3.5 Informed (Heuristic) Search Strategies

- We now consider informed search that uses problem-specific knowledge beyond the definition of the problem itself.
- This information helps to find solutions more efficiently than an uninformed strategy.
- The information concerns the regularities of the state space.
- An evaluation function $f(n)$ determines how promising a node n in the search tree appears to be for the task of reaching the goal.
- Best-first search chooses to expand the node that appears by evaluation function to be most promising among the candidates.
- Traditionally, one aims at minimizing the value of function f.

Heuristic Search Strategies

- A key component of an evaluation function is a heuristic function $h(n)$, which estimates the cost of the cheapest path from node n to a goal node.
- In connection of a search problem “heuristics” refers to a certain (but loose) upper or lower bound for the cost of the best solution.
- Goal states are nevertheless identified: in a corresponding node n it is required that $h(n) = 0$.
- E.g., a certain lower bound — bringing no information — would be to set $h(n) = 0$.
- Heuristic functions are the most common form in which additional knowledge is imported to the search algorithm.
3.5.1 Greedy best-first search

- Greedy best-first search tries to expand the node that is closest to the goal, on the grounds that this is likely to lead to a solution quickly.
- Thus, the evaluation function is \(f(n) = h(n) \).
- E.g. in minimizing road distances a heuristic lower bound for distances of cities is their straight-line distance.

- Greedy search ignores the cost of the path that has already been traversed to reach \(n \).
- Therefore, the solution given is not necessarily optimal.
- If repeating states are not detected, greedy best-first search may oscillate forever between two promising states.

- Because greedy best-first search can start down an infinite path and never return to try other possibilities, it is incomplete.
- Because of its greediness the search makes choices that can lead to a dead end; then one backs up in the search tree to the deepest unexpanded node.
- Greedy best-first search resembles depth-first search in the way it prefers to follow a single path all the way to the goal, but will back up when it hits a dead end.
- The worst-case time and space complexity is \(O(b^m) \).
- The quality of the heuristic function determines the practical usability of greedy search.
3.5.2 A* search

- A* combines the value of the heuristic function $h(n)$ and the cost to reach the node n, $g(n)$
- Evaluation function
 \[f(n) = g(n) + h(n) \]
 thus estimates the cost of the cheapest solution through n

- A* tries the node with the lowest $f(n)$ value first
- This leads to both complete and optimal search algorithm, provided that $h(n)$ satisfies certain conditions

Optimality of A*

- Provided that $h(n)$ never overestimates the cost to reach the goal, then in tree search A* gives the optimal solution
 - Suppose G_2 is a suboptimal goal node generated to the tree
 - Let C^* be the cost of the optimal solution
 - Because G_2 is a goal node, it holds that $h(G_2) = 0$, and we know that $f(G_2) = g(G_2) > C^*$
 - On the other hand, if a solution exists, there must exist a node n that is on the optimal solution path in the tree
 - Because $h(n)$ does not overestimate the cost of completing the solution path, $f(n) = g(n) + h(n) \leq C^*$
 - We have shown that $f(n) \leq C^* < f(G_2)$, so G_2 will not be expanded and A* must return an optimal solution
• For example, straight-line distance is a heuristic that never overestimates road distance between cities.
• In graph search, finding an optimal solution requires taking care that the optimal solution is not discarded in repeated states.
• A particularly important special case are consistent (or monotonic) heuristics for which the triangle inequality holds in form:
 \[h(n) \leq c([n,a], n') + h(n'), \]
 where \(n' \in S(n) \) (the chosen action is \(a \)) and \(c([n,a], n') \) is the step cost.
• Straight-line distance is also a monotonic heuristic.

• A* using a consistent heuristic \(h(n) \) is optimal also for graph search.
 • If \(h(n) \) is consistent, the values of \(f(n) \) along any path are nondecreasing.
 • Suppose that \(n' \) is a successor of \(n \) so that
 \[g(n') = c([n,a], n') + g(n) \]
 \[f(n') = g(n') + h(n') \]
 \[= c([n,a], n') + g(n) + h(n') \]
 \[\geq g(n) + h(n) = f(n) \]
 • Hence, the first goal node selected for expansion (in graph search) must be an optimal solution.
• In looking for a solution, A* expands all nodes \(n \) for which \(f(n) < C^* \), and some of those for which \(f(n) = C^* \)
• However, all nodes \(n \) for which \(f(n) > C^* \) get **pruned**
• It is clear that A* search is complete

• A* search is also **optimally efficient** for any given heuristic function, because any algorithm that does not expand all nodes with \(f(n) < C^* \) runs the risk of missing the optimal solution
• Despite being complete, optimal, and optimally efficient, A* search also has its weaknesses
• The number of nodes for which \(f(n) < C^* \) for most problems is exponential in the length of the solution

3.5.3 Memory-bounded heuristic search

• Once again the main drawback of search is not computation time, but rather space consumption
• Therefore, one has had to develop several memory-bounded variants of A*
• IDA* (Iterative Deepening A*) adapts the idea of iterative deepening
• The cutoff used in this context is the \(f \)-cost \((g + h)\) rather than the depth
• At each iteration the cutoff value is the smallest \(f \)-cost of any node that exceeded the cutoff on the previous iteration
• Subsequent more modern algorithms carry out more complex pruning
3.6 Heuristic functions

- In 8-puzzle we can define the following heuristic functions, which never overestimate:
 - h_1: the number of misplaced tiles: any tile that is out of place must be moved at least once to obtain the desired configuration
 - h_2: The sum of Manhattan distances of tiles from their goal position: the tiles need to be transported to their goal positions to reach the desired configuration

- In the initial configuration all tiles are out of their place: $h_1(s_0) = 8$
- The value of the second heuristic for the example is:
 $$3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$

- Heuristic h_2 gives a stricter estimate than h_1: $h_2(n) \geq h_1(n)$
- We say that the former dominates the latter
- A^* expands every node for which $f(n) < C^* \Leftrightarrow h(n) < C^*-g(n)$
- Hence, a stricter heuristic estimate directly leads to more efficient search

- The branching factor of 8-puzzle is about 3
- Effective branching factor measures the average number of nodes generated by A^* in solving a problem
- For example, when A^* applies heuristic h_1, the effective factor in 8-puzzle is on average circa 1.4, and using heuristic h_2 c. 1.25
3.6.2 Generating admissible heuristics from relaxed problems

- To come up with heuristic functions one can study relaxed problems from which some restrictions of the original problem have been removed.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem (does not overestimate).
- The optimal solution in the original problem is, by definition, also a solution in the relaxed problem.
- E.g., heuristic h_1 for the 8-puzzle gives perfectly accurate path length for a simplified version of the puzzle, where a tile can move anywhere.
- Similarly h_2 gives an optimal solution to a relaxed 8-puzzle, where tiles can move also to occupied squares.

If a collection of admissible heuristics is available for a problem, and none of them dominates any of the others, we can use the composite function

$$h(n) = \max\{ h_1(n), \ldots, h_m(n) \}$$

- The composite function dominates all of its component functions and is consistent if none of the components overestimates.
- One way of relaxing problems is to study subproblems.
- E.g., in 8-puzzle we could study only four tiles at a time and let the other tiles wander to any position.
- By combining the heuristics concerning distinct tiles into one composite function yields a heuristic function, that is much more efficient than the Manhattan distance.
4 BEYOND CLASSICAL SEARCH

- Above we studied systematic search that maintains paths in memory
- In many problems, however, the path to the goal is irrelevant
- It suffices to know the solution to the problem
- Local search algorithms operate using a single current state and generally move to neighbors of that state
- Typically, the paths followed by the search are not retained
- They use very little memory, usually a constant amount
- Local search algorithms lead to reasonable results in large or infinite (continuous) state spaces for which systematic search methods are unsuitable

4.1 Local Search Algorithms and Optimization Problems

- Local search algorithms are also useful for solving pure optimization problems
- In optimization the aim is to find the best state according to an objective function
- Optimization problems are not always search problems in the same sense as they were considered above
- For instance, Darwinian evolution tries to optimize reproductive fitness
- There does not exist any final goal state (goal test)
- Neither does the cost of the path matter in this task
Optimization of the value of objective function can be visualized as a state space landscape, where the height of peaks and depth of valleys corresponds to the value of the function.

A search algorithm giving the optimal solution to a maximization problem comes up with the **global maximum**.

Local maxima are higher peaks than any of their neighbors, but lower than the global maximum.

4.1.1 Hill climbing search

In hill-climbing one always chooses a successor of the current state s that has the highest value for the objective function f:

$$\max_{s' \in S(s)} f(s')$$

Search terminates when all neighbors of the state have a lower value for the objective function than the current state has.

Most often search terminates in a local maximum, sometimes by chance, in a global maximum.

Also plateaux cause problems to this greedy local search.

On the other hand, improvement starting from the initial state is often very fast.
• Sideways moves can be allowed when search may proceed to states that are as good as the current one
• Stochastic hill-climbing chooses at random one of the neighbors that improve the situation
• Neighbors can, for example, be examined in random order and choose the first one that is better than the current state
• Also these versions of hill-climbing are incomplete because they can still get stuck in a local maximum
• By using random restarts one can guarantee the completeness of the method
 • Hill-climbing starts from a random initial state until a solution is found