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reconstruction of this complex-valued wave eld from Gaussian

noisy observations is considered. The problem is formulated as a

multi-objective alternating constrained optimization. The devel-

oped iterative algorithm decouples the inversion of the forward

propagation operator and the ltering of phase and amplitude

of the wave eld. It is demonstrated by simulations that the

performance of the algorithm, both visually and numerically, is

the current state-of-the-art. c° 2011 Optical Society of America

Department of Signal Processing, Tampere University of Technology,

P.O. Box 527, FI-33101 Tampere, Finland

1



¤Corresponding author: vladmir.katkovnik@tut.

OCIS codes: 090.1995, 100.1830 100.3010, 100.3190

1. Introduction

Let us consider a wave eld reconstruction in the following setup. A coherent complex-valued

wave eld propagates from an object plane to a parallel image plane. This free space for-

ward propagation is modeled by the Rayleigh-Sommerfeld di¤raction integral. The problem

is to reconstruct the complex-valued wave eld at the object plane from complex-valued

observations given at the image plane.

Numerical backward propagation operators derived from the Rayleigh-Sommerfeld integral

are the conventional tools for the problem [1,2]. However, it has long been recognized that the

forward propagation cannot be compensated properly by these backward operators. Typi-

cally, obtained reconstructions are rather blurred and exhibit pronounced waves , wiggles

and ringing . The optical di¤raction is one of the main sources of these artifacts.

Mathematically, free space forward propagation operators, mapping an object wave eld

to a nite-size sensor at the image plane, are ill-posed. It follows that no linear operators

exist which are inverse to the forward propagation. It is a fundamental reason why it is not

possible to compensate the forward propagation precisely.

In this paper, we propose a novel inverse imaging technique with the main motivation to

wipe out the mentioned typical artifacts, lter noise (if observations are noisy) and to achieve

crisp imaging. A special sparse modeling is developed for phase and amplitude of the wave

eld at the object plane in order to overcome the loss of information due to the ill-posedness

of the forward propagation operators. This exible and data adaptive modeling relies on the
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recent progress in sparse imaging [3,4].

Being in line with the general formalism of sparse imaging, we develop an original approach

and algorithm which are di¤erent from the main stream of sparse imaging in the following

aspects.

First, to deal with complex-valued wave elds comprehensively, we use separate sparse

modeling for phase and amplitude.

Second, assuming that phase and amplitude can be spatially varying, continuous or dis-

continuous, we apply for their modeling (approximation) novel powerful dictionaries known

as BM3D-frames [5 7]. These frames are derived from the analysis and synthesis procedures

of Block Matching 3D (BM3D) lter, a well-established tool for imaging denoising and other

imaging problems [8 10].

Third, while the conventional sparse imaging uses a single-objective optimization, contrary

to it, the algorithm developed in this paper is based on a multi-objective optimization with

two objective functions minimized alternatingly. The algorithm searches for xed point giving

a balance between two quality measures de ned by these objective functions. This vector

optimization, originated in [6,7], decouples the inversion and ltering operations.

The rest of the paper is organized as follows. In Section 2 we present a basic formalism

of the used wave eld modeling. Spectral representations for phase and amplitude based

on the BM3D-frames are introduced in Section 3. Constrained variational formulations for

phase and amplitude reconstruction are considered in Section 4. The developed algorithm

is presented in Section 5. Numerical experiments demonstrating a very good performance

of the algorithm are discussed in Section 6. The mathematical derivation of the main steps

of the algorithm is given in Appendix. Some preliminary results concerning the proposed
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approach and algorithm have been presented at [11].

2. Image formation

Let 0( ) and ( ) denote complex-valued wave eld distributions at the object and im-

age planes, respectively, given in the lateral coordinates 2 R2. In discrete modeling the

continuous argument is replaced by the digital one with a corresponding replacement of

all continuous distributions by their discrete counterparts: 0( ) ! 0[ ], ( ) ! [ ]

with 2 integer argument . This discretization assumes that wave eld distributions are

pixelated, i.e. pixel-wise invariant.

In what follows we use a vector-matrix notation with 1£ 2 images given as vectors in C ,

= 1 2, where C stands for the space of complex-valued vectors of the length . These

vectors are obtained from the standard matrix representation for images by concatenating

the columns of these matrices. We use bold lower case characters for these vectors. Thus, u0

and u are vectorial representations for 0[ ] and [ ].

The forward propagation of the wave eld from the object plane with a distribution u0

gives a distribution u at the image plane as

u = A ¢ u0, (1)

where A is a discrete forward propagation operator (complex-valued £ matrix, A 2

C £ ).

Eq. (1) corresponds to a discrete convolution of the object distribution u0 with the dif-

fraction kernel of the wave eld propagation operator corresponding to A .

Depending on the used discretization of the Rayleigh-Sommer eld integral the operatorA

in Eq. (1) can be: convolutional [2,12]; angular spectrum decomposition (ASD) [1,2]; discrete
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di¤raction transform (DDT) given in the image domain (M-DDT) [13] or in the Fourier

domain (F-DDT) [14]. The latter DDT models, derived for the Fresnel approximation of the

Rayleigh-Sommer eld integral, enable the precise pixel-to-pixel mapping of any pixelated u0

to he corresponding u .

According to Eq. (1) the observation model with an additive Gaussian noise in the image

(sensor) plane takes the form

y = A ¢ u0 + ", (2)

where the noise " = "1 + "2, " 2 C , is complex-valued, circular, standard Gaussian, i.e.

real and imaginary parts of " are i.i.d. and "1 "2~N (0 I £ ), is the standard deviation.

The naive inverse of A gives û0 = A¡1y as a solution of (2). If A is ill-posed, this

solution is highly sensitive to noise and round errors. The least squares and maximum like-

lihood provide valuable regularized alternatives to this solution (e.g. [15]). Sparse imaging

can be treated as a special regularization technique where the regularization is introduced

through a sparse image modeling.

It is assumed in sparse imaging that there exists a basis consisting of a small number of

items where u0 can be represented exactly or approximately with a very good accuracy. This

ideal basis is a priori unknown and selected from a given set of potential bases (dictionary or

dictionaries). Sparse imaging can be viewed as a parametric approximation of signals with

an adaptive basis selection, one of the classical topics in statistics. The great popularity and

success of sparse imaging are due to the attractive theory, the e¢cient algorithms and the

evidence that the developed formalism ts perfectly to many important applications.

The compressive (or compressed ) sensing (CS ) is one of the elds where the sparse
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imaging techniques are e¢cient. In CS the object distribution u0 is reconstructed from

subsampled data. A total number of available observations can be smaller (much smaller)

than size of u0. It is proved in CS that the perfect reconstruction of u0 from the subsampled

data can be achieved for sparse object distributions [16 18].

The reconstruction of u0 from the observation y in (2) can be treated as a special type of

the CS problems because due to the ill-posedness of A a number of linear independent items

in the vector A ¢ u0 is smaller (even much smaller) than length of this vector. Thus, an ill-

posed blur operator results in the e¤ects which are equivalent to subsampling of observations

in CS.

Recently in optics, sparse imaging has become a subject of multiple applications in the

context of CS. Complex-valued signals and operators are distinctive features of this devel-

opment of CS. Basic facts of the corresponding CS theory, algorithms, simulations as well as

experimental demonstrations can be found [19], where CS is used for sub-wavelength imag-

ing overcoming the di¤raction limitations. The penalization (regularization) for variational

image reconstructions in [19] are formulated using 0- and 1-norms for spectra of object

representations.

We wish to mention also few works on CS which are relevant to our paper. A slice-by-slice

reconstruction of a 3D object from the holographic data is considered in [20] and [21]. In [22]

a maximum likelihood approach is developed for estimation of the object density from 2D

scattered fully developed speckle eld measurements. The total variation (TV) penalization

is exploited as a regularization tool in this inverse imaging.

A compressive Fresnel holography in [23] is developed using a combination of two types

of the penalties 1-norm and TV. It is demonstrated in this paper that the observations are
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redundant and can be considerably down sampled without losing the quality of reconstruc-

tion.

It is assumed in the above cited papers that the wave eld is modeled as a linear combi-

nation of basis functions. Phase and amplitude signals are mixed together in these approxi-

mations. In particular, in [19] the phase issue appears only as a sign of the real-valued wave

eld distribution. The reconstruction of a full range of phase values is not considered.

In our opinion, the only way to the high-accuracy is a nonlinear modeling of the wave eld

with a separate approximation (modeling) for phase and amplitude.

At this point we refer to the work [24], where a strong improvement in CS hyperspectral

imaging is demonstrated due to the quadratic penalization for phase used jointly with the

total variation penalty for the complex valued wave eld. This is a good example of an

e¢cient penalization separate for phase and amplitude.

In our paper we develop a regular general approach to the problem with a high-order

adaptive approximation for phase and amplitude.

3. Sparse modeling for phase and amplitude

3.A. Frames for phase and amplitude

Sparse image approximations can be given in two di¤erent synthesis and analysis forms.

Respectively, as follows:

Y = ª ¢ µ (3)

and

µ = © ¢Y (4)
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Here,Y 2R , µ 2R , and ª and © are transform matrices of the corresponding sizes, £

and £ , respectively. The vector µ, usually called spectrum, gives the parameters for the

parametric approximation of the image Y as Y = ª ¢ µ. Thus, Y =
P

=1ª ¢ µ , where ª

are the columns of the matrix ª, and µ are the items of the vector µ.

If the synthesis de nes the image provided that the spectrum is given, Y = ª ¢ µ, the

analysis de nes the spectrum corresponding to a given image as µ = © ¢Y.

It is recognized that overcomplete representations for Y with À and linearly depen-

dentª form a much more powerful tool for advanced imaging than the classical orthonormal

bases.

The concept of frame is a generalization of these classical bases developed for overcomplete

(synthesis and analysis) representations with linearly dependent approximating functions

(e.g. [25]).

There are special links between the analysis and synthesis frames. The requirement,

ª ¢© = I £ , where I £ is the £ identity matrix, enables a perfect reconstruction

of any Y from the corresponding spectrum µ, indeed Y = ª ¢ µ = ª ¢© ¢Y = Y. For the

so-called tight frames, © ¢© = I £ and ª = © [25].

For details and applications of overcomplete, in particular, frame based modeling for imag-

ing we refer to the recent books [3] and [4].

Modeling of the object wave eld u0 lies at the core of variational approaches to wave

eld imaging. A complex-valued u0 requires distinct modeling for amplitude and phase. For

instance, for the phase modulation the object may have an invariant amplitude and a varying

unknown phase to be reconstructed. Contrary to it the amplitude modulation assumes that

a phase is invariant and amplitude variations are of interest.
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In this paper we apply frames for a sparse modeling of both phase (angle) and amplitude

(modulus) of u0. The following equations link amplitude and phase with the corresponding

transform (spectrum) representations:

abs(u0) = ª ¢ µ , angle(u0) = ª ¢ µ , (5)

µ = © ¢ abs(u0), µ = © ¢ angle(u0), (6)

where µ and µ are vectors of the amplitude and phase spectra, respectively. The modu-

lus and angle operations applied to vectors in (5)-(6) are elements-wise. Thus abs(u0) and

angle(u0) are vectors of amplitude and phase values.

The frame synthesis and analysis matrices ª , © , ª , © are shown with the indices

and ' for amplitude and phase, respectively.

Eqs. (5) de ne the synthesis giving amplitude (abs(u0)) and phase (angle(u0)) from the

amplitude and phase spectra µ and µ . On the other hand, the analysis Eqs. (6) give the

spectra for amplitude and phase of u0.

The 0-norm of the vector µ, denoted by jjµjj0, is de ned as a number of nonzero elements

of the vector. The 1¡norm of µ is de ned as the sum of the absolute values of all items of

this vector, jjµjj1 =
P

jµ j. Both these norms are used in order to characterize sparsity of

approximation. A smaller value of the norm means a higher sparsity of approximation.

It is known, that the variational image reconstructions using 0 and 1¡norms as penalties,

provided some assumptions, give results that are close to each other. This is an important

fact, because it allows to replace the non-convex 0¡norm by the convex 1¡norm in many

variational settings [3] and [4].

In our approach the sparsity is evaluated separately for phase and amplitude by the -
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norms, jjµ jj and jjµ jj , where = 0 1 for the 0¡ and 1¡norms, respectively. Overall, the

main intention is to nd sparsest (shortest) models for phase and amplitude with smallest

values of the -norms.

3.B. BM3D-frames

Recently, within the framework of nonlocal patch-wise image modeling, a family of the BM3D

algorithms has been developed for imaging. BM3D is a nonlocal adaptive technique based

on high-order groupwise models de ned in the 3D transform domain. Below we brie y recall

the basic steps of the BM3D ltering which can be split into three stages [8], [9].

1. Analysis. Similar image blocks are collected in groups in order to obtain highly corre-

lated data. The blocks in each group are stacked together to form a 3-D data array,

which is decorrelated using an invertible 3-D transform.

2. Processing. 3-D group spectra obtained from 3-D data arrays are ltered by threshold-

ing.

3. Synthesis. Filtered spectra are inverted providing estimates for each block in the group.

These blockwise estimates are returned to their original positions in the image, and the

nal image estimate is aggregated by weighted averaging all of the obtained block-wise

estimates.

It is shown in [5,6] that the analysis and synthesis developed in the BM3D lter allow the

corresponding frame analysis and synthesis interpretation. The BM3D analysis and synthesis

operators can be given in the matrix form (3)-(4), linking the image Y 2 R and the

groupwise 3D spectrum vector µ 2 R . The rows of the analysis matrix © constitute a
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frame in R , and the columns of the synthesis matrix ª constitute a frame in R dual to ©.

In the explicit form, these BM3D-frames are presented in [7]. It is proved that the BM3D-

frames are non-tight. It follows that the matrices © and ª do not de ne each other, and

both of them should participate in image reconstruction.

Once BM3D groups are de ned, the operators ©, © , ª and ª can be calculated e¢-

ciently since all of them perform groupwise separable 3-D transforms. To build the groups

the block matching (grouping) procedure from [8] is used. The BM3D-frames are nonlocal

and data adaptive, which make them quite di¤erent from the other popular frames used for

image modeling.

It is demonstrated in [6] and [7], that the BM3D-frames give extraordinary good results

for image deblurring problem.

In this paper we apply these advanced BM3D-frames for modeling phase and amplitude

of u0 as it is shown in Eqs. (5) and (6).

4. Variational formulation of wave eld reconstruction

4.A. Single-objective optimization

One usual approach is to determine a restored image by minimizing a single objective function

consisting of a delity (residual) and regularization terms. For the considered problem the

objective function can be given in the form:

1 jjy ¡A ¢ u0jj22 + ¢ jjµ jj + ¢ jjµ jj (7)

where jj¢jj22 stands for the Euclidean norm, = 2 2, and the -norms de ne regularization

terms for phase and amplitude taken with parameters , 0.
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The quadratic term in Eq. (7) appears due to the assumption that the noise in (2) is a

zero-mean Gaussian. The sparsity assumption implies that phase and amplitude can be well

approximated by spectrum vectors µ and µ with a small number of nonzeros. Thus, we

wish to minimize the norms jjµ jj and jjµ jj in (7).

Using (7) as the objective function and Eqs. (5)-(6) as constraints linking the spectral and

signal variables, the wave eld reconstruction is formalized as the constrained minimization:

(û0 µ̂ , µ̂ ) = (8)

arg min
u0 ,

1 jjy ¡A ¢ u0jj22 + ¢ jjµ jj + ¢ jjµ jj ,

subject to: µ = © ¢ abs(u0), µ = © ¢ angle(u0), (9)

u0 = ª µ ± exp( ª µ ) (10)

The synthesis constraints (5) are given in Eq. (10) in the complex-valued form. Note that in

this formula (±) stands for the Hadamard (elementwise) product of two vectors.

4.B. Multi-objective optimization: decoupling of inversion and ltering

In this paper instead of (8)-(10), we propose an algorithm based on multi-objective optimiza-

tion. This technique is very di¤erent from the conventional settings with a single objective

function. The motivations of this approach are as follows:

(A) The algorithm produces a better imaging and better accuracy than those of the algo-

rithms using the delity and regularization terms together in single-objective optimization.

(B) The algorithm is simple in implementation because the inversion and the ltering

are decoupled. An e¢cient procedure based on Fast Fourier Transform (FFT) is developed

for the inversion step, and an e¢cient algorithm based of hard- and soft- thresholding is
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developed for the phase and amplitude ltering.

The proposed algorithm is based on a joint solution of two optimization problem:

û0 = argmin
u0

1 jjy ¡A ¢ u0jj22, (11)

subject to u0 =ª µ̂ ± exp( ª µ̂ ), (12)

(µ̂ , µ̂ ) = arg min
,

¢ jjµ jj + ¢ jjµ jj (13)

subject to µ = © ¢ abs(û0), µ = © ¢ angle(û0). (14)

In this approach there is no a single criterion function. Instead we are looking for a xed-

point
³
û0 µ̂ , µ̂

´
de ned as a solution of two optimization problem. In (11) the observations

y are tted by selecting an optimal u0 provided the given spectra (µ̂ , µ̂ ), and in (12) the

sparsest spectral model, minimizing ¢jjµ jj + ¢jjµ jj , is selected provided the given û0.

The xed-point
³
û0 µ̂ , µ̂

´
de nes a balance between these two di¤erent and, in general,

alternative goals.

Note also, that minimization of (11) on u0 performs the inversion of the forward propaga-

tion operator provided the given spectra µ̂ , µ̂ , and minimization on µ , µ in (12) performs

the ltering of amplitude and phase provided the given wave eld û0. Thus, as a solution of

(11)-(14), the inversion and ltering are decoupled operations.

The constrained minimizations in (11) and (14) can be replaced by unconstrained ones

using quadratic penalties instead of the constraint equations. In order to do it we introduce

the corresponding two criterion functions

L1(u0 µ , µ ) =
1 jjy¡A ¢ u0jj22 + (15)

1

2 0

jju0 ¡ª µ ± exp( ª µ )jj2, (16)
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and

L2(u0 µ , µ ) = ¢ jjµ jj + ¢ jjµ jj + (17)

1

2
jjµ ¡© ¢mod(u0)jj2 +

1

2
jjµ ¡© ¢ angle(u0)jj2, (18)

for the problems (11)-(12) and (13)-(14), respectively.

Then the constrained optimizations in (11)-(14) are replaced by the following uncon-

strained ones

û0 = argmin
u0

L1(u0 µ̂ , µ̂ ) (19)

(µ̂ , µ̂ ) = arg min
,

L2(û0 µ , µ ).

A replacement of the constraints by the penalties with positive parameters ( 0, and

) is one of the standard tools to deal with the constrained optimization. Larger values

of the penalty factors
1

2
,
1

2
,
1

2 0

mean that in the optimal solutions the corresponding

equalities are ful lled more accurately [26].

The proposed algorithm solving the problem (19) has the following iterative form:

u +1
0 =argmin

u0
L1(u0 µ , µ ) (20)

(µ +1, µ +1) =arg min
,

L2(u +1
0 µ , µ ), (21)

= 0 1

The algorithm (20)-(21) is a generalization of the decoupled inverse imaging developed

in the recent papers [6, 7]. It is demonstrated in these papers that the decoupling applied

together with the BM3D-frame image modeling results in the imaging which is advanced

with respect to that can be achieved using a single-objective optimization. Based on these

promising results we modi ed this technique for the wave eld reconstruction.
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Concerning the theory behind of the proposed algorithm we wish to note that a convergence

in-small (in a small neighborhood of the xed-point (û0, µ̂ , µ̂ ) can be proved for (20)-(21)

using the technique developed in [7].

The algorithm (20)-(21) as well as the constrained minimization in (11)-(14) allow an inter-

esting interpretation in terms of the game theory (e.g. [27,28]). Minimization of L1(u0 µ µ )

on u0 and L2(u0 µ , µ ) on (µ , µ ) can be treated as a game of two players identi ed, re-

spectively, with two groups of variables u0 and µ , µ .

It can be seen that an interaction between these players is noncooperative since the mini-

mization of L1 (u0 µ µ ) on u0, in general, results in increasing of L2(u0 µ , µ ), and the

minimization of L2(u0 µ , µ ) on (µ , µ ) can increase L1 (u0 µ µ ).

The iterative algorithm (20)-(21) models a sel sh behavior of the variables (players) each

minimizing only its own objective function. In the game theory the xed-point (19) is known

as the Nash equilibrium.

5. Algorithm development

5.A. Optimization

Minimization on u0 and µ , µ for (20) and (21) results in solutions which can be given

in analytical forms. The corresponding derivations are presented in Appendix. Using these

results we arrive at the following procedures:

(1) Minimization on µ and µ in (21) gives

µ = Th ¢ f© ¢ abs(u0)g (22)

µ = Th ¢ f© ¢ angle(u0)g
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where Th f¢g stands for the thresholding operator de ned in Appendix, Eq. (35). The

type of the operator (hard- or soft-thresholding) depends on the used norm 0 or 1, is the

thresholding parameter;

(2) Minimization on u0 in (20) gives

u0 = (
1
A A +

1

0

I £ )
¡1(
1
A y+

1

0

v0), (23)

v0 = ª µ ± exp( ª µ ) (24)

as it shown in Appendix, Eq. (31).

The analytical solutions (22) and (23) is an important advantage of the decoupled ap-

proach, where the optimization variables are split in two groups with minimization of L2

with respect to (µ µ ) and L1 with respect to u0. In this formulation the object distribu-

tion u0 depends on phase and amplitude only through v0. This variable splits the image

domain u0 and the spectral domains µ , µ for separate optimization.

5.B. Fourier domain calculations

Eq. (1) is a matrix representation for the convolution of the object signal and the shift-

invariant kernel of the wave eld propagation di¤raction operator. Denote this kernel as

. Computation of the convolution using FFT requires that the computation window size

(support of FFT) be properly selected (e.g. [12]). It is shown in [14] that the computation

window of the double size of the object distribution support is su¢cient for the precise

calculation of F-DDT. We use this result as well as the technique developed for F-DDT in [14]

for the modeling of the forward propagation in our experiments and for implementation of

our algorithm. Note that this technique is developed for the Fresnel approximation of the

Rayleigh-Sommer eld di¤raction integral.
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Let us consider details of these calculations as they are implemented in the proposed

algorithm. Assume that the support of the object distribution 0 is a rectangular aperture

of the size 1 £ 2, and the sensor output has a support of the same size. Introduce a

virtual object aperture of the double size 2 1 £ 2 2.

Let ~0 be a double size extended object distribution de ned on this virtual aperture in

such a way that 0 is located in the central part of the virtual aperture and zero padded

outside 0 up to the size of the virtual aperture.

Introduce also an auxiliary variable 0 of the support 1 £ 2 used in the algorithm.

Similar to ~0 the variable ~0 has the central part equal to 0, and it is zero padded to the

double size 2 1 £ 2 2. In a similar way, ~ has the central part equal to , and it is zero

padded to the double size 2 1 £ 2 2

Introduce a virtual aperture for the sensor which is of the same double size 2 1£2 2. Let

~ be a wave eld distribution de ned for this double size virtual sensor as it is generated by

the wave eld propagated from the object plane. The central part of ~ of the size 1 £ 2

corresponds to the actual sensor with the wave eld distribution = .

Let ~ denote the kernel of the wave eld propagation operator of the size equal to size of

the virtual aperture.

FFT for the introduced double size variables ~0, ~ , ~0, ~ is de ned as ~0( ) = FFT (~0)

~ ( ) = FFT (~ ), ~0( ) = FFT (~0), ~ ( ) = FFT (~ ), where is the 2 integer

frequency. Then corresponding to the vector u in Eq. (1) is calculated according to the

following formulas [14]:

~ ( ) = ~ ( ) ¢ ~0( ), ~ = FFT ¡1( ~ ( )), = ~ ( ) (25)
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where ~ ( ) stands for the central part of ~ of the size 1 £ 2.

The links between the matrix and FFT domain operations for the double size variables

give the precise FFT analog of the matrix formula (23)

(
1 j ~ ( )j2 + 1

0

) ~0( ) =
1 ~¤( ) ~ ( ) +

1

0

~
0, (26)

where (¤) stand for complex conjugate variables.

5.C. Proposed algorithm

For initialization of the algorithm (20)-(21) we use the regularized inverse (RI ) solution 0

calculated as

~ ( ) =
1 ~¤( ) ~ ( ) (

1 j ~( )j2 + 1), (27)

~0 = FFT ¡1( ~ ( )) 0 = ~0 ( ),

where 0 is a regularization parameter.

Using Eqs. (22), (25), (26) and FFT calculations described in Subsection 5.B, the algorithm
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(20)-(21) can be presented in the following form.

SPAR algorithm

Input : ~( ) 0 (28)

Using 0 construct transforms © and ª (29)

Set = 0, 0
0 = 0 , 0 = , (30)

Repeat until convergence :

1. µ =Th ¢ f© ¢ abs(u0)g

2. µ =Th ¢ f© ¢ angle(u0)g

3. v0 =ª µ ± exp( ª µ ),

4. ~ +1 2
0 ( ) = (

1 ~¤( ) ~ ( ) +
1

0

~
0 ) (

1 j ~( )j2 + 1

0

)

5. +1
0 = ~ +1 20 ( ), ~ +1

0 ( ) = FFT (~ +10 )

6. ~ +1( ) = ~( ) ¢ ~ +1
0 ( ), ~ =FFT ¡1( ~ +1( )),

7. ~ +1( ) = , ~ +1( ) = FFT (~ +1)

= + 1.

The upper index 0 0 stands for the iteration number. Bold u0 and v0 denote vectors, while

0 and 0 stand for the corresponding 1 £ 2 images reshaped from u0 and v0.

The frames (transforms) © and ª are constructed at the initial step in line (29) for the

initial estimate 0 and xed through further iterations.

In Steps 1 and 2, Tf¢g means the thresholding operators with the parameters ¢ and

¢ . These elementwise operators are applied to the vectors © ¢abs(u0) and © ¢angle(u0).

The estimates of amplitude µ and phase µ spectra are used for calculation of v0 in
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Step 3.

At Step 4, a preliminary estimate ~ +1 2
0 of the double size object wave eld is updated. At

Step 5, this estimate is zero-padded in the image domain, and the nal double size estimate

is returned in the FFT domain as ~ +1
0 ( ).

The double size estimate ~ ( ) at the sensor plane is calculated at Step 6. The central

part of this estimate is replaced by the given observations at Step 7. Note, that this double

size estimate ~ +1 de nes the essential advantage of the double size virtual sensor utilizing

the estimates outside the actual sensor [14].

We name the proposed algorithm Sparse Phase Amplitude Reconstruction (SPAR).

If the sparse representations and thresholdings (Steps 1,2) are dropped and ~
0 ´ 0 in

Step 4, the proposed algorithm becomes identical to the iterative regularized inverse F-DDT

algorithm from [14]. The spectrum-transform representations of phase and amplitude and

their ltering in SPAR di¤er these algorithms.

6. Numerical experiments

We consider the object wave elds with the amplitude and/or phase modulation in the form

0[ ] = j 0[ ]j ¢exp( ¢ 0[ ]). For the amplitude modulation 0[ ] ´ 0, abs( 0[ ]) = [ ]+ 2.

For the phase modulation abs( 0[ ]) ´ 1, 0[ ] = ( [ ]¡1 2) 5. Here [ ], 0 · [ ] · 1, is

a spatially varying test-image. The results are shown for two square (256£256) test-images:

binary chessboard and gray-scale cameraman.

Pixelated (discrete) models for the object and sensor planes have pixels ¢ £ ¢ with

¢ = 6 7 and 100% ll factors. The wavelength = 532 corresponds to a green laser.

In-focus distance is calculated as = 1 ¢¢2 , 1 = 256 [2].
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The double size F-DDT is used for the forward propagation kernel in the observa-

tion modeling and in the algorithm. This F-DDT technique enables the exact wave eld

propagation for pixelated sensor and object distributions [14].

Comparison of reconstructions obtained using hard- and soft-thresholding ( 0 or 1 norms

for penalization, respectively) is in favor of the formers. In what follows we present results

obtained using the hard-shresholding only.

The parameters of the algorithm are xed as follows: = 1 ¢ = 0 02, ¢ = 0 02,

= 100 For noiseless data 0 = 1 and for noisy data 0 = 1 5. These basic values of

the algorithm s parameters are found experimentally as enabling good performance of the

algorithm in all our experiments. Experimental results are shown for 200 iterations of the

algorithm.

The computational complexity of the algorithm is characterized by the time required for

calculations. For 200 iterations it takes about 100 sec. for the computer and the software

used in the experiments: Intel Core 2Duo E8400 @ 3GHz, RAM 4GB, Windows Xp SP3,

Matlab 7.9.0 (R2009b).

For comparison with respect to the conventional techniques we show the phase and am-

plitude reconstructions obtained using the ASD algorithm.

The presented gures for experimental results are organized in the following way. The rst

line are images for the amplitude and phase reconstructions. The second line shows cross-

sections of these images. The rst column in the gures is for the amplitude reconstructions,

and the second column is for the phase reconstructions.

Following the principle of the reproducible research [29] we make our MAT-

LAB programs for the demo version of SPAR publicly available for testing:
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http://www.cs.tut. /~lasip/DDT/.

6.A. Noiseless data

The results obtained by the ASD algorithm are shown in Fig.1. The phase modulation object

is considered with the chessboard test-image for the phase. Both the amplitude and the

phase reconstructions are seriously damaged by multiple artifacts (wiggles, ringing, waves,

etc.) clearly seen in the cross-sections. This sort of artifacts are typical for all kinds of the

conventional numerical techniques.

Results in Fig.2 are shown for the same data as in Fig.1 but obtained using the proposed

SPAR algorithm. Visually, the reconstruction is perfect for both the amplitude and phase.

In the cross-sections a di¤erence between the reconstructions and the true values of phase

and amplitude is not seen.

As a more di¢cult for reconstruction scenario we consider a complex-valued object where

both the amplitude and phase are spatially varying. For the amplitude modulation we use the

binary chessboard image. For the phase modulation we use the gray scale cameraman. The

results in Fig.3 are obtained by the ASD algorithm. The visual quality of the reconstruction is

very poor: typical artifacts are clearly seen as well as the chessboard squares (from amplitude

modulation) in the phase reconstruction image. Contrary to it the SPAR algorithm (Fig.4)

resolves the phase and the amplitude information perfectly with clear and accurate imaging

for the both variables. In the cross-sections thick ( red in color) and thin ( blue in color)

lines show the true signal and reconstruction, respectively.

The accuracy of the reconstruction is characterized by the root-mean-squared-error

(RMSE) criterion calculated independently for phase and amplitude. The corresponding
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values of RMSE are shown in the gures.

6.B. Noisy data

For the noisy data we use = 02. The results for the gray-scale phase modulation (test-image

cameraman) are shown in Fig.5 and Fig.6 for the ASD and SPAR algorithms, respectively.

The advantage of the SPAR algorithm is obvious visually and numerically. The cross-sections

for the SPAR algorithm show that the high-accuracy reconstructions are obtained for both

the invariant amplitude and the spatially varying phase. For the ASD algorithm the recon-

structions are quite noisy, and the typical artifacts (wiggles and waves) are clearly seen.

6.C. Comparative accuracy

versus the number of iterations are presented in Fig. 7 for the reconstructions

shown in Fig. 1. This curves demonstrate the computational price of the higher accuracy

reconstruction versus the number of iterations. Say, if we stop after 100 iterations we have

= 0 0075, = 0 008 versus = 0 0016, = 0 0016 for 200

iterations. This accuracy improvement can be considered as quite essential. However, the

accuracy after 100 iterations is already very high, and the algorithm can be stopped.

All the above results are obtained for the in-focus distance between the object and sensor

planes.

RMSE values in Tables 1 and 2 demonstrate the comparative accuracy of the ASD and

SPAR algorithms for the in-focus and out-of-focus experiments. The distance between the

image and object planes is calculated as = , where is the in-focus distance and

= 1 2 3 5. The strong advantage of the SPAR algorithm is obvious in all experiments.
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7. Conclusion

Simulation experiments demonstrate a very good performance of the proposed algorithm.

The artifacts typically appeared in the conventional techniques are nearly eliminated. The

accuracy of reconstruction is good for both phase and amplitude of the wave eld in the

object plane. Three components of the proposed approach enable the advance performance

of the algorithm. First, the image modeling and the regularization are separate for phase and

amplitude. Second, the BM3D-frames provide rich and overcomplete adaptive dictionaries for

sparse approximations of phase and amplitude. Third, instead of a single objective function

typical for the conventional sparse imaging techniques we use a vector optimization with two

objective functions. The algorithm searches for a xed point giving a balance between two

quality measures de ned by these objective functions. This vector minimization decouples

the inversion and the ltering operations and results in the iterative algorithm simple in

implementation and highly e¢cient.

The developed algorithm is applicable in various optical setups where the accuracy of

complex-valued wave eld reconstruction is of special interest.
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Appendix: Derivation of the algorithm

Optimization of L1

We use the minimum condition for (20) in the form L1 u¤0 = 0. It gives the equation

linear with respect to u0

1
A (A u0 ¡ y) + 1

0

(u0 ¡ v0) = 0

and the solution in the form

û0 = (
1
A A +

1

0

¢ I £ )
¡1 £ (31)

£[ 1A y+
1

0

v0].

Optimization of L2

Let us consider the optimization problem

min ¢ kµk +
1

2
kµ ¡Bk22 , (32)

where µ 2 R and B 2 R are vectors, and -norm of µ can be kµk0 or kµk1.

Due to the additive nature of the used norm the problem (32) can be solved independently

for each component of the vector µ:

= argmin ¢ k k +
1

2
( ¡B )2 . (33)

There is an analytical solution for (33) known as the hard-and soft-thresholding (or hard-

and soft-shrinkage) operators, respectively for the 0 and 1 norms.

Let us denote this operator as

µ = Th fBg (34)

where B is an input-vector and µ is a solution-vector returned by the operator.
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For 0 and 1 this element-wise operator is speci ed as (e.g. [3])

µ = Th fBg = (35)8>><
>>:

Th fBg = (B) ±max (jBj ¡ 0) , if = 1

Thp
2

fBg = B ± 1
¡
jBj ¸

p
2

¢
, if = 0,

where the indexes 0 0 and 0 0 indicate the type of the solution.

Note that the threshold parameters for the soft- and hard-thresholdings are di¤erent.

The solutions (22) are obtained from (35) and correspond to the minimization of ¢

jjµ jj +
1

2
jjµ ¡© ¢mod(u0)jj2 with respect to µ and the minimization of ¢ jjµ jj +

1

2
jjµ ¡ © ¢ arg(u0)jj2 with respect to µ .
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List of Figure Captions

Fig. 1 The phase modulation object with the binary phase (chessboard test-image), noise-

less data. The reconstruction by the ASD algorithm. In the cross-sections thick ( red in

color) and thin ( blue in color) lines show the true signal and the reconstructions, respec-

tively. RMSE values for the phase and amplitude are shown at the top. The visual quality

of the reconstruction is quite poor: wiggles, waves, etc. are clearly seen.

Fig.2 The phase modulation object with the binary phase (chessboard test-image), noise-

less data. The reconstruction by the proposed SPAR algorithm. The visual quality of the

reconstruction is perfect: wiggles, waves and other artifacts are completely wiped out. In the

cross-sections the di¤erence between the true signal and the reconstructions is not seen.

Fig.3 The amplitude modulation by the binary chessboard test-image and the phase mod-

ulation by the gray-scale spatially varying cameraman test-image, noiseless data. The recon-

struction by the ASD algorithm. In the cross-sections thick ( red in color) and thin ( blue in

color) lines show the true signal and the reconstructions, respectively. The visual quality of

the reconstructions is very poor: artifacts as well as the chessboard squares (from amplitude

modulation) are clearly seen in the phase reconstruction.

Fig.4 The amplitude modulation by the binary chessboard test-image and the phase mod-

ulation by the gray-scale cameraman test-image, noiseless data. The reconstruction by the

proposed SPAR algorithm. The visual quality of the reconstructions is almost perfect. In the

cross-sections a di¤erence between the true signal and the reconstructions is slightly seen

only in the phase reconstruction.
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Fig.5 The phase modulation by the gray-scale cameraman test-image, noisy data. The

reconstruction by the ASD algorithm. In the cross-sections thick ( red in color) and thin

( blue in color) lines show the true signal and the reconstructions, respectively. The visual

quality of the reconstructions is poor: artifacts and noise are well seen.

Fig.6 The phase modulation by the gray-scale cameraman test-image, noisy data. The

reconstruction by the proposed SPAR algorithm. RMSE values for the phase and the ampli-

tude are shown at the top. The visual quality of the reconstruction is quite good: wiggles,

waves, other artifacts and noisy are nearly wiped out. The noise level in the reconstructions

is quite low in comparison with what is achieved in Fig.5.

Fig.7 for the amplitude and phase reconstructions by the proposed SPAR algo-

rithm versus the number of iterations. The phase modulation object with the binary phase

(chessboard test-image), noiseless data.
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List of Table Captions

Table 1. RMSE values for the phase reconstruction. The phase modulation with the

chessboard test-image for the phase. Comparison of the ASD and SPAR algorithms. Noise-

less data.

Table 2. RMSE values for the phase reconstruction. The phase modulation with the

cameraman test-image for the phase. Comparison of the ASD and SPAR algorithms. Noise-

less data.
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Table 1. RMSE values for the phase reconstruction. The phase modulation

with the chessboard test-image for the phase. Comparison of the ASD and

SPAR algorithms. Noiseless data.

n Algorithm

1 0.154 0.0016

2 0.185 0.0212

3 0.206 0.0288

5 0.238 0.0446

Table 2. RMSE values for the phase reconstruction. The phase modulation

with the cameraman test-image for the phase. Comparison of the ASD and

SPAR algorithms. Noiseless data.

n Algorithm

1 0.151 0.011

2 0.182 0.0218

3 0.202 0.0311

5 0.231 0.0417
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ASD, AMPL, RMSE = 0.0775

 

 
ASD, PHASE, RMSE = 0.154
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Fig. 1. The phase modulation object with the binary phase (chessboard test-

image), noiseless data. The reconstruction by the ASD algorithm. In the cross-

sections thick ( red in color) and thin ( blue in color) lines show the true

signal and the reconstructions, respectively. RMSE values for the phase and

amplitude are shown at the top. The visual quality of the reconstruction is

quite poor: wiggles, waves, etc. are clearly seen.
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SPAR, AMPL, RMSE = 0.0016

 

 
SPAR, PHASE, RMSE= 0.0016
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Fig. 2. The phase modulation object with the binary phase (chessboard test-

image), noiseless data. The reconstruction by the proposed SPAR algorithm.

The visual quality of the reconstruction is perfect: wiggles, waves and other

artifacts are completely wiped out. In the cross-sections the di¤erence between

the true signal and the reconstructions is not seen.
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ASD, AMPL, RMSE = 0.0889

 

 
ASD, PHASE, RMSE = 0.243
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Fig. 3. The amplitude modulation by the binary chessboard test-image and the

phase modulation by the gray-scale spatially varying cameraman test-image,

noiseless data. The reconstruction by the ASD algorithm. In the cross-sections

thick ( red in color) and thin ( blue in color) lines show the true signal and the

reconstructions, respectively. The visual quality of the reconstructions is very

poor: artifacts as well as the chessboard squares (from amplitude modulation)

are clearly seen in the phase reconstruction.
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SPAR, AMPL, RMSE = 0.00176

 

 
SPAR, PHASE, RMSE= 0.0114
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Fig. 4. The amplitude modulation by the binary chessboard test-image and

the phase modulation by the gray-scale cameraman test-image, noiseless data.

The reconstruction by the proposed SPAR algorithm. The visual quality of

the reconstructions is almost perfect. In the cross-sections a di¤erence be-

tween the true signal and the reconstructions is slightly seen only in the phase

reconstruction.
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ASD, AMPL, RMSE = 0.072

 

 
ASD, PHASE, RMSE = 0.153
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Fig. 5. The phase modulation by the gray-scale cameraman test-image, noisy

data. The reconstruction by the ASD algorithm. In the cross-sections thick

( red in color) and thin ( blue in color) lines show the true signal and the

reconstructions, respectively. The visual quality of the reconstructions is poor:

artifacts and noise are well seen.
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SPAR, AMPL, RMSE = 0.00369

 

 
SPAR, PHASE, RMSE= 0.0183
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Fig. 6. The phase modulation by the gray-scale cameraman test-image, noisy

data. The reconstruction by the proposed SPAR algorithm. RMSE values for

the phase and the amplitude are shown at the top. The visual quality of

the reconstruction is quite good: wiggles, waves, other artifacts and noisy

are nearly wiped out. The noise level in the reconstructions is quite low in

comparison with what is achieved in Fig.5.
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Fig. 7. for the amplitude and phase reconstructions by the proposed

SPAR algorithm versus the number of iterations. The phase modulation object

with the binary phase (chessboard test-image), noiseless data.
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