18.4 Evaluating and Choosing the Best Hypothesis

- We assume that there is a probability distribution over examples that remains stationary over time:
 - Each observed value is sampled from that distribution and is independent of previous examples and
 - Each example has identical prior probability distribution
- Examples that satisfy these assumptions are called independent and identically distributed (i.i.d.)
- The **error rate** of a hypothesis h is the proportion of mistakes it makes
 - The proportion of times that $h(x) \neq y$ for an (x, y) example
 - Just because a hypothesis h has low error rate on the training set does not mean that it will generalize well

Model selection: Complexity vs. goodness of fit

- We can think of finding the best hypothesis as two tasks:
 - **Model selection** defines the hypothesis space and
 - **Optimization** finds the best hypothesis within that space
- How to select among models that are parameterized by size:
 - With polynomials we have $size = 1$ for linear functions,
 $size = 2$ for quadratics, and so on
 - For decision trees, the size could be the number of nodes in the tree
- We want to find the value of the size parameter that best balances underfitting and overfitting to give the best test set accuracy
A wrapper takes a learning algorithm as an argument (DT learning for example)

The wrapper enumerates models according to the size parameter

For each size, it uses cross validation (say) on the learner to compute the average error rate on training and test sets

We start with the smallest, simplest models
 • (which probably underfit the data), and iterate, considering more complex models at each step,
 • until the models start to overfit

The cross validation picks the value of \(size \) with the lowest validation set error

We then generate a hypothesis of that \(size \) using all the data (without holding out any of it; eventually we should evaluate the returned hypothesis on a separate test set)

From error rates to loss

Consider the problem of classifying emails as spam or non-spam

It is worse to classify non-spam as spam than vice versa

So a classifier with a 1% error rate, where almost all errors were classifying spam as non-spam, would be better than a classifier with only a 0.5% error rate, if most of those errors were classifying non-spam as spam

Utility is what learners – like decision makers – should maximize

In machine learning it is traditional to express utilities by means of loss functions

The loss function \(L(x, y, \hat{y}) \) is defined as the amount of utility lost by predicting \(h(x) = \hat{y} \) when the correct answer is \(f(x) = y \):

\[
L(x, y, \hat{y}) = U(\text{result of using } y \text{ given an input } x) - U(\text{result of using } \hat{y} \text{ given an input } x)
\]
• Often a simplified version of the loss function is used: It is 10 times worse to classify non-spam as spam than vice versa:

\[L(\text{spam}, \text{nonspam}) = 1, \quad L(\text{nonspam}, \text{spam}) = 10 \]

• Note that \(L(y, y) \) is always zero

• In general for real-valued data small errors are better than large ones

• Two functions that implement that idea are the absolute value of the difference (called the \(L_1 \) loss), and the square of the difference (called the \(L_2 \) loss)

\[L_1(y, \hat{y}) = |y - \hat{y}| \]
\[L_2(y, \hat{y}) = (y - \hat{y})^2 \]
\[L_{0/1}(y, \hat{y}) = 0 \text{ if } y = \hat{y}, \text{ else 1} \]

• Minimizing error rate is formulated in the \(L_{0/1} \) loss function

Let \(\mathcal{P}(X, Y) \) be a prior probability distribution over examples

Let \(\mathcal{E} \) be the set of all possible input-output examples

Then the expected generalization loss for a hypothesis \(h \) (w.r.t. loss function \(L \)) is

\[\text{GenLoss}_L(h) = \sum_{(x,y) \in \mathcal{E}} L(y, h(x)) \cdot P(x, y) \]

• The best hypothesis \(h^* \) is the one with the minimum expected generalization loss

\[h^* = \arg \min_{h \in \mathcal{E}} \text{GenLoss}_L(h) \]

• Because \(P(x, y) \) is not known, the learning agent can only estimate generalization loss with empirical loss on the set of examples \(\mathcal{E} \):

\[\text{EmpLoss}_{L, \mathcal{E}}(h) = \frac{1}{n} \sum_{(x,y) \in \mathcal{E}} L(y, h(x)) \]

• The estimated best hypothesis \(\hat{h}^* \) is then the one with minimum empirical loss:

\[\hat{h}^* = \arg \min_{h \in \mathcal{E}} \text{EmpLoss}_{L, \mathcal{E}}(h) \]
Regularization

- Earlier on we did model selection with cross-validation on model size.
- An alternative approach is to search for a hypothesis that directly minimizes the weighted sum of empirical loss and the complexity of the hypothesis, which we call the total cost:

\[
\text{Cost}(h) = \text{EmpLoss}(h) + \lambda \text{Complexity}(h)
\]

\[
\hat{h}^* = \arg\min_h \text{Cost}(h)
\]

- Here \(\lambda \) is a parameter, a positive number that serves as a conversion rate between loss and hypothesis complexity.
- We still need to do cross-validation search to find the hypothesis that generalizes best, but this time with different values of \(\lambda \).
- This process of explicitly penalizing complex hypotheses is called regularization.

18.5 The Theory of Learning

- Computational Learning Theory (COLT) [Valiant 1984].
- Valiant received the ACM Turing Award in 2010.
- Any hypothesis that is seriously wrong will almost certainly be "found out" with high probability after a small number of examples, because it will make an incorrect prediction.
- Thus, any hypothesis that is consistent with a sufficiently large set of training examples is unlikely to be seriously wrong: that is, it must be probably approximately correct (PAC).
- PAC-learning is based on the stationarity assumption: Future examples are going to be drawn from the same fixed distribution \(P(E) = P(X,Y) \) as past examples.
- We do not necessarily know the distribution.
- Without this connection between the past and the future, learning would be practically impossible.
Let X be the instance space from which the examples are drawn from with a stationary distribution.

- \mathcal{H} is the hypothesis class and N denotes the number of training examples.
- We assume that the true function f is a member of \mathcal{H}.
- The error rate of a hypothesis h is defined as the expected generalization error for examples drawn from the stationary distribution:

$$\text{error}(h) = \text{GenLoss}_{0/1}(h) = \sum_{(x,y)} L_{0/1}(y, h(x)) P(x, y)$$

- A hypothesis h is called approximately correct if $\text{error}(h) \leq \epsilon$, where ϵ is a small constant.

Let us examine a hypothesis h_b, which is not an ϵ-approximation of the true function.

- Then $\text{error}(h_b) > \epsilon$ and the probability that it agrees with a given example is at most $1 - \epsilon$.
- Since the examples are independent, the bound for N examples is:

$$P(h_b \text{ agrees with } N \text{ examples}) \leq (1 - \epsilon)^N$$

- The probability that the hypothesis class \mathcal{H} contains at least one such hypothesis is at most $|\mathcal{H}|(1 - \epsilon)^N$.
- We would like to reduce the probability of this event below some small number δ:

$$|\mathcal{H}|(1 - \epsilon)^N \leq \delta$$
Then

\[N \geq \left(\frac{1}{-\ln(1 - \varepsilon)} \right) \left(\ln |\mathcal{H}| + \ln \left(\frac{1}{\delta} \right) \right) \]

Because \(\ln(1 + \alpha) < \alpha \), we can achieve this if we allow the algorithm to see

\[N \geq \frac{1}{\varepsilon} \left(\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right) \]

examples

• Thus, if a learning algorithm returns a hypothesis that is consistent with this many examples, then with probability at least \(1 - \delta \), it has error at most \(\varepsilon \)

• In other words, it is probably approximately correct

• The number of required examples, as a function of \(\varepsilon \) and \(\delta \), is called the \textit{sample complexity} of the hypothesis space

Learning decision lists

• A \textit{decision list} consists of a series of tests, each of which is a conjunction of literals

• The tests (rules) are attempted in order

• If a test succeeds, the decision list specifies the value to be returned

• If a test fails, processing continues with the next test in the list
Decision lists resemble decision trees, but their overall structure is simpler: they branch only in one direction. In contrast, the individual tests are more complex. Decision lists generalize decision trees. If we allow tests of arbitrary size, then decision lists can represent any Boolean function. On the other hand, if we restrict the size of each test to at most k literals (k-DL), then it is possible for the learning algorithm to generalize successfully from a small number of examples. Language k-DL includes as a subset the language k-DT, the set of all decision trees of depth at most k. Let k-DL(n) denote a k-DL language using n Boolean attributes.

Let $\text{Conj}(n,k)$ denote the conjunctions of at most k literals using n attributes. The number of conjunctions of k literals from n attributes is given by

$$|\text{Conj}(n,k)| = \sum_{i=1}^{k} \binom{2n}{i} = O(n^k)$$

In a decision list each conjunction can be attached to either a Yes or No outcome or can be absent from the decision list. Hence, there are at most $3^{|\text{Conj}(n,k)|}$ distinct sets of component tests. Each of these sets of tests can be in any order, so

$$|k\text{-DL}(n)| \leq 3^{|\text{Conj}(n,k)|} |\text{Conj}(n,k)|!$$
Combining the above estimates yields
\[|k - DL(n)| \leq 2^O(n^k \log_2(n^k)) \]

We plug this into the formula for sample complexity to show that the number of examples needed for PAC-learning is
\[N \geq (1/\varepsilon)(|O(n^k \log_2(n^k))| + \ln(1/\delta)) \]

Hence, a \(k \)-DL function is PAC-learnable from a number of examples polynomial in \(n \).

Therefore, any algorithm that returns a consistent decision list will PAC-learn a \(k \)-DL function in a reasonable number of examples, for small \(k \).

The following greedy algorithm will output a consistent decision list (if one exists).

\[
\text{DL-LEARNER}(S) \\
\text{Input: } S \text{ training examples} \\
\text{Output: } a \text{ decision list or failure} \\
1. \text{ if } S = \emptyset \text{ then return the trivial decision list } No; \\
2. \text{ Choose a test } t \text{ that matches a subset of examples } S_t \neq \emptyset \\
 \text{ such that the members are all positive or negative;} \\
3. \text{ if there is no such } t \text{ then fail;} \\
4. \text{ if all examples in } S_t \text{ are positive} \\
 \text{ then } o \leftarrow Yes \\
 \text{ else } o \leftarrow No; \\
5. L \leftarrow \text{DL-LEARNER}(S \setminus S_t); \\
6. \text{ return a decision list with initial test } t \text{ and outcome } o \text{ and} \\
 \text{ remaining tests given by } L; \\
\]