18.4 Evaluating and Choosing the Best Hypothesis

- We assume that there is a probability distribution over examples that remains stationary over time.
 - Each observed value is sampled from that distribution and is independent of previous examples and.
 - Each example has identical prior probability distribution.
- Examples that satisfy these assumptions are called independent and identically distributed (i.i.d.).
- The error rate of a hypothesis h is the proportion of mistakes it makes.
 - The proportion of times that $h(x) \neq y$ for an (x, y) example.
- Just because a hypothesis h has low error rate on the training set does not mean that it will generalize well.

Model selection: Complexity vs. goodness of fit

- We can think of finding the best hypothesis as two tasks:
 - Model selection defines the hypothesis space and
 - Optimization finds the best hypothesis within that space.
- How to select among models that are parameterized by size:
 - With polynomials we have $size = 1$ for linear functions, $size = 2$ for quadratics, and so on.
 - For decision trees, the size could be the number of nodes in the tree.
- We want to find the value of the size parameter that best balances underfitting and overfitting to give the best test set accuracy.
• A wrapper takes a learning algorithm as an argument (DT learning for example)
• The wrapper enumerates models according to the size parameter
• For each size, it uses cross validation (say) on the learner to compute the average error rate on training and test sets
• We start with the smallest, simplest models (which probably underfit the data), and iterate, considering more complex models at each step, until the models start to overfit
• The cross validation picks the value of size with the lowest validation set error
• We then generate a hypothesis of that size using all the data (without holding out any of it; eventually we should evaluate the returned hypothesis on a separate test set)

From error rates to loss

• Consider the problem of classifying emails as spam or non-spam
• It is worse to classify non-spam as spam than to classify spam as non-spam
• So a classifier with a 1% error rate, where almost all errors were classifying spam as non-spam, would be better than a classifier with only a 0.5% error rate, if most of those errors were classifying non-spam as spam
• Utility is what learners – like decision makers – should maximize
• In machine learning it is traditional to express utilities by means of loss functions
• The loss function \(L(x, y, \hat{y}) \) is defined as the amount of utility lost by predicting \(h(x) = \hat{y} \) when the correct answer is \(f(x) = y \):
 \[
 L(x, y, \hat{y}) = U(\text{result of using } y \text{ given an input } x) - U(\text{result of using } \hat{y} \text{ given an input } x)
 \]
• Often a simplified version of the loss function is used: It is 10 times worse to classify non-spam as spam than vice-versa:
 \[L(\text{spam}, \text{nonspam}) = 1, \quad L(\text{nonspam}, \text{spam}) = 10 \]
• Note that \(L(y, \hat{y}) \) is always zero
• In general for real-valued data small errors are better than large ones
• Two functions that implement that idea are the absolute value of the difference (called the \(L_1 \) loss), and the square of the difference (called the \(L_2 \) loss)
• Minimizing error rate is formulated in the \(L_{0/1} \) loss function

Absolute value loss: \(L_1(y, \hat{y}) = |y - \hat{y}| \)
Squared error loss: \(L_2(y, \hat{y}) = (y - \hat{y})^2 \)
0/1 loss: \(L_{0/1}(y, \hat{y}) = 0 \text{ if } y = \hat{y}, \text{ else } 1 \)

Let \(P(X, Y) \) be a prior probability distribution over examples
Let \(E \) be the set of all possible input-output examples
Then the expected \textit{generalization loss} for a hypothesis \(h \) (w.r.t. loss function \(L \)) is
\[\text{GenLoss}_L(h) = \sum_{(x, y) \in E} L(y, h(x)) P(x, y) \]
The best hypothesis \(h^* \) is the one with the minimum expected generalization loss
\[h^* = \arg \min_{h \in H} \text{GenLoss}_L(h) \]
Because \(P(x, y) \) is not known, the learning agent can only estimate generalization loss with \textit{empirical loss} on the set of examples \(E \):
\[\text{EmpLoss}_{L,E}(h) = \frac{1}{n} \sum_{(x, y) \in E} L(y, h(x)) \]
The estimated best hypothesis \(\hat{h}^* \) is then the one with minimum empirical loss:
\[\hat{h}^* = \arg \min_{h \in H} \text{EmpLoss}_{L,E}(h) \]
Regularization

- Earlier on we did model selection with cross-validation on model size.
- An alternative approach is to search for a hypothesis that directly minimizes the weighted sum of empirical loss and the complexity of the hypothesis, which we call the total cost:
 \[\text{Cost}(h) = \text{EmpLoss}(h) + \lambda \text{Complexity}(h) \]
 \[\hat{h}^* = \arg \min_{h \in H} \text{Cost}(h) \]
- Here \(\lambda \) is a parameter, a positive number that serves as a conversion rate between loss and hypothesis complexity.
- We still need to do cross-validation search to find the hypothesis that generalizes best, but this time with different values of \(\lambda \).
- This process of explicitly penalizing complex hypotheses is called *regularization*.

18.5 The Theory of Learning

- Computational Learning Theory (COLT) [Valiant 1984]
- Valiant received the ACM Turing Award in 2010.
- Any hypothesis that is seriously wrong will almost certainly be “found out” with high probability after a small number of examples, because it will make an incorrect prediction.
- Thus, any hypothesis that is consistent with a sufficiently large set of training examples is unlikely to be seriously wrong; that is, it must be *probably approximately correct* (PAC).
- PAC-learning is based on the stationarity assumption: Future examples are going to be drawn from the same fixed distribution \(P(E) = P(X, Y) \) as past examples.
- We do not necessarily know the distribution.
- Without this connection between the past and the future, learning would be practically impossible.
Let X be the instance space from which the examples are drawn from with a stationary distribution.

- H is the hypothesis class and N denotes the number of training examples.
- We assume that the true function f is a member of H.
- The error rate of a hypothesis h is defined as the expected generalization error for examples drawn from the stationary distribution:

$$
\text{error}(h) = \text{GenLoss}_{0/1}(h) = \mathbb{E}_{(x,y)} L_{0/1}(y, h(x)) P(x, y)
$$

- A hypothesis h is called approximately correct if $\text{error}(h) \leq \varepsilon$, where ε is a small constant.

Let us examine a hypothesis h_b, which is not an ε-approximation of the true function.

- Then $\text{error}(h_b) > \varepsilon$ and the probability that it agrees with a given example is at most $1 - \varepsilon$.
- Since the examples are independent, the bound for N examples is:

$$
P(h_b \text{ agrees with } N \text{ examples}) \leq (1 - \varepsilon)^N
$$

- The probability that the hypothesis class H contains at least one such hypothesis is at most $|H|(1 - \varepsilon)^N$.
- We would like to reduce the probability of this event below some small number δ:

$$
|H|(1 - \varepsilon)^N \leq \delta
$$
Because $\ln(1 + a) < a$, we can achieve this if we allow the algorithm to see

$$N \geq \frac{1}{-\ln(1 - \varepsilon)} \left(\ln|H| + \ln\left(\frac{1}{\delta}\right) \right)$$

examples

Thus, if a learning algorithm returns a hypothesis that is consistent with this many examples, then with probability at least $1 - \delta$, it has error at most ε.

In other words, it is probably approximately correct.

The number of required examples, as a function of ε and δ, is called the sample complexity of the hypothesis space.

Learning decision lists

A decision list consists of a series of tests, each of which is a conjunction of literals.

The tests (rules) are attempted in order.

If a test succeeds, the decision list specifies the value to be returned.

If a test fails, processing continues with the next test in the list.

Patrons = Some

- Yes
- *No*

Full & Fri/Sat

- Yes
- *Yes*

No
• Decision lists resemble decision trees, but their overall structure is simpler: they branch only in one direction
• In contrast, the individual tests are more complex
• Decision lists generalize decision trees
• If we allow tests of arbitrary size, then decision lists can represent any Boolean function
• On the other hand, if we restrict the size of each test to at most \(k\) literals (\(k\)-DL), then it is possible for the learning algorithm to generalize successfully from a small number of examples
• Language \(k\)-DL includes as a subset the language \(k\)-DT, the set of all decision trees of depth at most \(k\)
• Let \(k\)-DL\((n)\) denote a \(k\)-DL language using \(n\) Boolean attributes

Let \(\text{Conj}(n, k)\) denote the conjunctions of at most \(k\) literals using \(n\) attributes
• The number of conjunctions of \(k\) literals from \(n\) attributes is given by
 \[
 |\text{Conj}(n, k)| = \sum_{i=1}^{k} \binom{2n}{i} = O(n^k)
 \]
• In a decision list each conjunction can be attached to either a \(\text{Yes}\) or \(\text{No}\) outcome or can be absent from the decision list
• Hence, there are at most \(3^{|\text{Conj}(n, k)|}\) distinct sets of component tests
• Each of these sets of tests can be in any order, so
 \[
 |k\text{-DL}(n)| \leq 3^{|\text{Conj}(n, k)|} |\text{Conj}(n, k)|!
 \]
Combining the above estimates yields

$$|k\text{-DL}(n)| \leq 2^{O(n^k \log_2(n^k))}$$

We plug this into the formula for sample complexity to show that the number of examples needed for PAC-learning is

$$N \geq (1/\varepsilon)(|O(n^k \log_2(n^k))| + \ln(1/\delta))$$

Hence, a k-DL function is PAC-learnable from a number of examples polynomial in n

Therefore, any algorithm that returns a consistent decision list will PAC-learn a k-DL function in a reasonable number of examples, for small k

The following greedy algorithm will output a consistent decision list (if one exists)

Algorithm DL-learner(S)

Input: S training examples

Output: a decision list or failure

1. if $S = \emptyset$ then return the trivial decision list No;
2. Choose a test t that matches a subset of examples $S_t \subseteq S$ such that the members are all positive or negative;
3. if there is no such t then fail;
4. if all examples in S_t are positive
 then $o \leftarrow$ Yes
 else $o \leftarrow$ No;
5. $L \leftarrow$ DL-learner($S \setminus S_t$);
6. return a decision list with initial test t and outcome o and remaining tests given by L;