5. Reducibility

- The proof of unsolvability of the halting problem is an example of a reduction:
 - a way of converting problem A to problem B in such a way that a solution to problem B can be used to solve problem A
 - If the halting problem were decidable, then the universal language would also be decidable
- Reducibility says nothing about solving either of the problems alone; they just have this connection
 - We know from other sources that the universal language is not decidable
- When problem A is reducible to problem B, solving A cannot be harder than solving B because a solution to B gives one to A
 - If an unsolvable problem is reducible to another problem, the latter also must be unsolvable

Non-emptiness Testing for TMs

(Observe that the book deals with E_{TM}.)

The following decision problem is undecidable:

``Does the given Turing machine accept any inputs?"

$NE_{TM} = \{ \langle M \rangle | M$ is a Turing machine and $L(M) \neq \emptyset \}$

Theorem (5.2) NE_{TM} is Turing-recognizable, but not decidable

Proof. The fact that NE_{TM} is Turing-recognizable will be shown in the exercises.
- Let us assume that NE_{TM} has a decider M^{NE}_{TM}
- Using it we can construct a total Turing machine for the language U
- Let M be an arbitrary Turing machine, whose operation on input w is under scrutiny
Let M^w be a Turing machine that replaces its actual input with the string $w = a_1a_2...a_k$ and then works as M.

Operation of M^w does not depend in any way about the actual input.

- The TM either accepts or rejects all inputs:

$$L(M^w) = \begin{cases} \{0,1\}^*, & \text{if } w \in L(M) \\ \emptyset, & \text{if } w \notin L(M) \end{cases}$$

The Turing machine M^w
Let M_{ENC} be a TM, which

• Inputs the concatenation of the code $\langle M \rangle$ for a Turing machine M and a binary string w, $\langle M, w \rangle$, and

• Leaves to the tape the code $\langle M^w \rangle$ of the TM M^w

By combining M_{ENC} and the decider M_{NE} for the language NE_{TM}, we are now able to construct the following Turing machine M_{U^T}

A decider M_{U^T} for the universal language U
• M^r_U is total whenever M^r_{NE} is, and $L(M^r_U) = U$ because

\[
\langle M, w \rangle \in L(M^r_U) \\
\iff \langle M^r \rangle \in L(M^r_{NE}) = \text{NE}_{TM} \\
\iff L(M^r) \neq \emptyset \\
\iff w \in L(M) \\
\iff \langle M, w \rangle \in U
\]

• However, by Theorem G U is not decidable, and the existence of the TM M^r_U is a contradiction

• Hence, the language NE_{TM} cannot have a total recognizer M^r_{NE} and we have, thus, proved that the language NE_{TM} is not decidable.

TM's Recognizing Regular Languages

- Similarly, we can show that recognizing those Turing machines that accept a regular language is undecidable by reducing the decidability of the universal language into this problem

The decision problem is:

"Does the given Turing machine accept a regular language?"

\[\text{REG}_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \} \]

Theorem 5.3 REG_{TM} is undecidable.

Proof.

- Let us assume that REG_{TM} has a decider M^r_{REG}
• Using $M^{\text{REG}}_{\text{REG}}$ we could construct a decider for the universal language U

• Let M be an arbitrary Turing machine, whose operation on input w we are interested in.

• The language corresponding to balanced pairs of parenthesis $\{ 0^n1^n | n \geq 0 \}$ is not regular, but easy to decide using a TM

• Let M_{parenth} be a decider for the language.

• Now, let M_{Encode} be a TM, which on input $\langle M, w \rangle$ composes an encoding for a TM M^w, which on input x

 • First works as M_{parenth} on input x.

 • If M_{parenth} rejects x, M^w operates as M on input w.

 • Otherwise M^w accepts x

Deciding a regular language: the TM M^w
Thus, M^w either accepts the regular language $\{0,1\}^*$ or non-regular $\{0^n1^n | n \geq 0\}$

- Accepting/rejecting the string w on M reduces to the question of the regularity of the language of the TM M^w

$$L(M^w) = \begin{cases} \{0,1\}^* & \text{if } w \in L(M) \\ \{0^n1^n | n \geq 0\} & \text{if } w \notin L(M) \end{cases}$$

- Let M_{ENC} be a TM, which
 - inputs the concatenation of the code $\langle M \rangle$ for a Turing machine M and a binary string w, $\langle M, w \rangle$, and
 - Leaves to the tape the code $\langle M^w \rangle$ of the TM M^w

- Now by combining M_{ENC} and M_{TREG}^R would yield the following Turing machine M_T^f.

A decider M_T^f for the universal language U
• $M_{U'}$ is total whenever M'_{REG} is and $L(M_{U'}) = U$, because

$$\langle M, w \rangle \in L(M_{U'})$$
$$\iff \langle M', w \rangle \in L(M'_{\text{REG}}) = \text{REG}_{TM}$$
$$\iff L(M') \text{ is a regular language}$$
$$\iff w \in L(M)$$
$$\iff \langle M, w \rangle \notin U$$

• By Theorem G, U is not decidable, and the existence of the TM $M_{U'}$ is a contradiction

• Hence, language REG_{TM} cannot have a decider M'_{REG}

• Thus, we have shown that the language REG_{TM} is not decidable.

Rice’s Theorem

• Any property that only depends on the language recognized by a TM, not on its syntactic details, is called a *semantic property* of the Turing machine

• E.g.
 • "M accept the empty string",
 • "M accepts some string" (NE),
 • "M accept infinitely many strings",
 • "The language of M is regular" (REG) etc.

• If two Turing machines M_1 and M_2 have $L(M_1) = L(M_2)$, then they have exactly the same semantic properties.
• More abstractly: a semantic property S is any collection of Turing-recognizable languages over the alphabet \{0, 1\}.

• Turing machine M has property S if $L(M) \subseteq S$.
• Trivial properties are $S = \emptyset$ and $S = \text{TR}$.
• Property S is solvable, if language
 \[\text{codes}(S) = \{ \langle M \rangle \mid L(M) \in S \} \]

 is decidable.

Rice's theorem *All non-trivial semantic properties of Turing machines are unsolvable*

Computation Histories

• The computation history for a Turing machine on an input is simply the sequence of configurations that the machine goes through as it processes the input.

• An accepting computation history for M on w is a sequence of configurations C_1, C_2, \ldots, C_l, where

 • C_1 is the start configuration $q_0 w$,
 • C_l an accepting configuration of M, and
 • each C_i legally follows from C_{i-1} according to the rules of M.

• Similarly one can define a rejecting computation history

• Computation histories are finite sequences — if M doesn’t halt on w, no accepting or rejecting computation history exists for M on w.
Linear Bounded Automata

- A linear bounded automaton (LBA) is a Turing machine that cannot use extra working space.
- It can only use the space taken up by the input.
- Because the tape alphabet can, in any case, be larger than the input alphabet, it allows the available memory to be increased up to a constant factor.
- Deciders for problems concerning context-free languages.
- If a LBA has
 - q states
 - g symbols in its tape alphabet, and
 - an input of length n,
 then the number of its possible configurations is $q \cdot n \cdot g^n$.

Theorem 5.9
The acceptance problem for linear bounded automata

$A_{LBA} = \{ (M, w) \mid M \text{ is an LBA that accepts string } w \}$

is decidable.

Proof. As M computes on w, it goes from configuration to configuration. If it ever repeats a configuration, it will go on to repeat this configuration over and over again and thus be in a loop.

Because an LBA has only $q \cdot n \cdot g^n$ distinct configurations, if the computation of M has not halted in so many steps, it must be in a loop.

Thus, to decide A_{LBA} it is enough to simulate M on w for $q \cdot n \cdot g^n$ steps or until it halts. \square
Theorem 5.10
The emptiness problem for linear bounded automata

\[E_{\text{LBA}} = \{ \langle M \rangle \mid M \text{ is an LBA and } L(M) = \emptyset \} \]

is undecidable.

Proof. Reduction from the universal language (acceptance problem for general TMs).

Counter-assumption: \(E_{\text{LBA}} \) is decidable; i.e., there exists a decider \(M^{\text{ET}} \) for \(E_{\text{LBA}} \).

Let \(M \) be an arbitrary Turing machine, whose operation on input \(w \) is under scrutiny. Let us compose an LBA \(B \) that recognizes all accepting computation histories for \(M \) on \(w \).

Now we can reduce the acceptance problem for general Turing machines to the emptiness testing for LBAs:

\[
\begin{cases}
L(B) \neq \emptyset & \text{if } w \in L(M) \\
L(B) = \emptyset & \text{if } w \notin L(M)
\end{cases}
\]

The LBA \(B \) must accept input string \(x \) if it is an accepting computation history for \(M \) on \(w \).

Let the input be presented as \(x = C_1 \# C_2 \# \cdots \# C_r \).
B checks that x satisfies the conditions of an accepting computation history:

- $C_1 = q_0 w$,
- C_i is an accepting configuration for M; i.e. accept is the state in C_i and
- $C_{i+1} \Rightarrow_M C_i$:
 - configurations C_{i+1} and C_i are identical except for the position under and adjacent to the head in C_{i+1}, and
 - the changes correspond to the transition function of M.

Given M and w it is possible to construct LBA B mechanically.

By combining machines B and M^* as shown in the following figure, we obtain a decider for the acceptance problem of general Turing machines (universal language).

$\langle M, w \rangle \in L(M^*)$
$\iff \langle B \rangle \in L(M^*)$
$\iff L(B) \neq \emptyset$
$\iff w \in L(M)$
$\iff \langle M, w \rangle \in U$

This is a contradiction, and the language E_{LBA} cannot be decidable.
5.3 Mapping Reducibility

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, \text{accept, reject})$ be an arbitrary standard Turing machine.
- Let us define the partial function $f_M : \Sigma^* \rightarrow \Gamma^*$ computed by the TM as follows:

$$f_M(w) = \begin{cases} u, & \text{if } q_0 \xrightarrow{w} u q, \\ q \in \{\text{accept, reject} \} & \\ \text{undefined, otherwise} & \end{cases}$$

- Thus, the TM M maps a string $w \in \Sigma^*$ to the string u, which is the contents of the tape, if the computation halts on w.
- If it does not halt, the value of the function is not defined in w.

A decider M_U for the universal language U
Definition 5.20

- Partial function \(f \) is computable, if it can be computed with a total Turing machine. I.e. if its value \(f(w) \) is defined for every \(w \).

- Let us formulate the idea that problem \(A \) is "at most as difficult as" problem \(B \) as follows:

 - Let \(A \in \Sigma^* \), \(B \in \Gamma^* \) be two formal languages.
 - \(A \) is mapping reducible to \(B \), written \(A \leq_m B \), if there is a computable function \(f: \Sigma^* \to \Gamma^* \) s.t. \(w \in A \iff f(w) \in B \forall w \in \Sigma^* \).
 - The function \(f \) is called the reduction of \(A \) to \(B \).

- Mapping an instance \(w \) of \(A \) computably into an instance \(f(w) \) of \(B \) and
 - "does \(w \) have property \(A \)?" \(\iff \)
 - "does \(f(w) \) have property \(B \)?"
Lemma K For all languages A, B, C the following hold
i. $A \leq_m A$, (reflexive)
ii. if $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$, (transitive)
iii. if $A \leq_m B$ and B is Turing-recognizable, then so is A, and
iv. if $A \leq_m B$ and B is decidable, then so is A

Proof.
i. Let us choose $f(x) = x$ as the reduction.
ii. Let f be reduction of A to B and g a reduction of B to C.
 In other words, $f: A \leq_m B$, $g: B \leq_m C$.

We show that the composite function h, $h(x) = g(f(x))$ is a reduction $h: A \leq_m C$.

1. h is computable: Let M_f and M_g be the total Turing machines
 computing f and g. M_{REW} replaces all symbols to the right of
 the tape head with \square and moves the tape head to the
 beginning of the tape. The total machine depicted in the
 following figure computes function h.

2. h is a reduction:

 $x \in A \quad \Leftrightarrow \quad f(x) \in B$
 $\Leftrightarrow \quad g(f(x)) = h(x) \in C,$

 hence, $h: A \leq_m C$.

iii. (and iv.) Let $f: A \leq_m B$, M_B the recognizer of B and M_f the TM
 computing f. The TM depicted below recognizes language A and it is total whenever M_B is. \square
The TM computing the composite mapping

The TM recognizing A
We have already used the following consequence of Lemma K to prove undecidability.

Corollary 5.23 If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.

Let us call language \(B \subseteq \{0, 1\}^\ast \) TR-complete, if

1. \(B \) is Turing-recognizable (TR), and
2. \(A \leq_m B \) for all Turing-recognizable languages \(A \)

Theorem L The universal language \(U \) is TR-complete.

Proof. We know that \(U \) is Turing-recognizable. Let \(B \) be any Turing-recognizable language. Furthermore, let \(B = L(M_B) \).

Now, \(B \) can be reduced to \(U \) with the function \(f(x) = \langle M_B, x \rangle \), which is clearly computable, and for which it holds

\[
x \in B \iff f(x) = \langle M_B, x \rangle \in U.
\]

\(\Box \)

Theorem M Let \(A \) be a TR-complete language, \(B \) TR, and \(A \leq_m B \). Then also \(B \) is a TR-complete language.

- All "natural" languages belonging to the difference of TR and decidable languages are TR-complete, but it contains also other languages
- The class of TR languages is not closed under complementation, thus it has the dual class

\[
\text{co-TR} = \{ \overline{A} \mid A \in \text{TR} \}
\]

- \(\text{TR} \cap \text{co-TR} = \) decidable languages (by Theorem C, 4.22)
- \(B \subseteq \{0, 1\}^\ast \) is co-TR-complete, if \(B \in \text{co-TR} \) and \(A \leq_m B \) for all \(A \in \text{co-TR} \)
- A language \(A \) is co-TR-complete, if and only if the language \(\overline{A} \) is TR-complete
- Language \(\text{TOT} = \{ \langle M \rangle \mid M \text{ halts on all inputs} \} \) does not belong to either TR or co-TR