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ABSTRACT
We present new methods for pointwise spatially-adaptive Þlter-
ing of anisotropic multivariable signals. It is assumed that the ob-
servations are given by a broad class of models with a signal-
dependent variance. The proposed methods are based on the lo-
cal quasi-likelihood, incorporating the directional-windowed local
polynomial approximations (LPA) of the signal. The intersection
of conÞdence intervals (ICI) rule is used in order to determine the
adaptive size of the directional windows. In this way we obtain
multi-directional estimates which are spatially adaptive to unknown
smoothness and anisotropy of the signal. Simulation experiments
conÞrm the advanced performance of these new algorithms.

1. INTRODUCTION

In many applications the observed signal is corrupted by a signal-
dependent noise. The most widely encountered models are Poisson,
Þlm-grain, multiplicative and speckle noise. Their common fea-
ture is that the variance of the noise is directly related to the signal.
There are a number of adaptive approaches to this sort of observa-
tions based on local-statistics� calculation. In particular the Þlters
by Lee [12, 13] and Kuan [11] are well known in the Þeld.
Our approach is based on the ICI rule for pointwise adaptive es-

timation. Originally, the method has been developed for 1D sig-
nals [3, 7]. The idea was generalized for 2D image processing,
where adaptive-size quadrant windows have been used [8]. Signif-
icant improvement of this approach was achieved on the base of
anisotropic directional estimation [9, 2]. Multidirectional sectorial-
neighborhood estimates are calculated for every point and the ICI
rule is exploited for the adaptive selection of the size of each sec-
tor; as a result, the estimator is anisotropic and its support can have
quite an exotic shape. In Figure 1 we show some examples of these
anisotropic neighborhoods for the Lena and Cameraman images.
The developed anisotropic estimates are highly sensitive with re-
spect to change-points, and allow to reveal Þne elements of images
from noisy obervations. In [10] we developed this idea for non-
Gaussian observations using maximum likelihood (ML) estimates.
The contribution of this paper concerns the quasi-likelihood (QL)

approach, which allows to extend our strategy to a much wider class
of non-Gaussian models.
1.1 Quasi-likelihood
There are many practical circumstances in which even though the
full likelihood is unknown, one can still specify the relationship be-
tween the mean and the variance. In this situation, estimation of
the mean intensity (regression, local regression) can be achieved
by replacing the conditional log-likelihood, lnL(z, y), by a quasi-
likelihood function Q(z, y). The QL has been proposed in [17] as
a distribution-free method (note that contrary to it, the maximum
likelihood (ML) is a distribution-based method).
General approach
Let us consider the observations z(x), x ∈Rd , with the expectations
E{z(x)} = y(x), where the errors η(x)= z (x)− y (x) are indepen-
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ρ(y) Q(z, y) Noise model

σ2 −(z− y)2/2σ 2 Gaussian
y/χ , y>0 (z ln y− y)χ , z≥0 Poissonian

y(1− y), 0<y<1 z ln y
1−y + ln(1− y), 0≤z≤1 Bernoulli

y2, y>0 −z/y− ln y, z>0 Gamma

K 2y2α , y>0, α *=1/2,1 y(1−2α)
K 2 ( z

1−2α − y
2−2α ),z≥0 Film-grain

Table 1: Examples of quasi-likelihoods for some common variance
functions ρ(y).

dent and the variance of these observations is modeled as
σ2z (x)= var{z(x)} = var{η(x)} = ρ(y(x)), (1)

ρ being a given positive function of y called the variance func-
tion. For example, we have ρ(y) = (1− y)y and ρ(y) = y for the
Bernoulli and Poisson models respectively. The problem is to re-
construct the signal y from the noisy observations z.

The spatially-varying variance (1) gives the idea that the residu-
als in estimation should be weighted by these variances. The quasi-
likelihood function Q(z, y) is deÞned by the relation [17]:

∂y Q(z, y)= z− y
ρ(y)

. (2)

Naturally, Q(z, y) = ! y−∞ z−u
ρ(u)du+ f (z) (where f is a function

of z, independent of y), but practically, only the score function
∂yQ(z, y) is used in estimation and we do not need to know the
quasi-likelihood Q(z, y).

Examples of Q(z, y) obtained according to (2) and associated
with the variance function ρ in (1) are shown in Table 1. In gen-
eral the QL is developed with connection to a class of exponential
distributions and allows to estimate y when the variance of obser-
vations is a given linear or nonlinear function of y. One may note
that the QL from the Þrst four lines of Table 1 coincide with the log-
likelihoods of the respective models. In fact, the QL and the likeli-
hood are equivalent (i.e. lnL(z, y)= Q(z, y)) for the one-parameter
exponential class of distributions, provided the corresponding deÞ-
nition of the variance function ρ(y) in (2). More details and further
references on the quasi-likelihood can be found in [14, 17, 4, 5, 1].
Nonparametric quasi-likelihood
A local version of the quasi-likelihood is deÞned using the window
function w as weights of the residuals. Then, the local polynomial
approximation (LPA) [1] model yh(x,xs) of the estimated y is de-
Þned by the equation"

s ∂C Q(z (xs) , yh(x, xs))wh(x− xs)= 0, (3)

where yh(x,xs)=CTφh(x�xs) is a LPA of y in a neighborhood of x ,
φ is a polynomial vector, φh(x) = φ(x/h). The scaled window is
wh(x) = w(x/h)/hd with the parameter h deÞning the size of the
window and the scale of the estimate. When the estimate Ĉ of C is
found from (3), it is used for estimation of y at the point x as

ŷh(x)= ĈTφh(0). (4)



Figure 1: Anisotropic local approximations achieved by combin-
ing a number of adaptive-scale directional windows. The examples
show some of these windows selected by the directional LPA-ICI
for the noisy Lena and Cameraman images.

We do not need to know the QL function Q to solve (3), because

∂C Q(z (xs), yh(x,xs))= ∂yh Q(z (xs), yh(x,xs))∂C yh(x,xs)=
= ∂yh Q(z (xs), yh(x,xs))φh(x− xs),

and ∂yQ(z, y) is deÞned in (2). It gives the local QL equations as"
s
z(xs)−yh(x,xs )
ρ(yh(x,xs)) wh(x− xs)φh(x− xs)= 0, (5)

or in the equivalent form"
s
wh(x−xs)φh(x−xs)φTh (x−xs)

ρ(yh(x,xs)) Ĉ =
"

s
z(xs)wh(x−xs)φh(x−xs)

ρ(yh(x,xs)) . (6)

This equation is non-linear on C as the weights 1/ρ depend on it.
Consequently, the estimate of C , as well as of the signal ŷh , are
nonlinear functions of the observations. However, the equation (6)
is linear provided a Þxed value of the weights. This linearity is
exploited in the iteratively reweighted least-squares method [16] -
conventionally applied to this sort of estimates - as well as in our
algorithms.

The local QL estimates (4)-(6) can be used with an LPA of any
order and for any window wh compatible with this order. Thus, it
is quite a general construction applicable to observations character-
ized by a signal dependent variance.

A theoretical study of the accuracy of theQL estimates has been
done. It is shown that the ICI rule is applicable as an adaptive-scale
selector for the QL estimates.

2. QL ANISOTROPIC LPA-ICI ALGORITHMS
We consider the ICI adaptive-scale estimates separately for the
zero- and higher-order LPA. As it is shown in what follows, it cor-
responds to a solution of (5) that is, respectively, shift-invariant and
shift-variant. The higher-order LPA obviously enables a better ap-
proximation of the signal, however, because of the increased com-
plexity due to the shift-variant estimators, it may not be suitable for
practical applications. On the other hand, the simple zero-order (lo-
cally constant) LPA is rather limiting when restoring signals that are
not piecewise-constant. We propose an efÞcient �order-mixture� al-
gorithm, which to some extent retains the advantages andminimizes
drawbacks of the straightforward zero- and higher-order LPA.

The diagram in Figure 2 shows the layout of all three types of
considered algorithms: zero order, higher order, and order-mixture.

2.1 Shift-invariant zero-order estimators: LPA-ICI-AV
The LPA-ICI-AV (adaptive variance) algorithm consists of the fol-
lowing four steps.
(I) CALCULATION OF THE ESTIMATE AND ITS VARIANCE
Let us use the quasi-likelihood equation (6) for zero-order LPA.

It means that the estimate ŷh(x,xs)= Ĉ is constant. Then, the vari-
ance of the observations ρ(yh(x,xs)) is also constant and the solu-
tion of (5) can be given in the explicit form as the weighted mean

ŷh(x)=Ĉ=
"

sz(xs)gh(x�xs)=(ŷh~gh)(x), gh(·)=
wh(·)#
swh(xs)

. (7)

The above formulas deÞne the conventional Nadaraya-Watson con-
volution estimate. Its variance is calculated, using ρ(ŷh(x)) as

σ2ŷh(x)=
"

s ρ(ŷh(xs))g
2
h(x− xs)= (ρ(ŷh)~ g2h)(x). (8)

(II) ADAPTIVE SCALE SELECTION
The estimates ŷh(x) in (7) and the corresponding variances

σ 2ŷh
(x) in (8) are calculated for a set H = {h j }Jj=1 of increasing

scales. The ICI rule [3, 7] is exploited in order to obtain a point-
wise adaptive estimate ŷh+(x), where for every point x an adap-
tive scale h+ (x) ∈ H is used. The ICI rule is as follows. Con-
sider the intersection of conÞdence intervals I j =

$ j
i=1Di , whereDi = [ŷhi (x)�0σ ŷhi , ŷhi (x)+0σ ŷhi ] and 0>0 is a threshold pa-

rameter, and let j+ be the largest of the indexes j for which I j is
non-empty, I j+ *=∅ and I j++1=∅. Then, the adaptive scale h+
is deÞned as h+=hj+ and the adaptive estimate is ŷh+(x).
(III) FUSING OF MULTIPLE DIRECTIONAL ESTIMATES
The anisotropy of the QL estimates is enabled by the convex fus-

ing [9, 2] of a number of adaptive estimates obtained, according to
the above procedure, using windows oriented in different directions.
Figure 1 shows the conical supports of such directional windows.
Let us use the notation ŷ+θk (x) to indicate the adaptive estimate

ŷh+ (x) selected by the ICI rule (step II) from a set {ŷh(x)}h∈H of
estimates obtained (step I) using directional windows oriented to-
wards the direction θk . These two steps are repeated for each spec-
iÞed direction θk , k = 1, . . . ,N . Thus, we have N directional adap-
tive estimates, {ŷ+θk (x)}Nk=1. These directional adaptive estimates
are fused together into the anisotropic estimate ŷ (x):

ŷ(x)=
"

k λk(x)ŷ
+
θk
(x), λk(x)= σ−2ŷ+θk

(x)/
"

iσ
−2
ŷ+θ i
(x). (9)

This fused estimate is a convex linear combination of the directional
ones with data-driven adaptive weights (inverse-variances of the
adaptive estimates). It is anisotropic because a pointwise adaptive
scale h+ = h+ (θk) is used for each speciÞed direction, as shown in
Figure 1. If directional windows of distinct directions do not over-
lap, then the directional estimates are independent and the variance
of the fused estimate (9) is σ 2ŷ(x)= 1/

#
iσ
−2
ŷ+θ i
(x).

(IV) VARIANCE UPDATE
The anisotropic estimate ŷ(x) is used for updating the variances

σ 2ŷh
of the individual estimates ŷh through the variance function ρ.

Insert ŷ(x) in the variance formula (8),
σ2ŷh (x)=

"
s ρ(ŷ(xs))g

2
h(x− xs)= (ρ(ŷ)~ g2h)(x). (10)

and repeat the ICI scale selection (II) and the fusing (III) with these
adjusted values of the variance. This recursive-update procedure is
iterated a few times, up to numerical convergence of the estimates.

In (8) we use the variances ρ(ŷh(xs)) obtained for the scale h
whereas in (10) we use the variances ρ(ŷ(xs)) obtained from the
fused estimate (9). Note that even the simple ρ(z(xs)) can be a
satisfactory inizialization for the recursive algorithm, because these
approximative variances will eventually be updated.

This adaptation of the variance concerns essentially only the
scale selection and the same set of the estimates {ŷh(x)}h∈H (7)
calculated at the Þrst iteration, is used for the following iterations.

2.2 Shift-variant higher-order estimators: LPA-ICI-AVW
A similar, but more soÞsticated approach is performed by the LPA-
ICI-AVW (adaptive variance and weights) algorithm. It differs from
the previous one in the way the estimates of C are calculated. Here
we do not assume that the observations� variance is constant within
the window. Instead, an estimate of the signal is used in order to de-
Þne - through the variance funtion- the variance of the observations.
As result, the nonparametric estimate (6) penalizes those observa-
tions z(xs) that have a higher variance. Since the QL denominator
in (6) is varying, the resulting estimator is no longer shift-invariant.
The LPA-ICI-AVW algorithm is as follows.
(I) CALCULATION OF THE ESTIMATE AND ITS VARIANCE
Let some estimates ŷ(xs) of the signal be known, then

ρ(yh(x,xs)) in the QL equation (6) can be replaced by ρ(ŷ(xs))



Figure 2: Layout of the QL LPA-ICI algorithms. The adaptive-
variance algorithm (LPA-ICI-AV) is shown by the solid lines. The
dashed lines correspond to the additional weights� adaptation (LPA-
ICI-AVW), whereas the dash-dot line is the recursive Þltering in
which the fused estimate is used as the observation data for the fol-
lowing iteration (order-mixture LPA-ICI-AV algorithm).

and the weights in these linear estimates are deÞned. We obtain the
higher-order estimates in the kernel form

ŷh(x)=
"

s z(xs)gh,ρ(x,xs), (11)

with the shift-variant gh,ρ and the variance of ŷh(x) calculated as

gh,ρ(x,xs)= φTh (0)3−1wh(x−xs)ρ(ŷ(xs))
φh(x− xs),

3=#s
wh(x−xs)
ρ(ŷ(xs))

φh(x− xs)φTh (x− xs),
(12)

σ̂2ŷh(x)=
"

s ρ(ŷ(xs))g
2
h,ρ(x,xs). (13)

Varying weights 1/ρ(ŷ(xs)) in (12) may signiÞcantly improve the
estimation. However, convolutions cannot be used anymore for cal-
culations of (11), as the kernels gh,ρ are not shift-invariant. The
corresponding estimates have to be computed for each x in a point-
wise adaptive manner. The computation becomes quite tedious.
The initial estimate ŷ(xs) for ρ(ŷ(xs)) used above can be obtai-

ned either from the LPA-ICI-AV algorithm or by the iteratively
reweighted least-squares method [16].
(II)-(III) ARE EXACTLY AS IN THE LPA-ICI-AV ALGORITHM
(IV) VARIANCE AND WEIGHTS UPDATE
The fused estimate ŷ is used to update the variance ρ(ŷ(xs)).

This updated variance is recursively used in a number of places.
First, it deÞnes new weights for the kernel gh,ρ (12), resulting in
an update of the estimate ŷh(x) in (11). Then, the new ρ(ŷ(xs))
is used in (13) for the calculation of the variance of the estimate
ŷh(x) from (11). The term adaptive variance and weights (AVW)
is used for this recursive procedure as we use the fused improved
estimate - obtained at the stage (III) of every iteration - to update
the weights in (12) as well as the variance in (13). We remark again
that, contrary to the LPA-ICI-AV, the kernels gh,ρ used in the above
estimates are not shift-invariant.

2.3 Order-mixture shift-invariant estimators: OMLPA-ICI-AV
With the intention to combine the improved accuracy of the higher-
order LPA with the computational efÞciency of the shift-invariant
estimators, we developed a combined scheme.

The algorithm uses convex mixtures gλh of zero-order LPA ker-
nels g0h (7) and Þrst-order LPA kernels g

1
h (as in equation (12), but

assuming constant ρ): gλh = (1−λ)g0h+λg1h . These mixtures allow
to achieve a better Þt of the data but, contrary to the pure higher-
order polynomial kernels, they yield estimates with a smaller range
of values. To be precise, the range of ŷλh , ŷ

λ
h = z~gλh , is λ-times the

range of ŷ1h . This allows to reasonably enable the assumption that
the variance ρ(yh) is constant within the support of the windowwh .
Thus, similarly to what was done at the beginning of section 2.1,
the non-parametric QL estimates are obtained by a shift-invariant
kernel: it corresponds to the convolution ŷλh = z~ gλh .

Because of these special kernels, we call this third algorithm an
order-mixture (OM) LPA-ICI-AV algorithm. It follows the layout
of the zero-order LPA-ICI-AV algorithm (shown as the solid line
in Figure 2), using convolutional estimates (I), ICI adaptive-scale

test image noisy Lee NURW ANF OM LPA-ICI-AV

Lena 512×512 1240 � � � 82 (11.8)
Peppers 512×512 1197 � � � 79 (11.8)
Lena 256×256 1239 200 177 151 120 (10.1)
Peppers 256×256 1206 184 160 145 120 (10.0)
Aerial 256×256 766 231 252 179 179 (6.3)
Lena 512×512 1343 � � � 83 (12.1)
Peppers 512×512 1304 � � � 80 (12.1)
Lena 256×256 1346 206 185 160 125 (10.3)
Peppers 256×256 1311 199 169 150 120 (10.4)
Aerial 256×256 828 242 267 188 185 (6.5)
Lena 512×512 4375 � � � 196 (13.5)
Peppers 512×512 4303 � � � 182 (13.7)
Lena 256×256 4349 365 371 381 269 (12.1)
Peppers 256×256 4304 370 372 378 269 (12.0)
Aerial 256×256 1707 348 387 318 329 (7.1)

Table 2: MSE values for different images, noise models, and meth-
ods. In the last column, the value in parentheses is the ISNR (dB).

selection (II), fusing (III) and variance update recursion (IV). Fur-
ther, to achieve an effect similar to the adaptive weighting (12), we
rely (after numerical convergence of the variance) on an additional
recursive adaptive Þltering of the fused anisotropic estimates [2],
shown as the dash-dot line in Figure 2. Indeed, the fusing formula
(9) uses the variance of its addends as denominators, exactly as in
(12). The only difference between the original variance-update iter-
ation (IV) and this recursive Þltering (which is performed after the
numerical convergence of the variance-update iterations), is that,
instead of the pair z and σ 2z = ρ (y), the input variables for the fol-
lowing iteration�s stage (I) are the fused estimate ŷ and its variance
σ 2ŷ , respectively.

3. NUMERICAL EXPERIMENTS
As an illustration of the potential of the proposed approach, we
present some experimental results for three common types of signal-
dependant noise: the �scaled� Poisson noise, z∼P (χy)/χ, χ∈R+,
the Þlm-grain noise, z = y+Kyαη, K,α∈R+ and η∼N (0,1), and
the �multiple-look� speckle noise, z = L−1#L

i=1 y4i , 4i ∼ E (β),
β ∈ R+. The calligraphic letters P, N , and E denote, respec-
tively, the Poisson, Gaussian, and exponential distributions. For the
above observation models, the variance functions ρ (y) = σ2z are
ρ (y)= y/χ , ρ (y)= K 2y2α , and ρ (y)= y2β/L, respectively.

To enable an objective comparison with the many simulations
presented in [15], we set χ = 0.1, K = 3.3, α = 0.5, L = 4, and
β = 1. The true signal y is assumed to have range [0,255]. Note
that in the quasi-likelihood approach, the Poissonian and the Þlm-
grain observations with α = 0.5 are treated identically (up to a mul-
tiplicative factor). Nevertheless, even when K 2 = 1/χ (i.e. when
their corresponding variance functions coincide), their correspond-
ing observations are quite different, because of the different distri-
butions. In particular, Poissonian observations are always integer
and positive, i.e. z ∈ N/λ, whereas Gaussian distributed observa-
tions can take any real value.

In [15], where the main focus is on the adaptive-neighborhood
Þlter (ANF) (a technique which - like ours - is based on anisotropic
adaptation), are also considered the �reÞned� Lee Þlter (Lee) [13]
and the noise-updating repeated Wiener Þlter (NURW) [6]. Table 2
includes the results from [15] and extends them with those obtained
by the proposedOM LPA-ICI-AV method. Comparing theMSE val-
ues given in Table 2, we may note that for the Lena and Pepper
images the developed algorithm gives essentially better results for
all types of noise. For the Aerial image we obtain Þgures which are
very close to the best, given by ANF algorithm. An illustration of
some of these results, attesting the advanced Þltering performance
of our method, is given in Figure 3.

We also show some visual results obtained using real data ac-



Figure 3: Fragments of the noisy and restored images: (from left to right) Poisson Lena, Þlm-grain Aerial, and speckle Peppers 256×256.

Figure 4: Raw data from cameraphone�s CMOS sensor, R chan-
nel, 1ms exposure (left), and reconstructed image using the LPA-ICI
adaptive method with the estimated variance function.

quired using the CMOS sensor of a Nokia cameraphone. The statis-
tical characteristics of the sensor�s raw-data have been studied, and
were found to follow very accurately the observation model (1).
The corresponding variance function ρ (y) has been estimated and
used in the algorithm. In extreme low-light conditions, or for ex-
tremely short exposure-times, the signal-to-noise ratio can be dra-
matically low. Figures 4(left) and 5(top) show, respectively, the
raw data captured in dim light with an exposure time of 1ms, and
the recontructed color-image using the full image-processing chain
(which includes white-balance, color correction, some denoising
and the color-array interpolation). Figures 4(right) and 5(bottom)
show the corresponding results obtained when the raw data is Þl-
tered by the adaptive LPA-ICI method using the estimated variance
function ρ (y): smooth areas are faithfully restored and Þner details
are accurately preserved.

All experiments presented in this paper were produced using
the same algorithm parameters. In particular, in our implementa-
tion, the variance update is performed three times and the recursive
adaptive Þltering is repeated twice. A set H of seven scales is used,
and the anisotropic estimates are obtained by fusing eight direc-
tional adaptive estimates.
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