Information from a dual LP solution can sometimes be used to derive good approximation algorithms.

Let \(y^* \) be an optimal solution to the SC dual LP, and consider the solution in which we choose all subsets for which the corresponding dual inequality is **tight**; i.e., the inequality is met with equality for subset \(S_j \), and \(\sum_{i: e_i \in S_j} y_i^* = w_j \).

Let \(I' \) denote the indices of the subsets in this solution.

This algorithm also is an \(f \)-approximation algorithm for the set cover problem.

Lemma 1.7: The collection of subsets \(S_j, j \in I' \), is a set cover.

Proof: Suppose that there exists some uncovered element \(e_k \). Then for each subset \(S_j \) containing \(e_k \), it must be the case that

\[
\sum_{i: e_i \in S_j} y_i^* < w_j.
\]

Let \(\epsilon \) be the smallest difference between the RHS and LHS of all constraints involving \(e_k \); i.e.,

\[
\epsilon = \min_{j: e_k \in S_j} \left(w_j - \sum_{i: e_i \in S_j} y_i^* \right).
\]

By the above inequality, we know that \(\epsilon > 0 \).
Consider now a new dual solution y' in which $y'_k = y^*_k + \epsilon$ and every other component of y' is the same as in y^*. Then y' is a dual feasible solution since for each j such that $e_k \in S_j$,

$$\sum_{i: e_i \in S_j} y'_i = \sum_{i: e_i \in S_j} y^*_i + \epsilon \leq w_j$$

by the definition of ϵ. For each j such that $e_k \notin S_j$,

$$\sum_{i: e_i \in S_j} y'_i = \sum_{i: e_i \in S_j} y^*_i \leq w_j,$$

as before. Furthermore, $\sum_{i=1}^n y'_i > \sum_{i=1}^n y^*_i$, which contradicts the optimality of y^*. Thus, all elements are covered and I' is a set cover.

Theorem 1.8: The dual rounding algorithm described above is an f-approximation algorithm for the set cover problem.

Proof: The central idea is the following “charging” argument: when we choose a set S_j to be in the cover, we “pay” for it by charging y'_i to each of its elements e_i; each element is charged at most once for each set that contains it (and hence at most f times), and so the total cost is at most $f \sum_{i=1}^m y^*_i$, or f times the dual objective function.

More formally, since $j \in I'$ only if $w_j = \sum_{i: e_i \in S_j} y^*_i$, we have that the cost of the set cover I' is
\[\sum_{j \in I'} w_j = \sum_{j \in I'} \sum_{i : e_i \in S_j} y_i^* = \sum_{i=1}^n \left\{ j \in I' : e_i \in S_j \right\} \cdot y_i^* \leq \sum_{i=1}^n f_i y_i^* \leq f \sum_{i=1}^n y_i^* \leq f \cdot \text{OPT} \]

The second eq. follows from the fact that when we interchange the order of summation, the coefficient of \(y_i^* \) is equal to the number of times that this term occurs overall. The final ineq. follows from the weak duality property.

• This algorithm can do no better than the algorithm of the previous section
 – We can show that if \(I \) indexes the solution returned by the primal rounding algorithm of the previous section, then \(I \subseteq I' \)
• This follows from a property of optimal LP solutions called **complementary slackness**
• We showed earlier the following for any feasible solution \(x \) to the set cover LP relaxation, and any feasible solution \(y \) to the dual LP:

\[\sum_{i=1}^n y_i \leq \sum_{i=1}^n y_i \sum_{j:e_i \in S_j} x_j = \sum_{j=1}^m x_j \sum_{i:e_i \in S_j} y_i \leq \sum_{j=1}^m x_jw_j \]
Furthermore, we claimed that strong duality implies that for optimal solutions x^* and y^*,

$$\sum_{i=1}^{n} y_i^* = \sum_{j=1}^{m} w_j x_j^*$$

Thus, for any optimal solutions x^* and y^* the two inequalities in the chain of inequalities above must in fact be equalities.

The only way this can happen is that whenever $y_i^* > 0$ then $\sum_{j: e_i \in S_j} x_j^* = 1$, and whenever $x_j^* > 0$, then $\sum_{i: e_i \in S_j} y_i^* = w_j$.

That is, whenever a LP variable (primal or dual) is nonzero, the corresponding constraint in the dual or primal is tight.

These conditions are known as the **complementary slackness** conditions.

Thus, if x^* and y^* are optimal solutions, the complementary slackness conditions must hold.

The converse is also true:

- if x^* and y^* are feasible primal and dual solutions, respectively, then
- if the complementary slackness conditions hold, the values of the two objective functions are equal and therefore
- the solutions must be optimal.
• In the case of the set cover program, if $x_j^* > 0$ for any primal optimal solution x^*, then the corresponding dual inequality for S_j must be tight for any dual optimal solution y^*

• Recall that in the algorithm of the previous section, we put $j \in I$ when $x_j^* \geq 1/f$

• Thus, $j \in I$ implies that $j \in I'$, so that $I' \supseteq I$

1.5 The primal-dual method

• The basic idea of the algorithm in this section is that the dual rounding algorithm of the previous section uses relatively few properties of an optimal dual solution

• Instead of actually solving the dual LP, we can construct a feasible dual solution with the same properties

• In this case, constructing the dual solution is much faster than solving the dual LP, and hence leads to a much faster algorithm
The algorithm of the previous section used the following properties:

- First, we used the fact that $\sum_{i=1}^{n} y_i \leq \text{OPT}$, which is true for any feasible dual solution y.
- Second, we include $j \in I'$ precisely when $\sum_{i: e_i \in S_j} y_i = w_j$, and I' is a set cover.
- These two facts together gave the proof that the cost of I' is no more than f times optimal.
- The proof of Lemma 1.7 (that we have constructed a feasible cover) shows how to obtain an algorithm that constructs a dual solution.

Consider any feasible dual solution y, and let T be the set of the indices of all tight dual constraints; i.e., $T = \{j: \sum_{i: e_i \in S_j} y_i = w_j\}$.

- If T is a set cover, then we are done.
- If T is not a set cover, then some item e_i is uncovered, and as shown in the proof of Lemma 1.7 it is possible to improve the dual objective function by increasing y_i by some $\epsilon > 0$.
- More specifically, we can increase y_i by $\min_{j: e_i \in S_j} (w_j - \sum_{k: e_k \in S_j} y_k)$, so that the constraint becomes tight for the subset S_j that attains the minimum.
Additionally, the modified dual solution remains feasible
Thus, we can add j to T, and element e_i is now covered by the sets in T
We repeat this process until T is a set cover
Since an additional element e_i is covered each time, the process is repeated at most n times
For a complete algorithm, we need to give only an initial dual feasible solution
We can use the solution $y_i = 0$ for each $i = 1, \ldots, n$; this is feasible since each w_j, $j = 1, \ldots, m$, is nonnegative

Algorithm 1.1:
Primal-dual algorithm for the set cover problem

1. $y \leftarrow 0$
2. $I \leftarrow \emptyset$
3. while there exists $e_i \notin \bigcup_{j \in I} S_j$ do
 i. Increase the dual variable y_i until there is some ℓ with $e_i \in S_\ell$ such that $\sum_{j : e_j \in S_\ell} y_j = w_\ell$
 ii. $I \leftarrow I \cup \{\ell\}$
Theorem 1.9: Algorithm 1.1 is an \(f \)-approximation algorithm for the set cover problem.

- LP problems, network flow problems, and shortest path problems (among others) all have primal-dual optimization algorithms
- Primal-dual algorithms start with a dual feasible solution, and use dual information to infer a primal, possibly infeasible, solution
- If the primal solution is indeed infeasible, the dual solution is modified to increase the value of the dual objective function

1.6 A greedy algorithm

- We show that a greedy algorithm gives an approximation algorithm with a performance guarantee that is often significantly better than \(f \)
- Greedy algorithms optimize each particular decision, even if this sequence of locally optimal decisions may not lead to a globally opt. solution
- Greedy algorithms are very easy to implement, and hence greedy algorithms are a commonly used heuristic, even when they have no performance guarantee
ALGORITHM 1.2:
A greedy algorithm for the set cover problem

1. $I \leftarrow \emptyset$
2. $\hat{S}_j \leftarrow S_j \quad \forall j$
3. while I is not a set cover do
4. $\ell \leftarrow \arg \min_{j: \hat{S}_j \neq \emptyset} (w_j/|\hat{S}_j|)$
5. $I \leftarrow I \cup \{\ell\}$
6. $\hat{S}_j \leftarrow \hat{S}_j - S_\ell \quad \forall j$

- In each round, we choose the set that minimizes the ratio of its weight to the number of currently uncovered elements it contains.
- In the event of a tie, we pick an arbitrary set that achieves the minimum ratio.
- We continue choosing sets until all elements are covered.
- Obviously, this will yield a polynomial-time algorithm, since there can be no more than m rounds, and in each we compute $O(m)$ ratios, each in constant time.
Let H_k denote the kth harmonic number: i.e.,
\[H_k = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k} \]

Note that $H_k \approx \ln k$

The following fact is one that we will use many times in the course

It can be proven with simple algebraic manipulations

Fact 1.10: Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k, then
\[
\min_{i=1, \ldots, k} \frac{a_i}{b_i} \leq \frac{\sum_{i=1}^{k} a_i}{\sum_{i=1}^{k} b_i} \leq \max_{i=1, \ldots, k} \frac{a_i}{b_i}
\]

Theorem 1.11: Algorithm 1.2 is an H_n-approximation algorithm for the set cover problem.

The basic intuition for the analysis of the algorithm is as follows

Let OPT denote the value of an optimal solution to the set cover problem

An optimal solution covers all n elements with a solution of weight OPT

Therefore, there must be some subset that covers its elements with an average weight of at most OPT/n
Similarly, after k elements have been covered, the optimal solution can cover the remaining $n - k$ elements with a solution of weight OPT

This implies that there is some subset that covers its remaining uncovered elements with an average weight of at most $OPT/(n - k)$

So in general the greedy algorithm pays about $OPT/(n - k + 1)$ to cover the kth uncovered element, giving a performance guarantee of

$$\sum_{k=1}^{n} \frac{1}{n - k + 1} = H_n$$

We can improve the performance guarantee of the algorithm slightly by using the dual of the LP relaxation in the analysis

Let g be the maximum size of any subset S_j; i.e.,

$$g = \max_j |S_j|$$

Recall that Z^*_{LP} is the optimum value of the LP relaxation for the set cover problem

The following theorem immediately implies that the greedy algorithm is an H_g-approximation algorithm, since $Z^*_{LP} \leq OPT$

Theorem 1.12: Algorithm 1.2 returns a solution indexed by I such that $\sum_{j \in I} w_j \leq H_g \cdot Z^*_{LP}$.
Proof: We will construct an infeasible dual solution y s.t. $\sum_{j \in I} w_j = \sum_{i=1}^n y_i$. We will then show that $y' = \frac{1}{H_g} y$ is a feasible dual solution. By the weak duality theorem, $\sum_{i=1}^n y_i' \leq Z_{LP}^*$, so that $\sum_{j \in I} w_j = \sum_{i=1}^n y_i = H_g \sum_{i=1}^n y_i' \leq H_g \cdot \text{OPT}$. We will eventually see the reason we choose to divide the infeasible dual solution y by H_g.

Dual fitting: construct an infeasible dual solution whose value is equal to the value of the primal solution constructed, scaling the dual solution by a single value makes it feasible.

Suppose we choose to add subset S_j to our solution in iteration k. Then for each $e_i \in S_j$, we set $y_i = w_j / |S_j|$. Since each $e_i \in S_j$ is uncovered in iteration k, and is then covered for the remaining iterations of the algorithm (because we added S_j), the dual variable y_i is set to a value exactly once; in particular, it is set in the iteration in which element e_i is covered. Furthermore, $w_j = \sum_{i: e_i \in S_j} y_i$; that is, the weight of the subset S_j chosen in the kth iteration is equal to the sum of the duals y_i of the uncovered elements that are covered in the kth iteration. This immediately implies that $\sum_{j \in I} w_j = \sum_{i=1}^n y_i$.
It remains to prove that the dual solution \(y' = \frac{1}{H_g} y \) is feasible. We must show that for each subset \(S_j \), \(\sum_{i:e_i \in S_j} y_i' \leq w_j \). Pick an arbitrary subset \(S_j \). Let \(a_k \) be the number of elements in this subset that are still uncovered at the beginning of the \(k \)th iteration, so that \(a_1 = |S_j| \), and \(a_{k+1} = 0 \). Let \(A_k \) be the uncovered elements of \(S_j \) covered in the \(k \)th iteration, so that \(|A_k| = a_k - a_{k+1} \). If subset \(S_p \) is chosen in the \(k \)th iteration, then for each element \(e_i \in A_k \) covered in the \(k \)th iteration,

\[
y_i' = \frac{w_p}{H_S|S_p|} \leq \frac{w_j}{H_g a_k}
\]

- Above \(S_p \) is the set of uncovered elements of \(S_p \) at the beginning of the \(k \)th iteration.
- The inequality follows because if \(S_p \) is chosen in the \(k \)th iteration, it must minimize the ratio of its weight to the number of uncovered elements it contains.

\[
\sum_{i:e_i \in S_j} y_i' = \sum_{k=1}^{\ell} \sum_{i:e_i \in A_k} y_i' \leq \sum_{k=1}^{\ell} (a_k - a_{k+1}) \frac{w_j}{H_g a_k} \\
\leq \frac{w_j}{H_g} \sum_{k=1}^{\ell} \frac{a_k - a_{k+1}}{a_k}
\]
\[
\leq \frac{w_j}{H_g} \sum_{k=1}^{\ell} \left(\frac{1}{a_k} + \frac{1}{a_k - 1} + \cdots + \frac{1}{a_k+1 + 1} \right)
\]

\[
\leq \frac{w_j}{H_g} \sum_{i=1}^{s_j} \frac{1}{i}
\]

\[
= \frac{w_j}{H_g} H |s_j|
\]

\[
\leq w_j
\]

where the final inequality follows because $|s_j| \leq g$.

The reason for scaling the dual solution by H_g: we know that $H |s_j| \leq H_g$ for all sets j.

- No approximation algorithm for the set cover problem with guarantee better than H_n is possible, under an assumption slightly stronger than $P = NP$.

Theorem 1.13: If there is a $c \ln n$-approximation algorithm for the unweighted set cover problem for some constant $c < 1$, then there is an $O(n^{O(\log \log n)})$-time deterministic algorithm for each NP-complete problem.

Theorem 1.14: There exists some constant $c > 0$ s.t. if there exists a $c \ln n$-approximation algorithm for the unweighted set cover problem, then $P = NP$.

2. Greedy algorithms and local search

- A local search algorithm starts with an arbitrary feasible solution to the problem, and checks if some small, local change to the solution results in an improved objective function.
- If so, the change is made.
- When no further change can be made, we have a locally optimal solution, and it is sometimes possible to prove that such locally optimal solutions have value close to that of the optimal solution.

2.1 Scheduling jobs with deadlines on a single machine

- We are given some type of work that must be done, and some resources to do the work, and from this we must create a schedule to complete the work that optimizes some objective:
 - perhaps we want to finish all the work as soon as possible, or
 - perhaps we want to make sure that the average time at which we complete the various pieces of work is as small as possible.
• We schedule \(n \) jobs on a single machine
 – it can process at most one job at a time, and must
 process a job until its completion
 – each job \(j \) must be processed for \(p_j \) units of time
 – the processing of job \(j \) may begin no earlier than
 a specified release date \(r_j, j = 1, \ldots, n \)
• The schedule starts at time 0, and each \(r_j \geq 0 \)
• Each job \(j \) has a specified due date \(d_j \), and if we
 complete its processing at time \(C_j \), then its
 lateness \(L_j = C_j - d_j \)
• We want to schedule the jobs so as to minimize
 the maximum lateness \(L_{\text{max}} = \max_{j=1}^{n} L_j \).

\[p_1 = 2, \ r_1 = 0, \ p_2 = 1, \ r_2 = 2, \ p_3 = 4, \]
\[r_3 = 1. \] In this schedule, \(C_1 = 2, \ C_2 = 3, \)
and \(C_3 = 7 \)
This problem is NP-hard, and in fact, even deciding if there is a schedule for which
\(L_{\text{max}} \leq 0 \) (can all jobs be completed by their due date) is strongly NP-hard

This is a problem that we often encounter in everyday life, and many of us schedule our lives with the following simple greedy heuristic:
– focus on the task with the earliest due date

We will show that in certain circumstances this is a provably good thing to do

This optimization problem is not particularly amenable to obtaining near-optimal solution

We first provide a good lower bound

Let \(S \) denote a subset of jobs, and let
\[
\begin{align*}
 r(S) &= \min_{j \in S} r_j, \\
 p(S) &= \sum_{j \in S} p_j, \\
 d(S) &= \max_{j \in S} d_j
\end{align*}
\]

Let \(L^*_{\text{max}} \) denote the optimal value

Lemma 2.1: For each subset \(S \) of jobs,
\[
L^*_{\text{max}} \geq r(S) + p(S) - d(S)
\]

Proof: Consider the optimal schedule as one for \(S \). Let \(j \) be the last job in \(S \) to be processed. Since none of the jobs in \(S \) can be processed before \(r(S) \), and in total they require \(p(S) \) time units, it follows that job \(j \) cannot complete any earlier than time \(r(S) + p(S) \). The due date of job \(j \) is \(d(S) \) or earlier, and so the lateness of job \(j \) in this schedule is at least \(r(S) + p(S) - d(S) \); hence, the claim follows. ■
• A job \(j \) is available at time \(t \) if its release date \(r_j \leq t \)

• We consider the following natural algorithm: at each moment that the machine is idle, start processing next an available job with the earliest due date

• This is the earliest due date (EDD) rule

Theorem 2.2: The EDD rule is a 2-approximation algorithm for the problem of minimizing the maximum lateness on a single machine subject to release dates with negative due dates.

Proof: Consider the schedule produced by the EDD rule, and let job \(j \) be a job of maximum lateness in this schedule; that is, \(L_{\text{max}} = C_j - d_j \). Focus on the time \(C_j \) in this schedule; find the earliest point in time \(t \leq C_j \) such that the machine was processing without any idle time for the entire period \([t, C_j) \). Several jobs may be processed in this time interval; we require only that the machine not be idle for some interval of positive length within it. Let \(S \) be the set of jobs that are processed in the interval \([t, C_j) \). We know that just prior to \(t \), none of these jobs were available (and at least one job in \(S \) is available at time \(t \)); hence, \(r(S) = t \).
Furthermore, since only jobs in S are processed throughout this time interval, $p(S) = C_j - t = C_j - r(S)$. Thus, $C_j \leq r(S) + p(S)$; since $d(S) < 0$, we can apply Lemma 2.1 to get that

$$L_{max}^* \geq r(S) + p(S) - d(S) \geq r(S) + p(S) \geq C_j.$$

On the other hand, by applying Lemma 2.1 with $S = \{j\}$,

$$L_{max}^* \geq r_j + p_j - d_j \geq -d_j.$$

Adding the two inequalities, we see that the maximum lateness of the schedule computed is

$$L_{max} = C_j - d_j \leq 2L_{max}^*,$$

which completes the proof of the theorem.

2.2 The k-center problem

- Consider a particular variant of clustering, the k-center problem
- We are given as input an undirected, complete graph $G = (V, E)$, with a distance $d_{ij} \geq 0$ between each pair of vertices $i, j \in V$
- We assume $d_{ii} = 0$, $d_{ij} = d_{ji}$ for each $i, j \in V$
- The distances obey the triangle inequality: for each triple $i, j, l \in V$, it is the case that

$$d_{ij} + d_{ji} \geq d_{ii}$$
Distances model similarity: vertices that are closer to each other are more similar, whereas those farther apart are less similar.

We are also given a positive integer k as input.

The goal is to find k clusters, grouping together the vertices that are most similar into clusters together.

We will choose a set $S \subseteq V$, $|S| = k$, of k cluster centers.

Each vertex will assign itself to its closest cluster center, grouping the vertices into k different clusters.

The objective is to minimize the maximum distance of a vertex to its cluster center.

Geometrically speaking, the goal is to find the centers of k different balls of the same radius that cover all points so that the radius is as small as possible.

More formally, we define the distance of a vertex i from a set $S \subseteq V$ of vertices to be $d(i,S) = \min_{j \in S} d_{ij}$.

Then the corresponding radius for S is equal to $\max_{i \in V} d(i,S)$, and the goal of the k-center problem is to find a set of size k of minimum radius.
We give a greedy 2-approximation algorithm for the k-center problem that is simple and intuitive. Our algorithm first picks a vertex $i \in V$ arbitrarily, and puts it in our set S of cluster centers. Then it makes sense for the next cluster center to be as far away as possible from all the other cluster centers. Hence, while $|S| < k$, we repeatedly find a vertex $j \in V$ that determines the current radius (or in other words, for which the distance $d(j, S)$ is maximized) and add it to S. Once $|S| = k$, we stop and return S.

Algorithm 2.1:
A greedy 2-approximation algorithm for the k-center problem

1. Pick arbitrary $i \in V$
2. $S \leftarrow \{i\}$
3. while $|S| < k$ do
4. $j \leftarrow \arg\max_{j \in V} d(j, S)$
5. $S \leftarrow S \cup \{j\}$
• $k = 3$ and the distances are given by the Euclidean distances between points.
• The nodes 1, 2, 3 are the nodes selected by the greedy algorithm, whereas the nodes $1^*, 2^*, 3^*$ are the three nodes in an optimal solution.

Theorem 2.3: Algorithm 2.1 is a 2-approximation algorithm for the k-center problem.

Proof: Let $S^* = \{j_1, \ldots, j_k\}$ be the optimal solution, and let r^* denote its radius. This solution partitions V into clusters V_1, \ldots, V_k, where each point $j \in V$ is placed in V_i if it is closest to j_i among all of the points in S^* (ties are broken arbitrarily). Each pair of points j and j' in the same cluster V_i are at most $2r^*$ apart: by the triangle inequality, the distance $d_{jj'}$ between them is $\leq d_{jj_i}$, the distance from j to the center j_i, $+ d_{jj_i}'$, the distance from the center j_i to j' (i.e., $d_{jj'} \leq d_{jj_i} + d_{jj_i}'$); since d_{jj_i}' and d_{jj_i}' are each at most r^*, we see that $d_{jj_i} \leq 2r^*$.

\Box
Consider \(S \subseteq V \) selected by the greedy algorithm. If one center in \(S \) is selected from each cluster of the optimal solution \(S^* \), then every point in \(V \) is clearly within \(2r^* \) of some selected point in \(S \).

Suppose then that we select two points within the same cluster. I.e., in some iteration, the algorithm selects \(j \in V_i \), even though it had already selected \(j' \in V_i \) in an earlier iteration. Again, the distance between these two points is \(\leq 2r^* \). We select \(j \) because it is currently the furthest from the points already in \(S \). Hence, all points are within a distance of at most \(2r^* \) of some center already selected for \(S \). This remains true in subsequent iterations. ■

- This result is the best possible; if there exists a \(\rho \)-approximation algorithm with \(\rho < 2 \), then \(P = NP \).

Theorem 2.4: There is no \(\alpha \)-approximation algorithm for the \(k \)-center problem for \(\alpha < 2 \) unless \(P = NP \).