1. Let G be an undirected weighted graph with positive edge weights. Suppose Dijkstra’s algorithm is run on G outputting a shortest path tree T. Prove or disprove:

(a) The shortest path tree T is a spanning tree of G.
(b) The shortest path tree T is a minimum spanning tree of G.

2. Let there be a program which claims to implement Dijkstra’s algorithm. The program produces $v.d$ and $v.\pi$ for each vertex $v \in V$. Give an $O(V + E)$-time algorithm to check the output of the program. It should determine whether the d and π attributes match those of some shortest-path tree. You may assume that all edge weights are nonnegative.

3. For this question, all graphs are unweighted, undirected, and connected with no parallel edges nor self-loops (i.e., simple graphs). Also, every path is simple, i.e., contains no repeated vertices. Using say breadth-first search we can determine the shortest path distance between two distinct vertices s and t in a graph G. But just how many shortest paths can there be between s and t, and how does this affect possible algorithms for related problems? In particular, consider the following.

(a) Show that there is an infinite number of graphs with the following properties:
 - there is exactly one shortest path between s and t,
 - when the shortest path distance between s and t is d, there are no two vertices s' and t' distinct from s and t, respectively, such that $d(s', t') > d$, and
 - the graph is not a simple path $\circ \rightarrow \circ \rightarrow \cdots \rightarrow \circ$ itself.

(b) Show that there is an infinite number of graphs with the following properties:
 - there is at least one pair of distinct vertices s and t such that there is exactly one shortest path between s and t, and
 - the number of simple paths between s and t is at least 16.

(c) Show that there is an infinite number of graphs with the following property:
 - the number of shortest paths between s and t is exponential in V, i.e., the number of vertices. (Hint: for example, come up with an n-vertex graph such that there are $2^{\Theta(n)}$ shortest paths between two vertices s and t).
4.

Based on the previous problem, there are graphs that can have many (shortest) paths between two vertices. Despite this fact, there are efficient algorithms for finding a (shortest) path. Do you find this surprising?

(a) Can you name another problem with similar properties, that is, the number of possible solutions is large (i.e., exponential or non-polynomial in the input size) yet there is a polynomial-time algorithm for the problem?

(b) Finally, consider the problem of enumerating (e.g., listing all) shortest paths between two given vertices s and t in a graph. Is there an efficient, i.e., a polynomial-time algorithm for the problem?