17 MAKING COMPLEX DECISIONS

- The agent’s utility now depends on a sequence of decisions
- In the following 4×3 grid environment the agent makes a decision to move (U, R, D, L) at each time step
- When the agent reaches one of the goal states, it terminates
- The environment is fully observable — the agent always knows where it is

If the environment were deterministic, a solution would be easy: the agent will always reach $+1$ with moves $[U, U, R, R, R]$
Because actions are unreliable, a sequence of moves will not always lead to the desired outcome
Let each action achieve the intended effect with probability 0.8 but with probability 0.1 the action moves the agent to either of the right angles to the intended direction
If the agent bumps into a wall, it stays in the same square
Now the sequence $[U, U, R, R, R]$ leads to the goal state with probability $0.8^5 = 0.32768$
In addition, the agent has a small chance of reaching the goal by accident going the other way around the obstacle with a probability $0.1^4 \times 0.8$, for a grand total of 0.32776
A transition model specifies outcome probabilities for each action in each possible state. Let $P(s' | s, a)$ denote the probability of reaching state s' if action a is done in state s. The transitions are Markovian in the sense that the probability of reaching s' depends only on s and not the earlier states. We still need to specify the utility function for the agent. The decision problem is sequential, so the utility function depends on a sequence of states — an environment history — rather than on a single state. For now, we will simply stipulate that in each state s, the agent receives a reward $R(s)$, which may be positive or negative.

For our particular example, the reward is -0.04 in all states except in the terminal states. The utility of an environment history is just (for now) the sum of rewards received. If the agent reaches the state +1, e.g., after ten steps, its total utility will be 0.6. The small negative reward gives the agent an incentive to reach [4, 3] quickly.

A sequential decision problem for a fully observable environment with
- A Markovian transition model and
- Additive rewards
is called a Markov decision problem (MDP).
• An MDP is defined by the following four components:
 • Initial state s_0,
 • A set $\text{Actions}(s)$ of actions in each state,
 • Transition model $P(s' \mid s, a)$, and
 • Reward function $R(s)$

• As a solution to an MDP we cannot take a fixed action sequence, because the agent might end up in a state other than the goal
• A solution must be a policy, which specifies what the agent should do for any state that the agent might reach
• The action recommended by policy π for state s is $\pi(s)$
• If the agent has a complete policy, then no matter what the outcome of any action, the agent will always know what to do next

Each time a given policy is executed starting from the initial state, the stochastic nature of the environment will lead to a different environment history
• The quality of a policy is therefore measured by the expected utility of the possible environment histories generated by the policy
• An optimal policy π^* yields the highest expected utility

• A policy represents the agent function explicitly and is therefore a description of a simple reflex agent
\[-0.0221 < R(s) < 0: \]

\[-0.4278 < R(s) < -0.0850: \]

\[R(s) < -1.6284: \]

\[R(s) > 0: \]
Utilities over time

- In case of an infinite horizon the agent’s action time has no upper bound.
- With a finite time horizon, the optimal action in a given state could change over time — the optimal policy for a finite horizon is nonstationary.
- With no fixed time limit, on the other hand, there is no reason to behave differently in the same state at different times, and the optimal policy is stationary.

- The discounted utility of a state sequence s_0, s_1, s_2, \ldots is
 $$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots,$$
 where $0 < \gamma \leq 1$ is the discount factor.

- When $\gamma = 1$, discounted rewards are exactly equivalent to additive rewards.
- The latter rewards are a special case of the former ones.
- When γ is close to 0, rewards in the future are viewed as insignificant.

- If an infinite horizon environment does not contain a terminal state or if the agent never reaches one, then all environment histories will be infinitely long.
- Then, utilities with additive rewards will generally be infinite.
- With discounted rewards ($\gamma < 1$), the utility of even an infinite sequence is finite.
Let R_{max} be an upper bound for rewards. Using the standard formula for the sum of an infinite geometric series yields:

$$\sum_{t=0}^{\infty} \gamma^t R(s_t) \leq \sum_{t=0}^{\infty} \gamma^t R_{\text{max}} = \frac{R_{\text{max}}}{1 - \gamma}$$

- Proper policy guarantees that the agent reaches a terminal state when the environment contains such
- With proper policies infinite state sequences do not pose a problem, and we can use $\gamma = 1$ (i.e., additive rewards)

An optimal policy using discounted rewards is

$$\pi^* = \arg \max_{\pi} \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi],$$

where the expectation is taken over all possible state sequences that could occur, given that the policy is executed.

17.2 Value Iteration

- For calculating an optimal policy we
 - calculate the utility of each state and
 - then use the state utilities to select an optimal action in each state
- The utility of a state is the expected utility of the state sequence that might follow it
- Obviously, the state sequences depend on the policy π that is executed
- Let s_t be the state the agent is in after executing π for t steps
- Note that s_t is a random variable
- Then, executing π starting in $s (= s_0)$ we have

$$U^n(s) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t)]$$
The true utility of a state \(U(s) \) is just \(U^*(s) \)

- \(R(s) \) is the short-term reward for being in \(s \), whereas \(U(s) \) is the long-term total reward from \(s \) onwards
- In our example grid the utilities are higher for states closer to the +1 exit, because fewer steps are required to reach the exit

\[
\begin{array}{cccc}
0.812 & 0.868 & 0.912 & +1 \\
0.762 & \text{black} & 0.660 & -1 \\
0.705 & 0.655 & 0.611 & 0.388
\end{array}
\]

The Bellman equations for utilities

- The agent may select actions using the MEU principle
 \[
 \pi^*(s) = \arg \max_a \sum_{s'} P(s' \mid s, a) U(s') \quad (*)
 \]

- The utility of state \(s \) is the expected sum of discounted rewards from this point onwards, hence, we can calculate it:
 - Immediate reward in state \(s \), \(R(s) \)
 - The expected discounted utility of the next state, assuming that the agent chooses the optimal action
 \[
 U(s) = R(s) + \gamma \max_a \sum_{s'} P(s' \mid s, a) U(s')
 \]
 - This is called the Bellman equation
 - If there are \(n \) possible states, then there are \(n \) Bellman equations, one for each state
\[U(1,1) = -0.04 + \gamma \max \{ 0.8 \ U(1,2) + 0.1 \ U(2,1) + 0.1 \ U(1,1), \quad (U) \\
0.9 \ U(1,1) + 0.1 \ U(1,2), \quad (L) \\
0.9 \ U(1,1) + 0.1 \ U(2,1), \quad (D) \\
0.8 \ U(2,1) + 0.1 \ U(1,2) + 0.1 \ U(1,1) \} \quad (R) \]

Using the values from the previous picture, this becomes:

\[U(1,1) = -0.04 + \gamma \max \{ 0.6096 + 0.0655 + 0.0705 = 0.7456, \quad (U) \\
0.6345 + 0.0762 = 0.7107, \quad (L) \\
0.6345 + 0.0655 = 0.7000, \quad (D) \\
0.5240 + 0.0762 + 0.0705 = 0.6707 \} \quad (R) \]

Therefore, \(U_p \) is the best action to choose.

- Simultaneously solving the Bellman equations using does not work using the efficient techniques for systems of linear equations, because \(\max \) is a nonlinear operation.
- In the iterative approach we start with arbitrary initial values for the utilities, calculate the right-hand side of the equation and plug it into the left-hand side

\[U_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s' \mid s, a) \ U_i(s'), \]

where index \(i \) refers to the utility value of iteration \(i \).
- If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium, in which case the final utility values must be solutions to the Bellman equations.
- They are also the unique solutions, and the corresponding policy is optimal.