4.2 The Halting Problem

- The technique of diagonalization was discovered in 1873 by Georg Cantor who was concerned with the problem of measuring the sizes of infinite sets.

- For finite sets we can simply count the elements.

- Do infinite sets $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ have the same size?

 - \mathbb{N} is larger because it contains the extra element 0 and all other elements of \mathbb{Z}^+.
 - The sets have the same size because each element of \mathbb{Z}^+ can be mapped to an unique element of \mathbb{N} by $f(z) = z-1$.

- We have already used this comparison of sizes:
 - $|A| \leq |B|$ iff there exists a one-to-one function $f: A \rightarrow B$.
 - One-to-one (injection): $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$.

- We have also examined the equal size of two sets $|A| = |B|$ through a bijective $f: A \rightarrow B$ mapping:
 - Correspondence (bijection) = one-to-one + onto.
 - Onto (surjection): $f(A) = B$ or $\forall b \in B \exists a \in A: b = f(a)$.
 - A bijection uniquely pairs the elements of the sets A and B.

 - $|\mathbb{N}| = |\mathbb{Z}|$.
 - An infinite set that has the same size as \mathbb{N} is countable.
The set of rational numbers
\[Q = \{ \frac{m}{n} \mid m, n \in \mathbb{Z} \land n \neq 0 \} \]

- In between any two integers there is an infinite number of rational numbers
- Nevertheless, \(|Q| = |N| \)

- Mapping \(f : Q \rightarrow \mathbb{Z}^2, f(m/n) = (m, n) \)
 - Integers \(m \) and \(n \) have no common factors!
 - Mapping \(f \) is a one-to-one. Hence, \(|Q| \leq |\mathbb{Z}^2| = |N| \)

- On the other hand, \(N \subseteq Q \Rightarrow |N| \leq |Q| \)

\[\therefore |Q| = |N| \]
Let us assume that the interval $[0, 1[$ is countable and apply Cantor’s diagonalization to the numbers x_1, x_2, x_3, \ldots in $[0, 1[$.

Let the decimal representations of the numbers within the interval be (excluding infinite sequences of 9s)

$$x_i = \sum_{j=1}^{\infty} d_{ij} \cdot 10^{-j}$$

Let us construct a new real number $x = \sum_{j=1}^{\infty} d_j \cdot 10^{-j}$ such that

$$d_j = \begin{cases} 0, & \text{if } d_j > 0 \\ 1, & \text{if } d_j = 0 \end{cases}$$

If, for example

$$x_1 = 0,23246...$$
$$x_2 = 0,30589...$$
$$x_3 = 0,21254...$$
$$x_4 = 0,05424...$$
$$x_5 = 0,99548...$$

then $x = 0,01000...$

Hence, $x \neq x_i$ for all i.

The assumption about the countability of the numbers within the interval $[0, 1[$ is false

$|\mathbb{R}| = |\mathbb{R} [0, 1[^{|} \neq |\mathbb{N}|$
Universal Turing Machines

- The universal language U over the alphabet $\{0, 1\}$ is
 \[U = \{ \langle M, w \rangle \mid w \in L(M) \}. \]

- The language U contains information on all Turing-recognizable language over $\{0, 1\}$:
 - Let $A \subseteq \{0, 1\}^*$ be some Turing-recognizable language and M a standard TM recognizing A. Then
 \[A = \{ w \in \{0, 1\}^* \mid \langle M, w \rangle \in U \}. \]

- Also U is Turing-recognizable.
- Turing machines recognizing U are called universal Turing machines.

Theorem E Language U is Turing-recognizable.

Proof. The following three-tape TM M_U recognizes U

1. First M_U checks that the input cw in tape 1 contains a legal encoding c of a Turing machine. If not, M_U rejects the input
2. Otherwise $w = a_1a_2...a_k \in \{0, 1\}^*$ is copied to tape 2 in the form
 \[00010^{a_1}10^{a_2}10^{a_3}...10^{a_k}10000 \]
3. Now M_U has to find out whether the TM $M (c = \langle M \rangle)$ would accept w. Tape 1 contains the description c of M, tape 2 simulates the tape of M, and tape 3 keeps track of the state of the TM M:
 \[q_i \sim 0^{i+1} \]
4. M_U works in phases, simulating one transition of M at each step

1. First M_U searches the position of the encoding of M (tape 1) that corresponds to the simulated state (tape 3) of M and the symbol in tape 2 at the position of the tape head

2. Let the chosen sequence of encoding be

 $0^{i+1}10^{r+1}10^{s+1}10^{t+1}$,

 which corresponds transition function δ rule

 $\delta(q_i, a_j) = (q_r, a_s, \delta_t)$.

 tape 3: $0^{i+1} \to 0^{r+1}$

 tape 2: $0^{t+1} \to 0^{s+1}$

 In addition the head of tape 2 is moved to the left so that the code of one symbol is passed, if $t = 0$, and to the right otherwise

3. When tape 1 does not contain any code for the simulated state q_i, M has reached a final state. Now $i = k + 1$ or $i = k + 2$, where q_k is the last encoded state. The TM M_U transitions to final state accept or reject.

 Clearly the TM M_U accepts the binary string $\langle M, w \rangle$ if and only if $w \in L(M)$.

 \square
Theorem F Language \(U \) is not decidable.

Proof. Let us assume that \(U \) has a total recognizer \(M_{U^T} \).

Then we could construct a recognizer \(M_D \) for the "diagonal language" \(D \), which is not Turing-recognizable (Lemma D), based on \(M_{U^T} \) and the following total Turing machines:

- \(M_{OK} \) tests whether the input binary string is a valid encoding of a Turing machine
- \(M_{DUP} \) duplicates the input string \(c \) to the tape: \(cc \)

Combining the machines as shown in the next picture, we get the Turing machine \(M_D \), which is total whenever \(M_{U^T} \) is. Moreover,

\[
\begin{align*}
e & \in L(M_D) \\
\Leftrightarrow & \ c \notin L(M_{OK}) \lor cc \notin L(M_{U^T}) \\
\Leftrightarrow & \ c \notin L(M_U) \\
\Leftrightarrow & \ c \in D = \{ c | c \notin L(M) \} \\
\end{align*}
\]

By Lemma D the language \(D \) is not decidable. Hence, we have a contradiction and the assumption must be false. Therefore, there cannot exist a total recognizer \(M_{U^T} \) for the language \(U \). \(\Box \)
Corollary G \(\mathcal{D} = \{ \langle M, w \rangle \mid w \notin L(M) \} \) is not Turing-recognizable.

Proof. \(\mathcal{D} = \mathcal{D} \cup \text{ERR} \), where \(\text{ERR} \) is the easy to decide language:

\[
\text{ERR} = \{ x \in \{0, 1\}^* \mid x \text{ does not have a prefix that is a valid code for a Turing machine} \}.
\]

Counter-assumption: \(\mathcal{D} \) is Turing-recognizable

- Then by Theorem B, \(\mathcal{D} \cup \text{ERR} = \mathcal{D} \) is Turing-recognizable.
- \(U \) is known to be Turing-recognizable (Th. E) and now also \(\mathcal{D} \) is Turing-recognizable. Hence, by Theorem 4.22, \(U \) is decidable.

This is a contradiction with Theorem F and the counter-assumption does not hold. I.e., \(\mathcal{D} \) is not Turing-recognizable. \(\square \)
The Halting Problem is Undecidable

- Analogously to the acceptance problem of DFAs, we can pose the halting problem of Turing machines:

 Does the given Turing machine \(M \) halt on input \(w \) ?

- This is an undecidable problem. If it could be decided, we could easily decide also the universal language

Theorem 5.1

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and halts on input } w \} \]

is Turing-recognizable, but not decidable.

Proof. \(\text{HALT}_{TM} \) is Turing-recognizable: The universal Turing machine \(M_U \) of Theorem E is easy to convert into a TM that simulates the computation of \(M \) on input \(w \) and accepts if and only if the computation being simulated halts.

\(\text{HALT}_{TM} \) is not decidable: counter-assumption: \(\text{HALT}_{TM} = L(M\text{HALT}) \) for the total Turing machine \(M_{\text{HALT}} \).

Now we can compose a decider for the language \(U \) by combining machines \(M_U \) and \(M_{\text{HALT}} \) as shown in the next figure.

The existence of such a TM is a contradiction with Theorem F. Hence, the counter-assumption cannot hold and \(\text{HALT}_{TM} \) is not decidable.

Corollary H \(\bar{U} = \{ \langle M, w \rangle \mid M \text{ is a TM and does not halt on input } w \} \) is not Turing-recognizable.

Proof. Like in corollary G.
A total TM for the universal language U

Chomsky hierarchy

- A formal language L can be recognized with a Turing machine if and only if it can be generated by an unrestricted grammar.

- Hence, the languages generated by unrestricted grammars are Turing-recognizable languages.

- They constitute type 0 languages of Chomsky hierarchy.

- Chomsky’s type 1 languages are the context-sensitive ones. It can be shown that they are all decidable.

- On the other hand, there exists decidable languages, which cannot be generated by context-sensitive grammars.
Halting Problem in Programming Language

The correspondence between Turing machines and programming languages:

All TMs ~ programming language
One TM ~ program
The code of a TM ~ representation of a program in machine code
Universal TM ~ interpreter for machine language

The interpretation of the undecidability of the halting problem in programming languages:

```
There does not exist a Java method, which could decide whether any given Java method M halts on input w`.
```
Let us assume that there exists a total Java method h that returns $true$ if the method represented by string m halts on input w and $false$ otherwise:

$$boolean \ h(String \ m, \ String \ w)$$

Now we can program the method $hHat$

```java
boolean hHat(String m) {
    if (h(m, m))
        while (true);
}
```

Let H be the string representation of $hHat$. $hHat$ works as follows:

$hHat(H)$ halts $\Leftrightarrow h(H, H) = false$ $\Leftrightarrow hHat(H)$ does not halt

5. Reducibility

- The proof of unsolvability of the halting problem is an example of a reduction:
 - a way of converting problem A to problem B in such a way that a solution to problem B can be used to solve problem A
 - If the halting problem were decidable, then the universal language would also be decidable
 - Reducibility says nothing about solving either of the problems alone; they just have this connection
 - We know from other sources that the universal language is not decidable
 - When problem A is reducible to problem B, solving A cannot be harder than solving B because a solution to B gives one to A
 - If an unsolvable problem is reducible to another problem, the latter also must be unsolvable
Non-emptiness Testing for TMs

(Observe that the book deals with E_{TM}.)

The following decision problem is undecidable:

"Does the given Turing machine accept any inputs?"

$NE_{TM} = \{ \langle M \rangle | M \text{ is a Turing machine and } L(M) \neq \emptyset \}$

Theorem (5.2) NE_{TM} is Turing-recognizable, but not decidable

Proof. The fact that NE_{TM} is Turing-recognizable will be shown in the exercises.

- Let us assume that NE_{TM} has a decider MT_{NE}
- Using it we can construct a total Turing machine for the language U
- Let M be an arbitrary Turing machine, whose operation on input w is under scrutiny

Let M^w be a Turing machine that replaces its actual input with the string $w = a_1a_2...a_k$ and then works as M

- Operation of M^w does not depend in any way about the actual input.
 - The TM either accepts or rejects all inputs:

$$L(M^w) = \begin{cases} \{0,1\}^*, & \text{if } w \in L(M) \\ 0, & \text{if } w \not\in L(M) \end{cases}$$
Let M_{ENC} be a TM, which
- Inputs the concatenation of the code $\langle M \rangle$ for a Turing machine M and a binary string w, $\langle M, w \rangle$, and
- Leaves to the tape the code $\langle M^w \rangle$ of the TM M^w

By combining M_{ENC} and the decider M_{TNE}^T for the language NE_{TM}, we are now able to construct the following Turing machine M_{UT}.

The Turing machine M^w
A decider M_U for the universal language U

- M_U is total whenever M_{NE} is, and $L(M_U) = U$ because

$$\langle M, w \rangle \in L(M_U)$$

- However, by Theorem F U is not decidable, and the existence of the TM M_U is a contradiction
- Hence, the language NE_{TM} cannot have a total recognizer M_{NE} and we have, thus, proved that the language NE_{TM} is not decidable.

\Box
TMs Recognizing Regular Languages

Similarly, we can show that recognizing those Turing machines that accept a regular language is undecidable by reducing the decidability of the universal language into this problem.

The decision problem is:

"Does the given Turing machine accept a regular language?"

\[\text{REG}_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \} \]

Theorem 5.3 \text{REG}_{TM} is undecidable.

Proof.

- Let us assume that \text{REG}_{TM} has a decider \(M^{\text{REG}} \)

- Using \(M^{\text{REG}} \) we could construct a decider for the universal language \(U \)

- Let \(M \) be an arbitrary Turing machine, whose operation on input \(w \) we are interested in

- The language corresponding to balanced pairs of parenthesis \(\{ 0^n 1^n | n \geq 0 \} \) is not regular, but easy to decide using a TM

- Let \(M_{\text{parenth}} \) be a decider for the language

- Now, let \(M_{\text{encode}} \) be a TM, which on input \(\langle M, w \rangle \) composes an encoding for a TM \(M^e \), which on input \(x \)
 - First works as \(M_{\text{parenth}} \) on input \(x \).
 - If \(M_{\text{parenth}} \) rejects \(x \), \(M^e \) operates as \(M \) on input \(w \).
 - Otherwise \(M^e \) accepts \(x \)
Deciding a regular language: the TM M^w

Thus, M^w either accepts the regular language $\{0, 1\}^*$ or non-regular $\{0^n1^n \mid n \geq 0\}$.

Accepting/rejecting the string w on M reduces to the question of the regularity of the language of the TM M^w.

$L(M^w) = \begin{cases} \{0, 1\}^* & \text{if } w \in L(M) \\ \{0^n1^n \mid n \geq 0\} & \text{if } w \not\in L(M) \end{cases}$

Let M_{ENC} be a TM, which
- inputs the concatenation of the code $\langle M \rangle$ for a Turing machine M and a binary string w, $\langle M, w \rangle$, and
- leaves to the tape the code $\langle M^w \rangle$ of the TM M^w.

Now by combining M_{ENC} and M_{REG} would yield the following Turing machine M_T^w.

![Diagram of Turing Machine](image)
A decider M_T^T for the universal language U.

- M_T^T is total whenever M'_REG is and $L(M_T^T) = U$, because

$$\langle M, w \rangle \in L(M_T^T) \iff \langle M' \rangle \in L(M'_\text{REG}) = \text{REG}_T$$

- By Theorem F, U is not decidable, and the existence of the TM M_T^T is a contradiction.
- Hence, language REG_T cannot have a decider M'_REG.
- Thus, we have shown that the language REG_T is not decidable.
Rice’s Theorem

- Any property that only depends on the language recognized by a TM, not on its syntactic details, is called a semantic property of the Turing machine.
- E.g.
 - "M accepts the empty string",
 - "M accepts some string" (NE),
 - "M accepts infinitely many strings",
 - "The language of M is regular" (REG) etc.

- If two Turing machines M_1 and M_2 have $L(M_1) = L(M_2)$, then they have exactly the same semantic properties.

More abstractly: a semantic property S is any collection of Turing-recognizable languages over the alphabet $\{0, 1\}$.

- Turing machine M has property S if $L(M) \in S$.
- Trivial properties are $S = \emptyset$ and $S = \text{TR}$.
- Property S is solvable, if language $\text{codes}(S) = \{ \langle M \rangle \mid L(M) \in S \}$ is decidable.

Rice’s theorem. All non-trivial semantic properties of Turing machines are unsolvable.