1. Give a polynomial reduction of CLIQUE to Vertex Cover (VC).

 Hint: In addition to the graph G of the instance of CLIQUE examine its complement graph \overline{G} that contains the same nodes as G but an edge only if that edge is not in G.

2. Show that 3SAT is polynomial-time reducible to CLIQUE.

 Hint: For each clause of a 3-cnf formula choose into the graph three nodes corresponding to its literals. Connect all other nodes with each other except those corresponding to one clause and nodes that represent complementary literals (e.g. x_1 and \overline{x}_1).

3. Show that the following problem is NP-complete.

 Hitting Set: Given a collection of subsets C_1,\ldots,C_n of a finite set S and a natural number $k \leq n$. Can we choose from S a subset of at most k elements such that it contains at least one member of each subset C_i, $i = 1,\ldots,n$? In other words, does there exist a set $S' \subseteq S$, $|S'| \leq k$, such that $S' \cap C_i \neq \emptyset$ for each C_i, $i = 1,\ldots,n$?

 Hint: Observe that the NP-complete vertex cover problem can be seen as a special case of hitting set in which all sets C_i have two elements (the edges of the graph). Give the required reduction based on this observation.

4. Show that the following problem is NP-complete.

 Knapsack2: Given a set of elements e_1,\ldots,e_k, their sizes $s(e_1),\ldots,s(e_k)$, and values $v(e_1),\ldots,v(e_k)$ as well as numbers S ("the size of the knapsack") and V ("maximum value"). Can one choose a collection of elements e'_1,\ldots,e'_r such that

 $$s(e'_1) + \cdots + s(e'_r) \leq S \text{ and } v(e'_1) + \cdots + v(e'_r) \leq V?$$

 Hint: Give a reduction of the NP-complete subset-sum to knapsack. In the mapping choose $s(e_i) = v(e_i) = n_i$ and numbers S and V suitably.