AUTOMATA AND LANGUAGES

1.1 Finite Automata

• A system of computation that only has a finite number of possible states can be modeled using a finite automaton
• A finite automaton is often illustrated as a state diagram

\[
\begin{array}{c}
q_0 \xrightarrow{d} q_1 \\
q_2 \xrightarrow{d} q_3 \\
q_4 \xrightarrow{d} q_6 \\
q_5 \xrightarrow{d} q_3 \\
\end{array}
\]

Definition 1.5: Finite Automaton

• A finite automaton is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \), where
 • \(Q \) is a finite set called the states,
 • \(\Sigma \) is a finite set called the alphabet,
 • \(\delta: Q \times \Sigma \rightarrow Q \) is the transition function,
 • \(q_0 \in Q \) is the start state, and
 • \(F \subseteq Q \) is the set of (accepting) final states.

• A machine \(M \) accepts the string \(w = w_1w_2...w_n \in \Sigma^n \) if a sequence of states \(r_0, r_1, ..., r_n \) in \(Q \) exists s.t.
 • \(r_0 = q_0 \)
 • \(\delta(r_i, w_{i+1}) = r_{i+1}, i = 0, ..., n-1 \),
 • \(r_n \in F \).
• The **language recognized** by M is

$$L(M) = \{ w \in \Sigma^* \mid M \text{ accepts } w \}$$

• A language is called a **regular language**, if some finite automaton recognizes it

• Basic operations on languages A and B are

 - **Union**
 $$A \cup B = \{ x \mid x \in A \lor x \in B \},$$

 - **Concatenation**
 $$A \cdot B = \{ xy \mid x \in A \land y \in B \}$$

 - **(Kleene) Star (closure)**
 $$A^* = \{ x_1x_2\ldots x_k \mid k \geq 0 \land x_i \in A \forall i \}$$

Properties of Regular Languages

Theorem 1.25 The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Theorem 1.26 The class of regular languages is closed under the concatenation operation.

DFA = Deterministic Finite Automaton
1.1.1 Minimization of DFAs

- Two automata that recognize exactly the same language are \textit{equivalent} with each other.
- A finite automaton is \textit{minimal} if it has the smallest number of states among equivalent automata.
- An automaton that has more states than in an equivalent minimal automaton is called \textit{redundant}.
- Algorithms producing automata do not always generate a minimal automaton.
- Handling a minimal automaton is more efficient than that of a redundant automaton.

\textbf{Algorithm MINIMIZE}

\textbf{Input:} DFA $M = (Q, \Sigma, \delta, q_0, F)$.
1. Remove all states of M that are unreachable from the start state.
2. Construct the following undirected graph G whose nodes are the states of M.
3. Place an edge in G connecting every accept state with every nonaccept state. Add additional edges as follows.
4. Repeat until no new edges are added to G:
 1. For every pair $q, r \in Q$, $q \neq r$, and every $a \in \Sigma$, add the edge (q, r) to G if $(\delta(q, a), \delta(r, a))$ is an edge of G.
 2. For each state $q \in Q$, let $[q]$ be the collection of states $\{q\} \cup \{r \in Q \mid \text{no edge joins } q \text{ and } r \text{ in } G\}$.
5. Form a new DFA $M' = (Q', \Sigma, \delta', q_0', F')$, where
 - $Q' = \{[q] \mid q \in Q\}$ (removing doubles)
 - $\delta'(q, a) = [\delta(q, a)]$, for every $q \in Q$ and $a \in \Sigma$.
 - $q_0' = [q_0]$ and
 - $F' = \{[q] \mid q \in F\}$.
6. Output M'.
The End Result

- An automaton M' that is equivalent with the input automaton M, such that it has the minimum number of states.
- Automaton M' is unique (up to the naming of the states).

1.2 Nondeterministic Finite Automata (NFAs)

- In an NFA a state can have many possible alternative transitions with the same symbol of the alphabet.
- Also ε-transitions are allowed.
- Implementing nondeterministic behavior is not straightforward (though possible), but as a modeling tool it is quite useful.
- Via NFAs we can connect DFAs and regular expressions.
• The definition of an automaton requires the transition function to be a function.
• On the other hand, in an NFA the transition function should get mapped to a set of values.
• An NFA accepts a string if a sequence of possible states leads to a final state.
 • Only if no such sequence exists will the NFA reject the input string.
• E.g. the previous NFA accepts the string 010110 because it can be processed as follows:

 \[(q_0, 010110) \stackrel{0}{\rightarrow} (q_0, 10110) \stackrel{0}{\rightarrow} (q_3, 0110) \]
 \[(q_3, 110) \stackrel{1}{\rightarrow} (q_3, 10) \stackrel{1}{\rightarrow} (q_3, 0) \stackrel{\epsilon}{\rightarrow} (q_3, \epsilon) \]
Definition of an NFA

- Let $P(A) = \{ B \mid B \subseteq A \}$ denote the power set of the set A and for an alphabet $\Sigma: \Sigma_\varepsilon = \Sigma \cup \{ \varepsilon \}$

- A nondeterministic finite automaton is a 5-tuple $N = (Q, \Sigma, \delta, q_0, F)$
 - Q is a finite set of states,
 - Σ is a finite alphabet,
 - $\delta: Q \times \Sigma_\varepsilon \rightarrow P(Q)$ is the (set-valued) transition function, that also allows ε-transitions
 - $q_0 \in Q$ is the start state, and
 - $F \subseteq Q$ is the set of (accepting) final states

On the other hand, we can end up in a rejecting state:

\[
(q_0, 010110) \overset{0, 1}{\rightarrow} (q_0, 10110) \overset{0}{\rightarrow} (q_2, 0110) \\
\overset{1}{\rightarrow} (q_2, 110) \overset{1}{\rightarrow} (q_0, 10) \overset{0, \varepsilon}{\rightarrow} (q_1, \varepsilon)
\]
The transition function of the previous automaton is

\[
\begin{array}{c|ccc}
 & 0 & 1 & \varepsilon \\
\hline
 q_0 & \{q_0\} & \{q_0, q_1\} & \emptyset \\
 q_2 & \{q_2\} & \emptyset & \{q_2\} \\
 q_2 & \emptyset & \{q_2\} & \emptyset \\
 \hline
 \end{array}
\]

Now we can easily express the error state as an empty set of possible next states.

An NFA \(N = (Q, \Sigma, \delta, q_0, F) \) accepts the string \(w \),
- If we can write it as \(w = y_1 y_2 \ldots y_m \in \Sigma^* \) and a sequence of states \(r_0, r_1, \ldots, r_m \) exists in \(Q \) s.t.
 - \(r_0 = q_0 \)
 - \(r_{i+1} \in \delta(r_i, y_{i+1}), i = 0, \ldots, m-1 \), and
 - \(r_m \in F \).

DFAs are a special case of NFAs →
all languages that can be recognized using the former can also be recognized using the latter.
Also the other way around: DFAs and NFAs recognize the same set of languages.
Theorem 1.39 Let $A = L(N)$ be the language recognized by some NFA N. There exists a DFA M such that $L(M) = A$.

Proof. Let $N = (Q, \Sigma, \delta, q_0, F)$. We construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ that simulates the computation of N in parallel in all its possible states at all times. Let us first consider the easier situation where N has no ϵ arrows.

Every state of M is a set of states of N

$Q' = P(Q)$
$q'_0 = \{ q_0 \}$
$F' = \{ R \in Q' \mid \text{R contains an accept state } r \in F \}$

$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a)$

Without ϵ arrows

\[
\begin{align*}
q_0 \quad 0, 1 &\quad (q_0, q_1) \quad 0, 1 \\
1 &\rightarrow q_1 \quad 0, \epsilon &\rightarrow q_2 \\
1 &\rightarrow q_2 \quad 1 &\rightarrow q_3
\end{align*}
\]
Let us check that \(L(M) = L(N) \). The equivalence of the languages follows when we prove for all \(x \in \Sigma^* \) and \(r \in Q \) that

\[
(q_0, x) \iff_N (r, \varepsilon) \iff (\{q_0\}, x) \iff_M (R, \varepsilon) \quad \text{and} \quad r \in R,
\]

where the notation \((q_0, x) \iff_N (r, \varepsilon)\) means that in automaton \(N \) we can process the string \(x \) starting from state \(q_0 \) so that we end up in state \(r \) and there are no more symbols to process \((\varepsilon) \).

We prove it using induction over the length of the string \(x \):

1. **Basis**: \(|x| = 0 \): \((q_0, \varepsilon) \iff_N (r, \varepsilon) \iff r = q_0 \).
 Similarly \((\{q_0\}, \varepsilon) \iff_M (R, \varepsilon) \iff R = \{q_0\}\)
2. **Induction hypothesis:** the claim holds when \(|x| \leq k\)

3. \(|x| = k+1\): Then \(x = ya\) for some \(y\), \(|y| = k\), for which the claim holds by the induction hypothesis. Now,

\[(q_0, x) = (q_0, ya) \not
\Rightarrow \exists r' \in Q \text{ s.t. } (q_0, y) \not
\Rightarrow \forall y' \in Q \text{ s.t. } (r', a) \not = \forall (r, \varepsilon) \not
= \text{ in one transition}
\Rightarrow \exists r' \in Q \text{ s.t. } (q_0, y) \not
\Rightarrow \forall y' \in Q \text{ s.t. } (r', a) \not = \forall (r, \varepsilon)
\]

By induction hypothesis we get

\[\exists r' \in Q \text{ s.t. } (q_0, y) \not
\Rightarrow \forall y' \in Q \text{ s.t. } (r', a) \not = \forall (r, \varepsilon)
\]

Rearranging yields

\[([q_0], y) \not
\Rightarrow \forall y' \in Q \text{ s.t. } r \in \delta(r', a)
\]

By the definition of the transition function \(\delta'
\]

Let us return \(a\) and name \(\delta'(R', a)

\[([q_0], y) \not
\Rightarrow \forall y' \in Q \text{ s.t. } r \in \delta(r', a)
\]

Concluding

\[([q_0], x) = ([q_0], ya) \not
\Rightarrow \forall y' \in Q \text{ s.t. } r \in R
\]

Which completes the proof of the claim
In order to take the ϵ arrows into account, we compute for each state $R \subseteq Q$ of M the collection of states that can be reached from R by going only along ϵ arrows:

$$E(R) = \{ q \mid q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \epsilon \text{ arrows} \}$$

It is enough to modify the transition function of M and start state to take the ϵ arrows into account:

$$\delta'(R, a) = \bigcup_{r \in E} \delta(r, a)$$

$$q_0' = E(\{q_0\})$$
Theorem 1.45 The class of regular languages is closed under the union operation.

Proof. Let the languages A_1 and A_2 be regular. Then, there exists (nondeterministic) finite automata $N_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$, which recognize these two languages. Let us construct an automaton $N = (Q, \Sigma, \delta, q_0, F)$ for recognizing the language $A_1 \cup A_2$.

- $Q = Q_1 \cup Q_2$
- The start state of N is q_0, $F = F_1 \cup F_2$ and

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a), & q \in Q_1 \\
\delta_2(q, a), & q \in Q_2 \\
\{q_1, q_2\}, & q = q_0 \text{ and } a = \epsilon \\
\emptyset, & q = q_1 \text{ and } a \neq \epsilon
\end{cases}
\]
Theorem 1.47 \textit{The class of regular languages is closed under the concatenation operation.}

\textbf{Proof.} Let the languages A_1 and A_2 be regular. Then, there exists (nondeterministic) finite automata $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, which recognize these two languages.

Let us construct an automaton $N = (Q, \Sigma, \delta, q_1, F)$ for recognizing $A_1 \cdot A_2$.

- $Q = Q_1 \cup Q_2$,
- The start state of N is q_1,
- The final states of N are those in F_2 and

$$
\delta(q, a) = \begin{cases}
\delta_1(q, a), & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a), & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_2(q, a) \cup \{q_2\}, & q \in F_1 \text{ and } a = \varepsilon \\
\delta_2(q, a), & q \in Q_2
\end{cases}
$$

\hfill \square
Theorem 1.49. The class of regular languages is closed under the star operation.

Proof. Let the language A be regular. Then, there exists a (nondeterministic) finite automaton $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, which recognizes the language.

Let us construct an automaton $N = (Q, \Sigma, \delta, q_0, F)$ for recognizing A^*.

- $Q = \{ q_0 \} \cup Q_1$,
- The new start state of N is q_0,
- $F = \{ q_0 \} \cup F_1$ and

\[
\delta(q, a) = \begin{cases}
\delta_1(q, a), & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a), & q \in F_1 \text{ and } a \neq \varepsilon \\
\delta_1(q, a) \cup \{ q_1 \}, & q \in F_1 \text{ and } a = \varepsilon \\
\{ q_1 \} & q = q_0 \text{ and } a = \varepsilon \\
\emptyset & q = q_0 \text{ and } a \neq \varepsilon
\end{cases}
\]