1. Prove or disprove:

(a) Let G be a connected graph. Then, G has a spanning tree that is a binary tree.

(b) Let G be a connected graph where each pair of vertices is connected by an edge, i.e., each pair of vertices is adjacent. Then, G has a spanning tree T in which the distance between any two vertices is at most 2.

2. A complete graph on n vertices, denoted by K_n, is the graph on n vertices having all possible $\binom{n}{2}$ edges. Prove or disprove the following claim. For every $n \geq 2$, every spanning tree T of K_n has the property that any two vertices of T are at a distance at most 2 from each other.

3. Let e be a maximum-weight edge on some cycle of connected graph $G = (V, E)$. Prove that there is a minimum spanning tree of $G' = (V, E - \{e\})$ that is also a minimum spanning tree of G. That is, there is a minimum spanning tree of G that does not include e.

4. Argue that if all edge weights of a graph are positive, then any subset of edges that connects all vertices and has minimum total weight must be a tree. Give an example to show that the same conclusion does not follow if we allow some weights to be nonpositive.