VI Graph Algorithms

Elementary Graph Algorithms
Minimum Spanning Trees
Single-Source Shortest Paths
All-Pairs Shortest Paths

22 Elementary Graph Algorithms

- There are two standard ways to represent a graph $G = (V, E)$:
 - as a collection of adjacency lists or
 - as an adjacency matrix
- Either way applies to both directed and undirected graphs
- The adjacency-list representation provides a compact way to represent sparse graphs — those for which $|E| \ll |V|^2$
23 Minimum Spanning Trees

- Electronic circuit designs often need to make the pins of several components electrically equivalent by wiring them together.
- To interconnect a set of n pins, we can use an arrangement of $n - 1$ wires, each connecting two pins.
- Of all such arrangements, the one that uses the least amount of wire is usually the most desirable.

Model this wiring problem with a connected, undirected graph $G = (V,E)$, where
- V is the set of pins,
- E is the set of possible interconnections between pairs of pins, and
- for each edge $(u,v) \in E$, we have a weight $w(u,v)$ specifying the cost (amount of wire) to connect u and v.

Find an acyclic subset $T \subseteq E$ that connects all of the vertices and whose total weight is minimized

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$
Since T is acyclic and connects all of the vertices, it must form a tree, which we call a spanning tree since it “spans” the graph G.

We call the problem of determining the tree T the minimum-spanning-tree problem (MST).

We examine two algorithms for solving the MST problem: Kruskal’s and Prim’s algorithms.

We can easily make each of them run in time $O(E \lg V)$ using ordinary binary heaps.

By using Fibonacci heaps, Prim’s algorithm runs in time $O(E + V \lg V)$, which improves over the binary-heap implementation if $|V| \ll |E|$.

The two algorithms are greedy algorithms.

Greedy strategy does not generally guarantee finding globally optimal solutions to problems.

For the MST problem we can prove that greedy strategies do yield a tree with minimum weight.
23.1 Growing a minimum spanning tree

- Assume that we have a connected, undirected graph $G = (V,E)$ with a weight function $w: E \to \mathbb{R}$, and we wish to find a MST for G
- The following generic method grows the MST one edge at a time
- The generic method manages a set of edges A, maintaining the following loop invariant:

 Prior to each iteration, A is a subset of some minimum spanning tree

At each step, we determine an edge (u,v) that we can add to A without violating this invariant, in the sense that $A \cup \{(u,v)\}$ is also a subset of a MST
- We call such an edge a safe edge for A

Generic-MST(G,w)

1. $A \leftarrow \emptyset$
2. while A does not form a spanning tree
3. find an edge (u,v) that is safe for A
4. $A \leftarrow A \cup \{(u,v)\}$
5. return A
Initialization: After line 1, the set A trivially satisfies the loop invariant

Maintenance: The loop in lines 2–4 maintains the invariant by adding only safe edges

Termination: All edges added to A are in a MST, and so the set A returned in line 5 must be a MST

- The tricky part is finding a safe edge in line 3
- One must exist, since the invariant dictates that there is a spanning tree T such that $A \subseteq T$
- Within the while loop body, A must be a proper subset of T, and there must be an edge $(u,v) \in T$ s.t. $(u,v) \notin A$ and (u,v) is safe for A

Cut $(S, V - S)$ of an undirected graph $G = (V,E)$ is a partition of V

- An edge $(u,v) \in E$ **crosses** the cut if one of its endpoints is in S and the other is in $V - S$
- We say that a cut **respects** a set A of edges if no edge in A crosses the cut
- A **light edge** crossing a cut has the minimum weight of any edge crossing the cut
- Note that there can be ties
- More generally, an edge is a light edge satisfying a given property if its weight is the minimum of any edge satisfying the property
Theorem 23.1: Let

- \(G = (V, E) \) be a connected, undirected graph
- with a real-valued weight function \(w \) on \(E \).
- Let \(A \) be a subset of \(E \) that is included in some MST for \(G \),
- let \((S, V - S)\) be any cut of \(G \) that respects \(A \), and
- let \((u, v)\) be a light edge crossing \((S, V - S)\).

Then, edge \((u, v)\) is safe for \(A \).
Theorem 23.1 gives us a better understanding of the workings of the GENERIC-MST method on a connected graph $G = (V,E)$

As the method proceeds, the set A is always acyclic; otherwise, a MST including A would contain a cycle, which is a contradiction

At any point in the execution, the graph $G_A = (V,A)$ is a forest, and each of the connected components of G_A is a tree

Some of the trees may contain just one vertex, as is the case, e.g., when the method begins: A is empty and the forest contains $|V|$ trees, one for each vertex

Moreover, any safe edge (u,v) for A connects distinct components of G_A, since $A \cup \{(u,v)\}$ must be acyclic

The while loop in lines 2–4 of GENERIC-MST executes $|V| - 1$ times because it finds one of the $|V| - 1$ edges of a minimum spanning tree in each iteration

Initially, when $A = \emptyset$, there are $|V|$ trees in G_A, and each iteration reduces that number by 1

When the forest contains only a single tree, the method terminates
Corollary 23.2: Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.

Let A be a subset of E that is included in some MST for G, and let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge connecting C to some other component in G_A, then (u, v) is safe for A.

Proof: The cut $(V_C, V - V_C)$ respects A, and (u, v) is a light edge for this cut. Therefore, (u, v) is safe for A.

23.2 The algorithms of Kruskal and Prim

- These algorithms use a specific rule to determine a safe edge in line 3 of GENERIC-MST
- In Kruskal’s algorithm, the set A is a forest whose vertices are all those of the given graph
- The safe edge added to A is always a least-weight edge in the graph that connects two distinct components
- In Prim’s algorithm, the set A forms a single tree
- The safe edge added to A is always a least-weight edge connecting the tree to a vertex not in the tree
Kruskal’s algorithm

- Find a safe edge to add to the growing forest by finding, of all the edges that connect any two trees in the forest, an edge \((u, v)\) of least weight
- Let \(C_1\) and \(C_2\) denote the two trees that are connected by \((u, v)\)
- Since \((u, v)\) must be a light edge connecting \(C_1\) to some other tree, Corollary 23.2 implies that \((u, v)\) is a safe edge for \(C_1\)
- This is a greedy algorithm because at each step it adds an edge of least possible weight

MST-KRUSKAL\((G, w)\)

1. \(A \leftarrow \emptyset\)
2. for each vertex \(v \in G.V\)
3. \(\text{MAKE-SET}(v)\)
4. sort the edges of \(G.E\) into nondecreasing order by weight \(w\)
5. for each edge \((u, v) \in G.E\), taken in nondecreasing order by weight
6. if \(\text{FIND-SET}(u) \neq \text{FIND-SET}(v)\)
7. \(A \leftarrow A \cup \{(u, v)\}\)
8. \(\text{UNION}(u, v)\)
9. return \(A\)
• **FIND-SET(\(u\))** returns a representative element from the set that contains \(u\)

• Determine whether \(u\) and \(v\) belong to the same tree by testing \(\text{FIND-SET}(u) = \text{FIND-SET}(v)\)

• **UNION** procedure combines trees

• Lines 1–3 initialize the set \(A\) to the empty set and create \(|V|\) trees, one containing each vertex

• The for loop in lines 5–8 examines edges in order of weight, from lowest to highest

• The loop checks, for each edge \((u, v)\), whether the endpoints \(u\) and \(v\) belong to the same tree

• If they do, then the edge \((u, v)\) cannot be added to the forest without creating a cycle, and the edge is discarded

• Otherwise, the two vertices belong to different trees

• In this case, line 7 adds the edge \((u, v)\) to \(A\), and line 8 merges the vertices in the two trees
The running time depends on how we implement the disjoint-set data structure. Initializing the set A (line 1) takes $O(1)$ time, and the time to sort the edges (line 4) is $O(E \lg E)$. The for loop (lines 5–8) performs $O(E)$ FIND-SET and UNION operations on the disjoint-set forest. With the $|V|$ MAKE-SET operations, these take a total of $O((V + E)\alpha(V))$ time α is the very slowly growing function. We assume that G is connected, so have $|E| \geq |V| - 1$, and so the disjoint-set operations take $O(E\alpha(V))$ time. Moreover, since $\alpha(|V|) = O(\lg V) = O(\lg E)$, the total running time of Kruskal’s algorithm is $O(E\lg E)$. Observing that $|E| < |V|^2$, we have $\lg |E| = O(\lg V)$, and the running time of Kruskal’s algorithm is $O(E\lg V)$.

Prim’s algorithm

- Prim’s algorithm has the property that the edges in the set A always form a single tree.
- We start from an arbitrary root vertex r and grow until the tree spans all the vertices in V.
- Each step adds to A a light edge that connects A to an isolated vertex (no edge of A is incident).
- By Corollary 23.2, this rule adds only edges that are safe for A and eventually A forms a MST.
- Greedy: each step adds to the tree an edge that contributes the min amount to the tree’s weight.
In order to implement Prim’s algorithm efficiently, we need a fast way to select a new edge to add to the tree formed by the edges in \(A \).

In the pseudocode below, the connected graph \(G \) and the root \(r \) of the MST to be grown are inputs to the algorithm.

During execution of the algorithm, all vertices that are not in the tree reside in a min-priority queue \(Q \) based on a key attribute.

For each vertex \(v \), the attribute \(v.key \) is the minimum weight of any edge connecting \(v \) to a vertex in the tree; by convention \(v.key = \infty \) if there is no such edge.

Attribute \(v.\pi \) names the parent of \(v \) in the tree.

The algorithm implicitly maintains the set \(A \) from GENERIC-MST as
\[
A = \{(v, v.\pi) | v \in V - \{r\} - Q\}
\]

When the algorithm terminates, the min-priority queue \(Q \) is empty; the minimum spanning tree \(A \) for \(G \) is thus
\[
A = \{(v, v.\pi) | v \in V - \{r\}\}
\]
MST-PRIM(\(G,w,r\))
\begin{enumerate}
\item for each \(u \in G.V\)
\item \(u.key \leftarrow \infty\)
\item \(u.\pi \leftarrow \text{NIL}\)
\item \(r.key \leftarrow 0\)
\item \(Q \leftarrow G.V\)
\item while \(Q \neq \emptyset\)
\item \(u \leftarrow \text{EXTRACT-MIN}(Q)\)
\item for each \(v \in G.\text{Adj}[u]\)
\item if \(v \in Q\) and \(w(u,v) \lt v.key\)
\item \(v.\pi \leftarrow u\)
\item \(v.key \leftarrow w(u,v)\)
\end{enumerate}

• The algorithm maintains the following three-part loop invariant:
• Prior to each iteration of the while loop of lines 6–11,
 \begin{enumerate}
 \item \(A = \{(v,v.\pi) | v \in V - \{r\} - Q\}\)
 \item The vertices already placed into the minimum spanning tree are those in \(V - Q\)
 \item For all vertices \(v \in Q\), if \(v.\pi \neq \text{NIL}\), then \(v.key \lt \infty\) and \(v.key\) is the weight of a light edge \((v,v.\pi)\) connecting \(v\) to some vertex already placed into the MST
 \end{enumerate}
- Line 7 identifies a vertex \(u \in Q \) incident on a light edge that crosses the cut \((V - Q, Q) \).
- Removing \(u \) from the set \(Q \) adds it to the set \(V - Q \) of vertices in the tree, thus adding \((u, u.\pi) \) to \(A \).
- The for loop of lines 8–11 updates the key and \(\pi \) attributes of every vertex \(v \) adjacent to \(u \) but not in the tree, thereby maintaining the third part of the loop invariant.

- The total time for Prim’s algorithm is \(O(V \log V + E \log V) = O(E \log V) \), which is asympt. the same as for Kruskal’s algorithm.
- We can improve the asymptotic running time of Prim’s algorithm by using Fibonacci heaps.
- If a Fibonacci heap holds \(|V|\) elements, an EXTRACT-MIN operation takes \(O(\log V) \) amortized time and a DECREASE-KEY operation (to implement line 11) takes \(O(1) \) amortized time.
- Therefore, by using a Fibonacci heap for the min-priority queue \(Q \), the running time of Prim’s algorithm improves to \(O(E + V \log V) \).
24 Single-Source Shortest Paths

- In a **shortest-paths problem**, we are given a weighted, directed graph $G = (V, E)$, with weight function $w: E \rightarrow \mathbb{R}$ mapping edges to real-valued weights.
- The weight $w(p)$ of path $p = \langle v_0, v_1, \ldots, v_k \rangle$ is the sum of the weights of its constituent edges:
 \[w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i) \]

- We define the shortest-path weight $\delta(u, v)$ from u to v by $\delta(u, v) =
 \begin{cases}
 \min \{ w(p) : u \xrightarrow{p} v \} & \text{if there is a path from } u \text{ to } v \\
 \infty & \text{otherwise}
 \end{cases}$
- A shortest path from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u, v)$
Optimal substructure of a shortest path

- Shortest-paths algorithms typically rely on the property that a shortest path between two vertices contains other shortest paths within it.
- Recall that optimal substructure is one of the key indicators that dynamic programming and the greedy method might apply.
- The following lemma states the optimal-substructure property of shortest paths more precisely.

Lemma 24.1 (Subpaths of shortest paths are shortest paths)
Given a weighted, directed graph $G = (V, E)$, with weight function $w: E \rightarrow \mathbb{R}$, let $p = (v_0, v_1, \ldots, v_k)$ be a shortest path from vertex v_0 to vertex v_k and, for any i and j such that $0 \leq i \leq j \leq k$, let $p_{ij} = (v_i, v_{i+1}, \ldots, v_j)$ be the subpath from vertex v_i to v_j. Then, p_{ij} is a shortest path from v_i to v_j.

Proof: If we decompose path p into $v_0 \xrightarrow{p_{0i}} v_i \xrightarrow{p_{ij}} v_j \xrightarrow{p_{jk}} v_k$, then we have that $w(p) = w(p_{0i}) + w(p_{ij}) + w(p_{jk})$. Now, assume that there is a path p_{ij}' from v_i to v_j with weight $w(p_{ij}') < w(p_{ij})$.

Then, $v_0 \xrightarrow{p_{0i}} v_i \xrightarrow{p_{ij}'} v_j \xrightarrow{p_{jk}} v_k$ is a path from v_0 to v_k whose weight $w(p_{0i}) + w(p_{ij}') + w(p_{jk})$ is less than $w(p)$, which contradicts the assumption that p is a shortest path from v_0 to v_k.

Negative-weight edges

- If the graph $G = (V,E)$ contains no negative-weight cycles reachable from the source s, then for all $v \in V$, the shortest-path weight $\delta(s,v)$ is well defined, even if it has a negative value.
- If G contains a negative-weight cycle reachable from s, shortest-path weights aren’t well defined.
- No path from s to a vertex on the cycle can be a shortest path—we always find a path with lower weight by following the proposed “shortest” path and then traversing the negative-weight cycle.

- If there is a negative-weight cycle on some path from s to v, we define $\delta(s,v) = -\infty$.
Cycles

- A shortest path cannot either contain a positive-weight cycle, since removing the cycle from the path produces a path with the same source and destination vertices and a lower path weight.

- If \(p = (v_0, v_1, \ldots, v_k) \) is a path and \(c = (v_i, v_{i+1}, \ldots, v_j) \) is a positive-weight cycle on this path (\(v_i = v_j \) and \(w(c) > 0 \)), then the path \(p' = (v_0, v_1, \ldots, v_i, v_{j+1}, \ldots, v_k) \) has weight \(w(p') = w(p) - w(c) < w(p) \), and so \(p \) cannot be a shortest path from \(v_0 \) to \(v_k \).

If there is a shortest path from a source vertex \(s \) to a destination vertex \(v \) that contains a 0-weight cycle, then there is another shortest path from \(s \) to \(v \) without this cycle.

- We can repeatedly remove 0-weight cycles from the path until the shortest path is cycle-free.
- Therefore, we can assume that when we are finding shortest paths, they have no cycles, i.e., they are simple paths.

- Any acyclic path in \(G = (V, E) \) contains at most \(|V| \) distinct vertices, and at most \(|V| - 1 \) edges.
- Thus, we can restrict our attention to shortest paths of at most \(|V| - 1 \) edges.
Relaxation

- The attribute $v.d$ is an upper bound on the weight of a shortest path from source s to v
- We call $v.d$ a **shortest-path estimate**
- The following $\Theta(V)$-time procedure initializes the shortest-path estimates and predecessors (π):

 \begin{align*}
 \text{INITIALIZE-SINGLE-SOURCE}(G,s) \quad &\quad 1. \text{ for each vertex } v \in G.V \\
 &\quad 2. v.d \leftarrow \infty \\
 &\quad 3. v.\pi \leftarrow \text{NIL} \\
 &\quad 4. s.d \leftarrow 0
 \end{align*}

- The process of relaxing an edge (u,v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating $v.d$ and $v.\pi$
- A relaxation step may decrease the value of the shortest-path estimate $v.d$ and update v’s predecessor attribute $v.\pi$
- The following code performs a relaxation step on edge (u,v) in $O(1)$ time:

 \begin{align*}
 \text{RELAX}(u, v, w) \quad &\quad 1. \text{ if } v.d > u.d + w(u,v) \\
 &\quad 2. v.d \leftarrow u.d + w(u,v) \\
 &\quad 3. v.\pi \leftarrow u
 \end{align*}
Properties of shortest paths and relaxation

- To prove the following algorithms correct, we appeal to several properties of shortest paths and relaxation:

Triangle inequality (Lemma 24.10)

For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$

Upper-bound property (Lemma 24.11)

We always have $v. d \geq \delta(s, v)$ for all vertices $v \in V$, and once $v. d$ achieves the value $\delta(s, v)$, it never changes.
No-path property (Corollary 24.12)
If there is no path from \(s \) to \(v \), then we always have \(v.d = \delta(s,v) = \infty \)

Convergence property (Lemma 24.14)
If \(s \to u \to v \) is a shortest path in \(G \) for some \(u, v \in V \), and if \(u.d = \delta(s,u) \) at any time prior to relaxing edge \((u,v)\), then \(v.d = \delta(s,v) \) at all times afterward.

Path-relaxation property (Lemma 24.15)
If \(p = (v_0, v_1, \ldots, v_k) \) is a shortest path from \(s = v_0 \) to \(v_k \), and we relax the edges of \(p \) in the order \((v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)\), then \(v_k.d = \delta(s,v_k) \). This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of \(p \).

Predecessor-subgraph property (Lemma 24.17)
Once \(v.d = \delta(s,v) \) for all \(v \in V \), the predecessor subgraph is a shortest-paths tree rooted at \(s \).