11.4 Open addressing

- In open addressing, all elements occupy the hash table itself
- That is, each table entry contains either an element of the dynamic set or NIL
- Search for element systematically examines table slots until we find the element or have ascertained that it is not in the table
- No lists and no elements are stored outside the table, unlike in chaining

- Thus, the hash table can “fill up” so that no further insertions can be made
 - the load factor α can never exceed 1
- We could store the linked lists for chaining inside the hash table, in the otherwise unused hash-table slots
- Instead of following pointers, we compute the sequence of slots to be examined
- The extra memory freed provides the hash table with a larger number of slots for the same amount of memory, potentially yielding fewer collisions and faster retrieval
To perform insertion, we successively examine, or probe, the hash table until we find an empty slot in which to put the key.

We are not being fixed in order 0, 1, ..., $m - 1$, which requires $\Theta(n)$ search time.

Rather, the sequence of positions probed depends upon the key being inserted.

To determine which slots to probe, we extend the hash function to include the probe number (starting from 0) as a second input.

Thus, the hash function becomes

$$h: U \times \{0, 1, ..., m - 1\} \rightarrow \{0, 1, ..., m - 1\}$$

With open addressing, we require that for every key k, the probe sequence

$$h(k, 0), h(k, 1), ..., h(k, m - 1)$$

be a permutation of $\langle 0, 1, ..., m - 1 \rangle$.

Every position is eventually considered as a slot for a new key as the table fills up.

Let us assume that the elements in the hash table T are keys with no satellite information; the key k is identical to the element containing key k.
• Either return the slot number of key \(k \) or flag an error because the table is full:

\[
\text{HASH-INSERT}(T, k)
\]

1. \(i \leftarrow 0 \)
2. \(\text{repeat} \)
3. \(j \leftarrow h(k, i) \)
4. \(\text{if } T[j] = \text{NIL} \)
5. \(T[j] \leftarrow k \)
6. \(\text{return } j \)
7. \(\text{else } i \leftarrow i + 1 \)
8. \(\text{until } i = m \)
9. \(\text{error } \text{“hash table overflow”} \)

• Search for key \(k \) probes the same sequence of slots that the insertion algorithm examined:

\[
\text{HASH-SEARCH}(T, k)
\]

1. \(i \leftarrow 0 \)
2. \(\text{repeat} \)
3. \(j \leftarrow h(k, i) \)
4. \(\text{if } T[j] = k \)
5. \(\text{return } j \)
6. \(i \leftarrow i + 1 \)
7. \(\text{until } T[j] = \text{NIL} \text{ or } i = m \)
8. \(\text{return } \text{NIL} \)
• When we delete a key from slot i, we cannot simply mark it as empty by storing NIL in it
 – We might be unable to retrieve any key k during whose insertion we had probed slot i
• Instead we mark the slot with value DELETED
• Modify HASH-INSERT to treat such a slot as empty so that we can insert a new key there
• HASH-SEARCH passes over DELETED values
• When we use DELETED value, search times no longer depend on the load factor α
• Therefore chaining is more commonly selected as a collision resolution technique

• We assume uniform hashing (UH):
 – the probe sequence of each key is equally likely to be any of the $m!$ permutations of
 $\{0, 1, \ldots, m - 1\}$

• UH generalizes the notion of SUH that produces not just a single number, but a whole probe sequence
• True uniform hashing is difficult to implement, however, and in practice suitable approximations
 (such as double hashing, defined below) are used
• We examine three common techniques to compute the probe sequences required for open addressing: 1) linear probing, 2) quadratic probing, and 3) double hashing.

• These techniques all guarantee that \(\{h(k,0), h(k,1), ..., h(k,m-1)\} \) is a permutation of \(\{0,1,...,m-1\} \) for each key \(k \).

• No technique fulfills the assumption of UH; none of them is capable of generating more than \(m^2 \) different probe sequences.

• Double hashing has the greatest number of probe sequences and gives the best results.

Linear probing

• Given a hash function \(h': U \rightarrow \{0,1,...,m-1\} \), an **auxiliary hash function**, use the function
 \[
 h(k,i) = (h'(k) + i) \mod m
 \]

• Given key \(k \), we first probe the slot given by the auxiliary hash function \(T[h'(k)] \).

• We next probe slots \(T[h'(k) + 1],...,T[m - 1] \).

• Wrap around to \(T[0],T[1],...,T[h'(k) - 1] \).

• Initial probe determines the entire probe sequence, there are only \(m \) distinct sequences.
• Linear probing is easy to implement, but it suffers from a problem known as **primary clustering**
 • Long runs of occupied slots build up, increasing the average search time
 • Clusters arise because an empty slot preceded by \(i \) full slots gets filled next with probability \((i + 1)/m \)
 • Long runs of occupied slots tend to get longer, and the average search time increases

Quadratic probing

• Use a hash function of the form
 \[h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m \]
 where \(c_1, c_2 \) are positive auxiliary constants
• Initial position probed is \(T[h'(k)] \); later positions are offset by amounts that depend in a quadratic manner on the probe number \(i \)
• This works much better than linear probing, but to make full use of the hash table, the values of \(c_1, c_2, \) and \(m \) are constrained
• Also, if two keys have the same initial probe position, then their probe sequences are the same, since \(h(k_1,0) = h(k_2,0) \) implies \(h(k_1,i) = h(k_2,i) \)

• This property leads to a milder form of clustering, called \textit{secondary clustering}

• As in linear probing, the initial probe determines the entire sequence, and so only \(m \) distinct probe sequences are used

\textbf{Double hashing}

• One of the best methods available for open addressing, the permutations produced have many characteristics of random ones

• Uses a hash function of the form

\[h(k,i) = (h_1(k) + ih_2(k)) \mod m \]

where \(h_1 \) and \(h_2 \) are auxiliary hash functions

• The initial probe goes to position \(T[h_1(k)] \); successive probes are offset from previous positions by the amount \(h_2(k) \), modulo \(m \)
Here we have a hash table of size 13 with $h_1(k) = k \mod 13$ and $h_2(k) = 1 + (k \mod 11)$.

Since $14 \equiv 1 \pmod{13}$ and $14 \equiv 3 \pmod{11}$, we insert the key 14 into an empty slot $h_1(k) + 2h_2(k) = 9$, after examining slots $h_1(k) = 1$ and $h_1(k) + h_2(k) = 5$ and finding them to be occupied.

The value $h_2(k)$ must be relatively prime to m for the entire hash table to be searched.

A convenient way to ensure this condition is to let m be a power of 2 and to design h_2 so that it always produces an odd number.

Another way is to let m be prime and to design h_2 so that it always returns a positive integer less than m.

For example, we could choose m prime and let $h_1(k) = k \mod m$, $h_2(k) = 1 + (k \mod m')$, where m' is slightly less than m (say, $m - 1$).
• E.g., if $k = 123,456$, $m = 701$, and $m' = 700$, we have $h_1(k) = 80$ and $h_2(k) = 257$

• We first probe position 80, and then we examine every 257th slot (modulo m) until we find the key or have examined every slot.

• When m is prime or a power of 2, double hashing improves over linear or quadratic probing in that $\Theta(m^2)$ probe sequences are used, rather than $\Theta(m)$.

• Each possible $(h_1(k), h_2(k))$ pair yields a distinct probe sequence.

Analysis of open-address hashing

• Let us express our analysis of in terms of the load factor $\alpha = n/m$ of the hash table.

• Now at most one element occupies each slot, and thus $n \leq m$, which implies $\alpha \leq 1$.

• Assume that we are using uniform hashing.

• In this idealized scheme, the probe sequence $\langle h(k, 0), h(k, 1), \ldots, h(k, m - 1) \rangle$ used to insert or search for each key k is equally likely to be any permutation of $\langle 0, 1, \ldots, m - 1 \rangle$.
Theorem 11.6 Given an open-address hash table with $\alpha = n/m < 1$, the expected number of probes in an unsuccessful search is at most $1/(1 - \alpha)$, assuming UH.

Proof Every probe but the last accesses an occupied slot that does not contain the desired key, and the last slot probed is empty.

Define the random variable X to be the number of probes made in an unsuccessful search, and also define the event $A_i, i = 1, 2, \ldots$, to be the event that an ith probe occurs and it is to an occupied slot.

The event $\{X \geq i\}$ is the intersection of events $A_1 \cap A_2 \cap \cdots \cap A_{i-1}$.

Bound $\Pr\{X \geq i\}$ by $\Pr\{A_1 \cap A_2 \cap \cdots \cap A_{i-1}\}$ which by Exercise C.2-5

$$\Pr\{A_{i-1}|A_1 \cap A_2 \cap \cdots \cap A_{i-2}\} = \Pr\{A_1\} \cdot \Pr\{A_2|A_1\} \cdot \Pr\{A_3|A_1 \cap A_2\} \cdots$$

There are n elements and m slots, so

$$\Pr\{A_1\} = n/m$$

For $j > 1$, the probability that there is a jth probe and it is to an occupied slot, given that the first $j - 1$ probes were to occupied slots, is

$$(n - j + 1)/(m - j + 1)$$
This probability follows because we would be finding one of the remaining \((n - j + 1)\) elements in one of the \((m - j + 1)\) unexamined slots, and by the assumption of UH, the probability is the ratio of these quantities.

\(n < m\) implies that \((n - j)/(m - j) \leq n/m\) for all \(0 \leq j < m\).

Therefore, we have for all \(1 \leq i \leq m\),

\[
\Pr\{X \geq i\} = \frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2} \\
\leq \left(\frac{n}{m}\right)^{i-1} = \alpha^{i-1}
\]

Now, because \(E[X] = \sum_{i=1}^{\infty} \Pr\{X \geq i\}\)

\[
E[X] = \sum_{i=1}^{\infty} \Pr\{X \geq i\} \\
\leq \sum_{i=1}^{\infty} \alpha^{i-1} \\
= \sum_{i=0}^{\infty} \alpha^{i} \\
= \frac{1}{1 - \alpha}
\]
• This bound of $1/(1 - \alpha) = 1 + \alpha + \alpha^2 + \cdots$ has an intuitive interpretation
 – We always make the first probe
 – With probability approximately α, it finds an occupied slot, so that we need to probe again
 – With probability approx. α^2, the first two slots are occupied and we make a third probe, …

• If α is a constant, Theorem 11.6 predicts that an unsuccessful search runs in $O(1)$ time

• If the table is half full, the avg. number of probes in an unsuccessful search is $\leq 1/(1 - .5) = 2$

• If it is 90% full, the average number of probes is $\leq 1/(1 - .9) = 10$

Corollary 11.7 Inserting an element into an open-address hash table with load factor α requires at most $1/(1 - \alpha)$ probes on average, assuming uniform hashing.

Proof An element is inserted only if there is room in the table, and thus $\alpha < 1$.
Inserting a key requires an unsuccessful search followed by placing the key into the first empty slot found.
Thus, the expected number of probes is at most $1/(1 - \alpha)$. ■
Theorem 11.8 Given an open-address hash table with load factor $\alpha < 1$, the expected number of probes in a successful search is at most

$$\frac{1}{\alpha} \ln \frac{1}{1 - \alpha}$$

assuming UH and assuming that each key in the table is equally likely to be searched for.

- If the hash table is half full, the expected number of probes in a successful search is < 1.387
- If the hash table is 90 percent full, the expected number of probes is < 2.559

13 Red-Black Trees

- A red-black tree (RBT) is a BST with one extra bit of storage per node: color, either RED or BLACK
- Constraining the node colors on any path from the root to a leaf
 – Ensures that no such path is more than twice as long as any other, so that the tree is approximately balanced
A red-black tree is a binary tree that satisfies the following red-black properties:

1. Every node is either RED or BLACK
2. The root is BLACK
3. Every leaf (NIL) is BLACK
4. If a node is RED, then both its children are BLACK
5. For each node, all simple paths from the node to descendant leaves contain the same number of BLACK nodes
14 Augmenting Data Structures

- Some engineering situations require more than a “textbook” data structure
- Usually it suffices to augment a textbook data structure by storing additional information in it
- You can then program new operations for the data structure to support the desired application
- The added information must be updated and maintained by the ordinary operations on the data structure

14.1 Dynamic order statistics

- Let us see how to modify red-black trees (RBTs) so that we can determine any order statistic for a dynamic set in $O(\lg n)$ time
- We shall also see how to compute the rank of an element—its position in the linear order of the set—in $O(\lg n)$ time
- An order-statistic tree T is simply a red-black tree with additional information stored in each node
Besides the usual RBT attributes $x.key$, $x.color$, $x.p$, $x.left$, and $x.right$ in a node x, we have another attribute, $x.size$

This attribute contains the number of (internal) nodes in the subtree rooted at x (including x itself), that is, the size of the subtree.

If we define the sentinel’s size to be 0—that is, we set $T.nil.size$ to be 0—then we have the identity

$$x.size = x.left.size + x.right.size + 1$$
We do not require keys to be distinct in an order-statistic tree.

In the presence of equal keys, the above notion of rank is not well defined.

We remove this ambiguity for an order-statistic tree by defining the rank of an element as the position at which it would be printed in an inorder walk of the tree.

In previous figure, e.g., the key 14 stored in a black node has rank 5, and the key 14 stored in a red node has rank 6.

Retrieving an element with a given rank

Let us begin with an operation that retrieves an element with a given rank. Procedure OS-SELECT(\(x, i\)) returns a pointer to the node containing the \(i\)th smallest key in the subtree rooted at \(x\).

To find the node with the \(i\)th smallest key in an order-statistic tree \(T\), we call

\[
\text{OS-SELECT}(T.\text{root}, i)
\]
OS-SELECT\((x, i) \)
1. \(r \leftarrow x.\text{left.size} + 1 \)
2. if \(i = r \)
3. return \(x \)
4. elseif \(i < r \)
5. return OS-SELECT\((x.\text{left}, i) \)
6. else return OS-SELECT\((x.\text{right}, i - r) \)

- Consider a search for the 17th smallest element in the order-statistic tree of previous figure
- First, \(x \) is the root, whose key is 26, and \(i = 17 \)
- The size of 26’s left subtree is 12, its rank is 13
- Thus, the node with rank 17 is the \(17 - 13 = 4 \)th smallest element in 26’s right subtree
- Now, \(x \) becomes the node with key 41, and \(i = 4 \)
- The size of 41’s left subtree is 5, its rank within its subtree is 6
- Thus, the node with rank 4 is the 4th smallest element in 41’s left subtree
After the recursive call, x is the node with key 30, and its rank within its subtree is 2.

Thus, we recurse once again to find the $4 - 2 = 2$nd smallest element in the subtree rooted at the node with key 38.

We now find that its left subtree has size 1, which means it is the second smallest element.

Thus, the procedure returns a pointer to the node with key 38.

Because each recursive call goes down one level in the order-statistic tree, the total time for OS-SELECT is at worst proportional to the height of the tree.

Since the tree is a red-black tree, its height is $O(\lg n)$, where n is the number of nodes.

Thus, the running time of OS-SELECT is $O(\lg n)$ for a dynamic set of n elements.
Determining the rank of an element

- OS-RANK returns the position of x in the linear order determined by an inorder tree walk of T

 $\text{OS-RANK}(T, x)$

 1. $r \leftarrow x.left.size + 1$
 2. $y \leftarrow x$
 3. while $y \neq T.root$
 4. if $y = y.p.right$
 5. $r \leftarrow r + y.p.left.size + 1$
 6. $y \leftarrow y.p$
 7. return r

- E.g., when we run OS-RANK to find the rank of key 38, we get the following sequence of values of at the top of the while loop:

<table>
<thead>
<tr>
<th>iteration</th>
<th>$y.key$</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>17</td>
</tr>
</tbody>
</table>

- The procedure returns the rank 17
- the running time of OS-RANK is at worst proportional to the height of the tree: $O(\lg n)$ on an n-node order-statistic tree.
Maintaining subtree sizes

- Given the size attribute in each node, OS-SELECT and OS-RANK can quickly compute order-statistic information.
- We must be able to efficiently maintain these attributes within the basic modifying operations on red-black trees.
- Let us see how to maintain subtree sizes for both insertion and deletion without affecting the asymptotic running time of either operation.

Insertion into a RBT consists of two phases:

- The first goes down the tree, inserting the new node as a child of an existing one.
- The second phase goes up the tree, changing colors and performing rotations to maintain the RB properties.

To maintain the subtree sizes in the first phase, we increment $x.size$ for each node x on the simple path traversed.

The new node added gets a size of 1.

Since there are $O(\lg n)$ nodes on the traversed path, the additional cost of maintaining the size attributes is $O(\lg n)$.
In the second phase, the only structural changes to the underlying RBT are caused by rotations, of which there are at most two.

Moreover, a rotation is a local operation: only two nodes have their size attributes invalidated.

The link around which the rotation is performed is incident on these two nodes.

Referring to the code for \(\text{LEFT-ROTATE}(T, x) \), we add the following lines:

\[
\begin{align*}
13 & \quad y.\text{size} \leftarrow x.\text{size} \\
14 & \quad x.\text{size} \leftarrow x.\text{left}.\text{size} + x.\text{right}.\text{size} + 1
\end{align*}
\]

Since at most two rotations are performed during insertion into a RBT, we spend only \(O(1) \) additional time updating size attributes in the second phase.

Thus, the total time for insertion into an \(n \)-node order-statistic tree is \(O(\lg n) \), which is asymptotically the same as for an ordinary RBT.
Deletion also consists of two phases:
- the first operates on the underlying search tree
- the second causes at most three rotations and otherwise performs no structural changes

The first phase either removes one node y from the tree or moves it upward within the tree.

To update the subtree sizes, we simply traverse a simple path from node y (starting from its original position) up to the root, decrementing the size attribute of each node on the path.

Since this path has length $O(\lg n)$ in an n-node red-black tree, the additional time spent maintaining size attributes in the first phase is $O(\lg n)$.

We handle the $O(1)$ rotations in the second phase of deletion in the same manner as for insertion.

Thus, both insertion and deletion, including maintaining the size attributes, take $O(\lg n)$ time for an n-node order-statistic tree.