively solve two subproblems, each of size $n/2$, which contributes $2T(n/2)$ to the running time
- **Combine**: the MERGE procedure on an n-element array takes time $\Theta(n)$, and so $C(n) = \Theta(n)$
• When we add the $D(n)$ and $C(n)$, we are adding functions that are $\Theta(n)$ and $\Theta(1)$.
• This sum is a linear function of n.
• Adding it to the $2T(n/2)$ term from the “conquer” step gives the recurrence for $T(n)$:

$$T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{if } n > 1
\end{cases}$$

• To intuitively see that the solution to the recurrence is $T(n) = \Theta(n \log n)$, where $\log n$ stands for $\log_2 n$, let us rewrite it as

$$T(n) = \begin{cases}
c & \text{if } n = 1 \\
2T(n/2) + cn & \text{if } n > 1
\end{cases}$$

where constant c represents time required to solve problems of size 1 and that per array element of the divide and combine steps.
Inductive argument shows that total number of levels of the recursion tree is $\lg n + 1$

- base case $n = 1$: tree has only one level; $\lg 1 = 0 \Rightarrow \lg n + 1$ is the correct number of levels
- Inductive hypothesis: number of levels of a tree with 2^i leaves is $\lg 2^i + 1 = i + 1$
- We assume that the input size is a power of 2, the next input size to consider is 2^{i+1}
- A tree with $n = 2^{i+1}$ leaves has one more level than a tree with 2^i leaves, and so the total number of levels is $(i + 1) + 1 = \lg 2^{i+1} + 1$
To compute the total cost represented by the recurrence, we simply add up the costs of all the levels:

- The recursion tree has $\lg n + 1$ levels, each costing cn, for a total cost of
 $cn(\lg n + 1) = cn \lg n + cn$.
- Ignoring the low-order term and the constant c gives the desired result of $\Theta(n \lg n)$.