In general, if the \(n \) possible answers \(v_i \) have probabilities \(P(v_i) \), then the entropy \(H \) of the actual answer is
\[
H(P(v_1), \ldots, P(v_n)) = \sum_{i=1}^{n} - P(v_i) \log_2 P(v_i)
\]

For example, \(H(\frac{1}{2}, \frac{1}{2}) = 2(-\frac{1}{2} \log_2(\frac{1}{2})) = 1 \) bit

In choosing attribute tests, we want to calculate the change of the value distribution \(P(C) \) of the class attribute \(C \), if the training set \(S \) is divided into subsets according to the value of attribute \(a \)
\[
\text{Gain}_S(P(C) \mid a) = \sum_{S_i} (|S_i|/|S|) \cdot H_{S_i}(P(C))
\]
where
\[
\text{Gain}_S(P(C) \mid a) = \sum_{S_i} (|S_i|/|S|) \cdot H_{S_i}(P(C))
\]
when \(a \) divides \(S \) in subsets \(S_i \).

Let the training set \(S \) contain 14 apples and 6 oranges

Hence,
\[
H_S(P(C)) = H(0.7, 0.3) \approx 0.7 \times 0.515 + 0.3 \times 1.737 \approx 0.881
\]

Suppose that attribute \(a \) divides the data s.t.
\[
S_1 = \{7 \text{ apples}, 3 \text{ oranges}\}, \quad S_2 = \{7 \text{ apples}\}, \quad S_3 = \{3 \text{ oranges}\}
\]
then
\[
\text{Gain}_S(P(C) \mid a) = \sum_{S_i} (|S_i|/|S|) \cdot H_{S_i}(P(C))
\]
\[
\approx (10/20) \times H(0.7, 0.3) + 0 + 0
\]
\[
\approx \frac{1}{2} \times 0.881 \approx 0.441
\]
Assessing performance of learning algorithms

- Divide the set of examples into disjoint training set and test set
- Apply the training algorithm to the training set, generating a hypothesis h
- Measure the percentage of examples in the test set that are correctly classified by h: $h(x) = y$ for an (x,y) example
- Repeat the above-mentioned steps for different sizes of training sets and different randomly selected training sets of each size
- The result of this procedure is a set of data that can be processed to give the average prediction quality as a function of the size of the training set
- Plotting this function on a graph gives the learning curve

An alternative (better) approach to testing is cross-validation

- The idea in k-fold cross-validation is that each example serves double duty as training data and test data
- First we split the data into k equal subsets
- We then perform k rounds of learning; on each round $1/k$ of the data is held out as a test set and the remaining examples are used as training data
- The average test set score of the k rounds should then be a better estimate than a single score
- Popular values for k are 5 and 10 – enough to give an estimate that is statistically likely to be accurate, at the cost of 5 to 10 times longer computation time
- The extreme is $k = n$, also known as leave-one-out cross-validation (LOO[CV], or jackknife)
Generalization and overfitting

- If there are two or more examples with the same description (in terms of attributes) but different classifications \Rightarrow no consistent decision tree exists
- The solution is to have each leaf node report either
 - The majority classification for its set of examples, if a deterministic hypothesis is required, or
 - the estimated probabilities of each classification using the relative frequencies
- It is quite possible, and in fact likely, that even when vital information is missing, the learning algorithm will find a consistent decision tree
- This is because the algorithm can use irrelevant attributes, if any, to make spurious distinctions among the examples

Consider trying to predict the roll of a die on the basis of
- The day and
- The month in which the die was rolled, and
- Which is color of the die,
then as long as no two examples have identical descriptions, the learning algorithm will find an exact hypothesis
- Such a hypothesis will be totally spurious
- The more attributes there are, the more likely it is that an exact hypothesis will be found
- The correct tree to return would be a single leaf node with probabilities close to 1/6 for each roll
- This problem is an example of overfitting, a very general phenomenon afflicting every kind of learning algorithm and target function, not only random concepts
Decision tree pruning

- A simple approach to deal with overfitting is to prune the decision tree.
- Pruning works by preventing recursive splitting on attributes that are not clearly relevant.
- Suppose we split a set of examples using an irrelevant attribute.
- Generally, we would expect the resulting subsets to have roughly the same proportions of each class as the original set.
- In this case, the information gain will be close to zero.
- How large a gain should we require in order to split on a particular attribute?

A statistical significance test begins by assuming that there is no underlying pattern (the so-called null hypothesis) and then analyzes the actual data to calculate the extent to which they deviate from a perfect absence of pattern.
- If the degree of deviation is statistically unlikely (usually taken to mean a 5% probability or less), then that is considered to be good evidence for the presence of a significant pattern in the data.
- The probabilities are calculated from standard distributions of the amount of deviation one would expect to see in random sampling.
- Null hypothesis: the attribute at hand is irrelevant and, hence, its information gain for an infinitely large sample is zero.
- We need to calculate the probability that, under the null hypothesis, a sample of size $v = n + p$ would exhibit the observed deviation from the expected distribution of examples.
Let the numbers positive and negative examples in each subset be \(p_i \) and \(n_i \), respectively.

Their expected values, assuming true irrelevance, are

\[
\begin{align*}
 p'_i &= p \cdot (p_i + n_i) / (p + n) \\
 n'_i &= n \cdot (p_i + n_i) / (p + n)
\end{align*}
\]

where \(p \) and \(n \) are the total numbers of positive and negative examples in the training set.

A convenient measure for the total deviation is given by

\[
D = \sum_{i=1}^{v} \left((p_i - p'_i)^2 / p'_i + (n_i - n'_i)^2 / n'_i \right)
\]

Under the null hypothesis, the value of \(D \) is distributed according to the \(\chi^2 \) (chi-squared) distribution with \((v-1)\) degrees of freedom.

The probability that the attribute is really irrelevant can be calculated with the help of standard \(\chi^2 \) tables.

The above method is known as \(\chi^2 \) (pre-)pruning.

Pruning allows the training examples to contain noise and it also reduces the size of the decision trees and makes them more comprehensible.

More common than pre-pruning are post-pruning methods in which

- One first constructs a decision tree that is as consistent as possible with the training data and
- Then removes those subtrees that have likely been added due to the noise.

In cross-validation the known data is divided in \(k \) parts, each of which is used as a test set in its turn for a decision tree that has been grown on the other \(k-1 \) subsets.

Thus one can approximate how well each hypothesis will predict unseen data.
Broadening the applicability of decision trees

- In practice decision tree learning has to answer also the following questions
 - Missing attribute values: while learning and in classifying instances
 - Multivalued discrete attributes: value subsetting or penalizing against too many values
 - Numerical attributes: split point selection for interval division
 - Continuous-valued output attributes
- Decision trees are used widely and many good implementations are available (for free)
- Decision trees fulfill understandability, contrary to neural networks, which is a legal requirement for financial decisions