1.4 Nonregular Languages

- The number of formal languages over any alphabet (= decision/recognition problems) is uncountable
- On the other hand, the number of regular expressions (= strings) is countable
- Hence, all languages cannot be regular
- Can we find an intuitive example of a nonregular language?
- The language of balanced pairs of parentheses

\[L_{\text{parenth}} = \{ (k)^k \mid k \geq 0 \} \]

Theorem 1.70 (Pumping lemma)

Let \(A \) be a regular language. Then there exists \(p \geq 1 \) (the pumping length) s.t. any string \(s \in A, |s| \geq p \), may be divided into three pieces, \(s = xyz \), satisfying the following conditions:

- \(|xy| \leq p\),
- \(|y| \geq 1\) and
- \(xy^iz \in A \quad \forall i = 0, 1, 2, ...

Proof. Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA that recognizes \(A \) s.t. \(|Q| = p\). When the DFA is computing with input \(s \in A, |s| \geq p \), it must pass through some state at least twice when processing the first \(p \) characters of \(s \). Let \(q \) be the first such state.
Let us choose so that:

- x is the prefix of s that has been processed when M enters q for the first time,
- y is that part of the suffix s that gets processed by M before it re-enters state q, and
- z is the rest of the string s.

Obviously $|xy| \leq p$, $|y| \geq 1$ and $xy^iz \in A$ for all $i = 0, 1, 2, \ldots$

\[\begin{array}{c}
\text{Observe:} \text{ The pumping lemma does not give us liberty to choose } x \text{ and } y \text{ as we please.}
\end{array} \]

Example

Let us assume that L_{parenth} is a regular language.

By the pumping lemma there exists some number p s.t. strings of L_{parenth} of length at least p can be pumped. Let us choose $s = (p)^p$. Then $|s| = 2p > p$.

By Lemma 1.70 s can be divided into three parts $s = xyz$ s.t. $|xy| \leq p$ and $|y| \geq 1$. Therefore, it must be that

- $x = (i \ i \leq p-1$,
- $y = (j \ j \geq 1$, and
- $z = (p-(i+j))p$.

By our assumption $xy^iz \in L_{\text{parenth}}$, for all $k = 0, 1, 2, \ldots$, but for example $xy^0z = xz = (i (p+i))p = (p+j)p \not\in L_{\text{parenth}}$.

Because $p+j \neq p$ since $j \geq 1$.

Hence, L_{parenth} cannot be a regular language.
The main limitation that finite automata have is that they have no (external) means of keeping track of an unlimited number of possibilities; i.e., to count.

Consider the following two languages:

\[C = \{ w \mid w \text{ has an equal number of } 0\text{s and } 1\text{s} \} \]

\[D = \{ w \mid w \text{ has an equal number of occurrences of } 01 \text{ and } 10 \text{ as substrings} \} \]

At first glance, a recognizing machine needs to count in each case.

The language \(C \) contains \(\{ 0^k 1^k \mid k \geq 0 \} \) as a subset and, hence, the nonregularity of \(L_{\text{parenth}} \) proves that of \(C \).

Surprisingly, \(D \) is regular.
Example 1.75

Let $F = \{ ww \mid w \in \{ 0, 1 \}^* \}$. We show that F is not regular.

Assume that F is regular. Let p be the pumping length given by the pumping lemma. Let s be the string 0^p10^p1. Because s is a member of F and it has length more than p, the pumping lemma guarantees that s can be split into pieces $s = xyz$, satisfying the three conditions of the lemma. We show that this outcome is impossible.

Because $|xy| \leq p$, x and y must consist only of 0s, so $xyyz \notin F$.

More exactly, $x = 0^i$, $y = 0^j$, and $z = 0^{p-(i+j)}10^p1$.

Therefore, $xy^2z = xyyz = 0^{i+j}10^p1 = 0^{p+1}10^p1$ which does not belong to F since $0^{p+1}1$ has more zeros than 0^p1 since by pumping lemma $j \geq 1$. Hence, F is not a regular language.

Example 1.77

Let $E = \{ 0^i1^j \mid i > j \}$. We show that E is not regular.

Assume that E is regular. Let p be the pumping length for E given by the pumping lemma. Let s be the string 0^p10^p1. Then s can be split into xyz satisfying the conditions of the pumping lemma.

Because $|xy| \leq p$, x and y must consist only of 0s: $x = 0^i$ and $y = 0^j$.

Let us examine the string $xyyz$ to see whether it can be in E.

Adding an extra copy of y increases the number of 0s. But E contains all strings in 0^*1^* that have more 0s than 1s, so increasing the number of 0s will still give a string in E.

We need to pump down: $xy^0z = xz = 0^{p+1-j}1^p = 0^{p+1}1 \notin E$ since $p+1-j \leq p$ because by assumption $j \geq 1$. Hence, the claim follows.
2. Context-Free Languages

- The language of balanced pairs of parentheses is not a regular one
- On the other hand, it can be described using the following substitution rules
 1. \(S \rightarrow \varepsilon \) and
 2. \(S \rightarrow (S) \)

- These productions generate the strings of the language \(L_{\text{parenth}} \) starting from the start variable \(S \)
 \[
 S \Rightarrow (S) \Rightarrow (((S))) \Rightarrow (((((S)))) = (((())))
 \]

- The string being described is generated by substituting variables one by one according to the given rules
- The string surrounding a variable does not determine the chosen production \(\Rightarrow \) context-free grammar
- One often abbreviates
 \[
 A \rightarrow w_1 \mid \ldots \mid w_k
 \]
 to describe the alternative productions associated with the variable \(A \)
 \[
 A \rightarrow w_1, \ldots, A \rightarrow w_k
 \]
- \(S \rightarrow \varepsilon \mid (S) \)
Simple arithmetic expressions

(E = expression, T = term and F = factor)

\[E \rightarrow E + T \mid T \]
\[T \rightarrow T \times F \mid F \]
\[F \rightarrow (E) \mid a \]

Generation the expression \((a + (a)) \times a\)

\[E \Rightarrow T \Rightarrow T \times F \Rightarrow F \times F \Rightarrow (E) \times F \Rightarrow (E + T) \times F \Rightarrow (T + T) \times F \Rightarrow (F + T) \times F \Rightarrow (a + T) \times F \Rightarrow (a + F) \times F \Rightarrow (a + (E)) \times F \Rightarrow (a + (T)) \times F \Rightarrow (a + (F)) \times F \Rightarrow (a + (a)) \times F \Rightarrow (a + (a)) \times a \]

Definition 2.2 A context-free grammar is a 4-tuple \(G = (V, \Sigma, R, S) \), where
- \(V \) is a finite set called the **variables**,
- \(\Sigma \) is a finite set, disjoint from \(V \), called the **terminals**
- \(V \cup \Sigma \) is the **alphabet** of \(G \),
- \(R \subseteq V \times (V \cup \Sigma)^* \) is a finite set of **rules**, and
- \(S \in V \) is the **start variable**

\((A, w) \in R\) is usually denoted as \(A \rightarrow w \)
Let $G = (V, \Sigma, R, S)$, strings $u, v, w \in (V \cup \Sigma)^*$, and $A \rightarrow w$ a production in R

- uAv yields string uvw in grammar G, written $uAv \Rightarrow_G uvw$
- String u derives string v in grammar G, written $u \Rightarrow_G v$,
 if a sequence $u_1, u_2, \ldots, u_k \in (V \cup \Sigma)^*$ ($k \geq 0$) exists s.t.
 $u \Rightarrow_G u_1 \Rightarrow_G u_2 \Rightarrow_G \ldots \Rightarrow_G u_k \Rightarrow_G v$
- $k = 0$: $u \Rightarrow_G u$ for any $u \in (V \cup \Sigma)^*$

$u \in (V \cup \Sigma)^*$ is a sentential form of G if

$S \Rightarrow_G u$

A sentential form consisting of only terminals $w \in \Sigma^*$ is a sentence of G

- The language of the grammar G consists of sentences
 $L(G) = \{ w \in \Sigma^* | S \Rightarrow_G w \}$

A formal language $L \subseteq \Sigma^*$ is context-free, if it can be generated using a context-free grammar
A context-free grammar is **right-linear** if all its productions are of type $A \rightarrow \epsilon$ or $A \rightarrow aB$

Theorem Any regular language can be generated using a right-linear context-free grammar.

Theorem Any right-linear context-free language is regular.

- Hence, right-linear grammars generate exactly regular languages
- However, there are context-free languages which are not regular; e.g., the language of balanced pairs of parentheses L_{paren}
- Therefore, context-free languages are a proper superset of regular languages

Ambiguity

- The sequence of one-step derivations leading from the start variable S to string w

\[S \Rightarrow w_1 \Rightarrow \ldots \Rightarrow w_k \Rightarrow w \]

is called the derivation of w

In the grammar for arithmetic expressions the sentence $a+a$ can be derived in many different ways:

1. $E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + F \Rightarrow a + a$
2. $E \Rightarrow E + T \Rightarrow E + F \Rightarrow T + F \Rightarrow F + F \Rightarrow F + a \Rightarrow a + a$
3. $E \Rightarrow E + T \Rightarrow E + F \Rightarrow E + a \Rightarrow T + a \Rightarrow F + a \Rightarrow a + a$

- The differences caused by varying substitution order of variables can be abstracted away by examining parse trees
Context-free grammar G is *ambiguous* if some sentence of G has two (or more) distinct parse trees

- Otherwise the grammar is *unambiguous*

- Language that has no unambiguous context-free grammar is *inherently ambiguous*

- E.g. language $\{ a^i b^j c^k \mid i = j \lor j = k \}$ is inherently ambiguous

- An alternative grammar for the simple arithmetic expressions:

 $$ E \rightarrow E + E \mid E \times E \mid (E) \mid a $$
Chomsky Normal Form

Definition 2.8 A context-free grammar is in Chomsky normal form (CNF), if
• At most the start variable S derives the empty string,
• Every rule is of the form $A \rightarrow BC$ or $A \rightarrow a$
 (except maybe $S \rightarrow \epsilon$),
• The start variable S does not appear in the right-hand side of any rule.

Theorem 2.9 Any context-free language is generated by a context-free grammar in CNF.

Proof We convert any grammar into CNF. The conversion has three stages. First, we add a new start variable. Then, we eliminate all ϵ rules and unit rules.
Eliminating ε rules

Lemma Any context-free language can be converted into an equivalent grammar in which at most the start variable derives the empty string.

Proof
Let $G = (V, \Sigma, R, S)$.
Computing the variables of G that derive the empty string:

1. $\text{NULL} = \{ A \in V | A \rightarrow \varepsilon \in R \}$
2. Repeat until set NULL does not change any more:

 $$\text{NULL} += \{ A \in V | A \rightarrow B_1 \ldots B_k \in R, B_i \in \text{NULL} \forall i = 1, \ldots, k \}$$

Each rule $A \rightarrow X_1 \ldots X_k$ in G is replaced by the set of all such rules that are of form $A \rightarrow \alpha_1 \ldots \alpha_k$, where

$$\alpha_i = \begin{cases} X_i & \text{if } X_i \not\in \text{NULL} \\ X_i | \varepsilon & \text{if } X_i \in \text{NULL} \end{cases}$$

In the end we remove all rules that have the form $A \rightarrow \varepsilon$.

If $S \rightarrow \varepsilon$ belongs to the removed rules, we take a new start variable S' for the grammar and give it rules $S' \rightarrow S | \varepsilon$.
Eliminating unit rules

A unit rule has the form $A \to B$, where A and B are variables.

Lemma. Any context-free language can be converted into an equivalent grammar which has no unit rules.

Proof. Let $G = (V, \Sigma, R, S)$. Computing the unit followers for each variable in G:

1. $F(A) = \{ B \in V \mid A \to B \in R \}$
2. Until the F-sets do not change anymore

 $F(A) += \{ F(B) \mid A \to B \in R \}$

In the end we remove all unit rules in G and replace them by all rules of the form $A \to \Omega$, where $B \in F(A)$ and $B \to \Omega$. \Box
Once all ε rules and unit rules have been eliminated, all rules have form $A \rightarrow a$, $A \rightarrow X_1 \ldots X_k$, $k \geq 2$, or $S \rightarrow ε$.

For every $a \in \Sigma$ we add to the grammar the variable C_a and rule $C_a \rightarrow a$.

A rule $A \rightarrow X_1 \ldots X_k$, $k \geq 2$, is replaced by a set of rules

\[
A \rightarrow X'_1 A_1 \\
A_1 \rightarrow X'_2 A_2 \\
\vdots \\
A_{k-2} \rightarrow X'_{k-2} A_{k-1} \\
A_{k-1} \rightarrow X'_{k-1} X'_{k}
\]

where

\[
X'_i = \begin{cases}
X_i & \text{if } X_i \in V \\
C_a & \text{if } X_i = a \in \Sigma
\end{cases}
\]
Algorithm CYK

- The strings of a context-free grammar that has been converted into CNF can be parsed in $\Theta(n^3)$ time using the Cocke-Younger-Kasami algorithm
- In other words, context-free languages can be efficiently recognized
- The operating principle of algorithm CYK is dynamic programming
- For each substring we tabulate those variables from which the substring can be derived from
- If in the end the start variable of the grammar belongs to the set of variables that derive the whole string, the string at hand belongs to the language
2.2 Pushdown Automata

- Pushdown automata are like NFAs, but have an extra component: (an infinite) stack
- We can write a new symbol on the stack at the top by pushing it
- We can read and remove the top symbol from the stack by popping it
- In a pushdown automaton the transitions always also concern the stack
- The stack gives the automaton a "memory" by which we can avoid some of the limitations that finite automata have

Definition 2.13

A pushdown automaton is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where
- Q is the finite set of states,
- Σ is the input alphabet,
- Γ is the stack alphabet,
- $q_0 \in Q$ is the start state,
- $F \subseteq Q$ is the set of accept states, and
- δ is the set-valued transition function:
 $$\delta : Q \times \Sigma \times \Gamma_{\varepsilon} \rightarrow P(Q \times \Gamma_{\varepsilon})$$
In general pushdown automata are nondeterministic:
\[\delta(r, x, a) = \{ (r_1, b_1), \ldots, (r_k, b_k) \} \]

- By reading the input symbol \(x \) and stack symbol \(a \)
- The automaton may transfer from state \(r \) to one of the states \(r_1, \ldots, r_k \), and
- Simultaneously replace the top symbol of the stack by one of the symbols \(b_1, \ldots, b_k \).

1. If \(x = \epsilon \), the automaton transfers without reading an input symbol;
2. If \(a = \epsilon \), the automaton does not read a stack symbol, but writes a new symbol at the top of the stack, leaving the old top symbol as is (push);
3. If \(a \neq \epsilon \) and \(b_i = \epsilon \), the top symbol of the stack is read and removed, but no new symbol is not written in its stead (pop)