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VII Selected Topics

Matrix Operations
Linear Programming

Number Theoretic Algorithms
Polynomials and the FFT
Approximation Algorithms

…

31 Number-Theoretic Algorithms

• Now, a “large input” typically means an input
containing “large integers” rather than an input
containing “many integers”

• We measure the size of an input in terms of the
number of bits required to represent that input,
not just the number of integers in the input

• We consider the set = … , 2, 1,0,1,2, … of
integers and the set = 0,1,2, … of natural
numbers
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Divisibility and divisors

• The notation | (“ divides ”) means that =
for some integer

• Every integer divides 0
• If > 0 and | , then
• If | , then is a multiple of
• If does not divide , we write
• If | and 0, we say that is a divisor of
• | if and only if | , so that no generality is

lost by de ning the divisors to be nonnegative
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Prime and composite numbers

• An integer > 1 whose only divisors are the
trivial divisors 1 and is a prime (number)

• An integer > 1 that is not prime is a
composite (number)

• The integer 1 a unit, and it is neither prime nor
composite

• Similarly, the integer 0 and all negative integers
are neither prime nor composite

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,…
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Fermat’s two square theorem

• Odd primes can be arranged in two classes
– Those that leave remainder 1 when divided by 4

5,13,17,29,37,41,…
– and the primes which leave remainder 3

3,7,11,19,23,31,…

• All primes in the 1st class, and none of the 2nd, can
be expressed as a square of two integral squares

5 = 1 + 2 , 13 = 2 + 3 , 17 = 1 + 4 , 29 = 2 + 5 ,…
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The division theorem, remainders, and
modular equivalence

Theorem 31.1 (Division theorem)
For any integer and any positive integer , there
exist unique integers and s.t. < and
= +
• The value = / is the quotient of the

division
• The value = mod is the remainder (or

residue) of the division
• We have that | if and only if mod = 0
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• We can partition the integers into equivalence
classes according to their remainders modulo

• The equivalence class modulo containing an
integer is

= +
• E.g., 3 = … , 11, 4,3,10,17, …
• We can also denote this set by 4 and 10
• We can say that writing is the same as

writing
(mod )
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Common divisors and greatest common
divisors

• If is a divisor of and is also a divisor of ,
then is a common divisor of and

• 1 is a common divisor of any two integers
• An important property of common divisors is that

| and | implies | ( + ) and | ( )
• More generally, | and | implies

| ( + ) for any integers and
• Also, if | , then either or = 0, which

implies that | and | implies = ±
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• The greatest common divisor (gcd) of two
integers and , not both zero, is the largest of
the common divisors of and ; gcd( , )

• gcd 24,30 = 6, gcd 5,7 = 1, and gcd 0,9 = 9
• If and are both nonzero, then gcd( , ) is an

integer between 1 and min( , )
• De ne gcd 0,0 = 0

gcd , = gcd ,
gcd , = gcd( , )

gcd , = gcd ,
gcd , 0 =

gcd , = for any
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Theorem 31.2 If and are any integers, not
both zero, then gcd( , ) is the smallest positive
element of the set + , of linear
combinations of and .

Corollary 31.3 For any integers and , if |
and | , then | ( , ).

Corollary 31.4 For all integers and and any
nonnegative integer , , = ( , ).

Corollary 31.5 For all positive integers , , and
, if | and , = 1, then | .
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Relatively prime integers

• Two integers and are relatively prime if
their only common divisor is 1; gcd , = 1

• E.g., 8 and 15 are relatively prime, but neither is
a prime number per se

• If two integers are each relatively prime to ,
then their product is relatively prime to

Theorem 31.6 For any integers , , and , if
both , = 1 and , = 1, then

, = 1.
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Proof It follows from Theorem 31.2 that there
exist integers , , , and s.t.

+ = 1
+ = 1

Multiplying these equations and rearranging, we
have

( ) + ( + + ) = 1
Since 1 is thus a positive linear combination of
and , an appeal to Theorem 31.2 completes the
proof.
• Integers , , … , are pairwise relatively

prime if, whenever , we have gcd , = 1

23-Nov-16MAT-72006 AADS, Fall 2016 594



11/23/2016

7

Unique factorization

Theorem 31.7 For all primes and all integers
and , if | , then | or | (or both).

Theorem 31.8 (Unique factorization) There is
exactly one way to write any composite integer
as a product of the form = , where
the are prime, < < , and the are
positive integers.
• As an example, the number 6 000 is uniquely

factored into primes as 2 3 5
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31.2 Greatest common divisor

• Prime factorizations of positive integers and
=
=

• with zero exponents being used to make the set
of primes , , … , the same for and , then,

gcd , = ( , ) ( , ) ( , )

• However, the best algorithms to date for
factoring do not run in polynomial time
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• Euclid’s algorithm for computing greatest
common divisors relies on the following theorem

Theorem 31.9 (GCD recursion theorem)
For any integers 0 and > 0,

gcd , = gcd , mod .

• The Elements of Euclid (circa 300 B.C.)
describes the following gcd algorithm, it may be
of even earlier origin
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Euclid’s algorithm

EUCLID( , )
1. if = 0
2. return
3. else return EUCLID( , mod )

EUCLID 21,30 = EUCLID 30,21
= EUCLID 21,9
= EUCLID 9,3
= EUCLID 3,0 = 3
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The running time of Euclid’s algorithm

• We analyze the worst-case running time of
EUCLID as a function of the size of and

• Assume w.l.o.g. that > 0
• The overall running time of EUCLID is

proportional to the number of recursive calls it
makes

• Our analysis makes use of the Fibonacci
numbers
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Lemma 31.10 If > 1 and the call
EUCLID( , ) performs 1 recursive calls, then

and .

Proof The proof proceeds by induction on .
For the basis of the induction, let = 1. Then,
1 = , and since > , we must have 2 = .
Since > ( mod ), in each recursive call the rst
argument is strictly larger than the second; the
assumption that > therefore holds for each
recursive call.
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Assume inductively that the lemma holds if 1
recursive calls are made; we then prove that the
lemma holds for recursive calls. Since > 0, we
have > 0, and EUCLID( , ) calls
EUCLID( , mod ) recursively, which in turn
makes 1 recursive calls.
The inductive hypothesis then implies that

(thus proving part of the lemma), and
mod .

We have
+ mod = + ,

since > > 0 implies 1.
Thus, + mod + = .
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Theorem 31.11 (Lamé’s theorem) For any integer
1, if > 1 and < , then the call

EUCLID( , ) makes fewer than recursive calls.

• Show (by induction on ) that the upper bound
of this theorem is the best possible because the
call EUCLID( , ) makes exactly 1
recursive calls when 2

• Since 5, where is the golden ratio
1 + 5 /2, the number of recursive calls in

EUCLID is (lg )

23-Nov-16MAT-72006 AADS, Fall 2016 602



11/23/2016

11

31.6 Powers of an element

• Just as we often consider the multiples of a
given element , modulo , we consider the
sequence of powers of , modulo , where

: , , , , …. modulo
• Indexing from 0, the 0th value in this sequence

is mod = 1, and the th value is mod
• For example, the powers of 3 modulo 7 are
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0 1 2 3 4 5 6 7 8 9 10 11 …

3 mod 7 1 3 2 6 4 5 1 3 2 6 4 5 …

• Above stands for a multiplicative group
modulo : , )

• The elements of this group are the set of
elements in that are relatively prime to :

= gcd , = 1
• An example of such a group is

= 1,2,4,7,8,11,13,14
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• The powers of 2 modulo 7 are

• Let denote the subgroup of generated by
by repeated multiplication, and let ord ( ) (the

“order of , modulo ”) denote the order of in

• E.g., 2 = 1,2,4 in , and ord 2 = 3
• The size of is denoted ( )
• This function is known as Euler’s phi function
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0 1 2 3 4 5 6 7 8 9 10 11 …

2 mod 7 1 2 4 1 2 4 1 2 4 1 2 4 …

• It satis es the equation

=
1

|

so that runs over all the primes dividing
(including itself, if is prime)

Theorem 31.30 (Euler’s theorem)
For any integer > 1,

( ) 1 (mod ) for all .
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Theorem 31.31 (Fermat’s little theorem)
If is prime, then

1 mod for all .

• Fermat’s little theorem applies to every element
in except 0, since

• For all , however, we have
mod if is prime

• E.g., 2 = 2 = 64 and 64 mod 7 = 1, while
2 = 25 = 32 and 32 mod 6 = 2:
hence 6 is not prime

• We showed that 6 is a composite number
without factoring it!
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• Fermat’s little theorem, thus, (almost) gives a
test for primality

• We say that passes the Fermat test at , if
1 (mod )

• Call a number pseudoprime if it passes
Fermat tests for all smaller relatively prime to it

• Only infrequent Carmichael numbers are
pseudoprime without being prime

• If a number is not pseudoprime, it fails at least
half of all Fermat tests

• We easily get a pseudoprimality algorithm with
an exponentially small error probability
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PSEUDOPRIME( )
1.Select random , … ,

2.Compute mod for each
3.If all values are 1 accept, otherwise reject

• If isn’t pseudoprime, it passes each randomly
selected test with probability at most ½

• Probability that it passes all tests is thus 2
• The algorithm operates in polynomial time
• To convert this algorithm to a primality algorithm,

we should still avoid the problem with the
Carmichael numbers

609
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• A number is a square root of 1, modulo , if it
satis es the equation 1 (mod )

• The number 1 has exactly two square roots, 1 and
1, modulo any prime

• For many composite numbers, including all the
Carmichael numbers, 1 has 4 or more square roots

• E.g., ±1 and ±8 are the 4 square roots of 1 mod 21
• We can obtain square roots of 1 if passes the

Fermat test at because
– mod 1 and so
– ( )/ mod is a square root of 1

• We may repeatedly divide the exponent by two, so
long as the resulting exponent remains an integer

610
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PRIME( ) % accept = input is prime
1. if is even, accept if = 2, otherwise reject
2. Select random , … ,
3. for each 1, … ,
4. Compute mod , reject if different from 1
5. Let 1 = where is odd and = 2 is a

power of 2

6. Compute the sequence , , … ,
modulo

7. if some element of this sequence is not 1, find
the last element that is not 1 and reject if that
element is not 1

8. All test have been passed, so accept
611
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Lemma If is an odd prime,
Pr[PR IM E accepts ] = 1.

Proof If is prime, no branch of the algorithm
rejects: Rejection in line 4 means that
( mod 1 and Fermat’s little theorem
implies that is composite.

If rejection happens in line 7, there exists some
s.t.

±1 (mod ) and 2 1 (mod ).
Therefore 0 (mod ).
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Factoring yields
( – 1)( + 1) 0 (mod ),

which implies that ( – 1)( + 1) = for some
positive integer .

Because ±1 (mod ), both 1 and + 1 are
in the interval ]0, [.
Therefore is composite because a multiple of a
prime number cannot be expressed as a product
of numbers that are smaller than it is.
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• The next lemma shows that the algorithm
identifies composite numbers with high
probability

• An important elementary tool from number
theory, Chinese remainder theorem, says that a
one-to-one correspondence exists between
and ) if and are relatively prime:
– Each number corresponds to a pair

( , ), where and s.t.
• (mod ) and
• (mod )

614
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Lemma If is an odd composite number,
Pr[PR IM E accepts 2 .

Proof Omitted, takes advantage of the Chinese
remainder thm.

• Let PRIMES = { | is a prime number in binar }
• The preceding algorithm and its analysis

establishes: PRIMES BPP

• Note that the probabilistic primality algorithm has
one-sided error. When it rejects, we know that
the input must be composite. An error may only
occur in accepting the input.
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• Thus an incorrect answer can only occur when the
input is a composite number

• For all primes we get the correct answer
• The one-sided error feature is common to many

probabilistic algorithms, so the special complexity
class RP is designated for it:

Definition RP is the class of languages that are
recognized by probabilistic polynomial time Turing
machines where inputs in the language are accepted
with a probability of at least ½ and inputs not in the
language are rejected with a probability of 1.

• Our algorithm shows that COMPOSITES RP
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PRIMES P

• A generalization of Fermat’s little theorem:

Theorem A. Let and be relatively prime and > 1.
is a prime number if and only if

(mod )

• is not important here, only the coefficients of the
polynomial are significant

• For 0 < < , the coefficient of is

• Supposing that is prime, = 0 (mod ) and
hence all the coefficients are zero
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• Therefore, we are left with the first term and the last
one , which is modulo

• Unfortunately, deciding the primality of based on this
requires an exponential time

• Agrawal (1999): it suffices to examine the polynomial
( ) modulo 1

• If is large enough, the only composite numbers that
pass the test are powers of odd primes

• On the other hand, should be quite small so that the
complexity of the approach does not grow too much

• Kayal & Saxena (2000): doesn’t have to be larger than
4(log2 ), in which case the complexity of the test
procedure is only of the order (log3 ); i.e., belongs to P

• The result is based on an unproven claim
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• A pair of odd numbers is called Sophie Germain
primes if both and + 1 are primes (related to
Fermat’s last theorem)

• Agrawal, Kayal & Saxena (2002): If one can find a
pair of SG primes and + 1 s.t.

> 4 + 1 log

then does not need to be larger than
2 + 1 log

• Unfortunately this test is recursive and has time
requirement of (log12 ) instead of the (log3 )
mentioned above

620MAT-72006 AADS, Fall 2016 23-
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DETERMINISTIC-PRIME( )

1. if = for some > 1 then reject
2. 2
3. while < do
4. if gcd( , 1 then reject
5. if DETERMINISTIC-PRIME( ) then % > 2
6. Let be the largest factor of 1
7. if > 4sqrt( log and ( ) 1 (mod )

then break
8. + 1
9. for 1 to 2sqrt( ) log do
10. if (mod – 1, ) then reject
11.accept the input;
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• The test of line 1 removes the powers of odd primes
as required by the test of Agrawal (1999)

• The loop in lines 3–8 searches a pair of Sophie
Germain primes and

• Line 4 tests for Theorem A that and are relatively
prime

• The loop in line 9 examines primality using a
variation of Theorem A (Agrawal, 1999) up to value
2 log (AKS, 2002)

• Because Theorem A holds if and only if is prime,
the decision of the algorithm is correct

• The other variations only affect the complexity of the
algorithm, not its correctness

35 Approximation Algorithms

• Many problems of practical signi cance are NP-
complete, yet too important to abandon

• We have ways to get around NP-completeness
1) If the actual inputs are small, an algorithm with

exponential running time may be satisfactory
2) We may be able to isolate important special cases that

we can solve in polynomial time
3) We might come up with approaches to nd near-

optimal solutions in polynomial time. In practice, near-
optimality is often good enough. Such an algorithm is
called an approximation algorithm
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Performance ratios for
approximation algorithms
• Let each potential solution have a positive cost;

we wish to nd a near-optimal solution
• The problem may be either a maximization or a

minimization problem
• An algorithm has approximation ratio of ( ) if,

for any input of size , the cost of the solution
produced by the algorithm is within a factor of

( ) of the cost of an optimal solution:

max , ( )
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• An algorithm that achieves an approximation
ratio ( ), is a ( )-approximation algorithm

• The de nitions apply to both minimization and
maximization problems

• For a maximization problem, 0 < , and
the ratio gives the factor by which the cost
of an optimal solution is larger than the cost of
the approximate solution

• Similarly, for a minimization problem, 0 <
, and the ratio gives the factor by which

the cost of the approximate solution is larger
than the cost of an optimal solution
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• We assume that all solutions have positive cost,
these ratios are always well de ned

• The approximation ratio of an approximation
algorithm is never less than 1, since 1
implies 1

• A 1-approximation algorithm produces an
optimal solution

• An approximation algorithm with a large
approximation ratio may return a solution that is
much worse than optimal
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• An approximation scheme for an optimization
problem is an approximation algorithm that takes
as input not only an instance of the problem, but
also a value > 0 such that for any xed , the
scheme is a (1 + )-approximation algorithm

• An approximation scheme is a polynomial-time
approximation scheme if for any xed > 0, it
runs in time polynomial in the size of its input

• The running time of a poly-time approximation
scheme can increase rapidly as decreases

• E.g., the running time of a polynomial-time
approximation scheme might be ( )
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• Ideally, if decreases by a constant factor, the
running time to achieve the desired
approximation should not increase by more than
a constant factor (though not necessarily the
same constant factor by which decreased)

• The running time of a fully polynomial-time
approximation scheme is polynomial in both
1 and the size of the input instance

• E.g., the running time might be ( 1 )
• With such a scheme, any constant-factor

decrease in comes with a corresponding
constant-factor increase in the running time
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35.1 The vertex-cover problem

• A vertex cover of an undirected graph =
( , ) is a subset s.t. if ( , ) is an edge
of , then either or (or both)

• The size of a vertex cover is the number of
vertices in it

• The vertex-cover problem is to nd a vertex
cover of minimum size in a given graph

• This problem is the optimization version of an
NP-complete decision problem
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APPROX-VERTEX-COVER( )
1.
2. .
3. while
4. let ( , ) be an arbitrary edge of
5. ,
6. remove from every edge incident on either

or
7. return
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a

b c d

e f g

Selection of the first random edge: (b c)
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a

b c d

e f g

We remove other edges connected with nodes b and c

631
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a

b c d

e f g

The next random choice (e f and
Removal of other edges connected with its nodes

632
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a

b c d

e f g

The only remaining choice (d g)

We end up with cover of nodes,
while the optimal one has nodes (e.g., b, d e)

633
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Theorem 35.1 APPROX-VERTEX-COVER is
polynomial time 2-approximation algorithm for
vertex cover.

Proof. The time complexity of the algorithm, using
adjacency list representation for the graph, is (
+ ), and thus uses a polynomial time.

The set of nodes returned by the algorithm
obviously is a vertex cover for the edges of ,
because nodes are inserted into in the loop of
row 3 until all edges have been covered.

634



11/23/2016

27

• Let be the set of edges chosen by algorithm in
row 4.

• In order to cover the edges of any vertex cover
— in particular also the optimal vertex cover

— has to contain at least one of the ends of
each edge in .

• Because the end points of the edges in are
distinct by the design of the algorithm, | | is a
lower bound for the size of any vertex cover.

• In particular,
| | | |.
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• Each execution of line 4 picks an edge for which
neither of its endpoints is already in , yielding
an (exact) upper bound on the size of the vertex
cover returned:

= 2| |

• Combining the above equations, we obtain
= 2| 2| |

• thereby proving the theorem.
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