1. Show all legal B-trees of minimum degree 2 that represent \{1, 2, 3, 4, 5\}.

2. As a function of the minimum degree \(t \), what is the maximum number of keys that can be stored in a B-tree of height \(h \)?

3. Explain how to find the minimum key stored in a B-tree and how to find the predecessor of a given key stored in a B-tree.

4. Suppose that we were to implement \texttt{B-Tree-Search} to use binary search rather than linear search within each node. Show that this change makes the CPU time required \(O(\log n) \), independently of how \(t \) might be chosen as a function of \(n \).