1. Heap:
 (a) Explain the (binary) heap data structure.
 (b) How can you implement a heap using an array?
 (c) What are the implementations of operations PARENT(i), LEFT(i), and RIGHT(i) then?

2. Quicksort:
 (a) Sketch the Quicksort algorithm.
 (b) What is the worst-case partitioning performance of Quicksort?
 (c) How about the best-case?

3. Linked lists:
 (a) What kinds of elements are there in a doubly linked list?
 (b) Give procedures for
 • LIST-SEARCHing a key value k from a list L,
 • LIST-INSERTing element x (with a set key value) into a list L, and
 • LIST-DELETEing an element x from a linked list L.
 (c) What are the time requirements of these operations?

4. Binary Search Trees (BSTs):
 (a) Define the binary search tree property.
 (b) Give recursive and iterative versions of TREE-SEARCH(x, k), where x is a node pointer (initially the root of a BST) and k is the key value being searched for.
 (c) Give the procedure TREE-INSERT(T, z), where T is a BST with root T.root and z is a node with z.key = v, and z.left = z.right = NIL.

5. Red-Black Trees (RBTs):
 (a) Define the red-black properties.
 (b) Show that a red-black tree with n internal nodes has height at most $2 \log_2(n + 1)$.