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Abstract—The local polynomial approximation (LPA) is a
nonparametric regression technique with pointwise estimation
in a sliding window. We apply the LPA of the argument
of cos and sin in order to estimate the absolute phase from
noisy wrapped phase data. Using the intersection of confidence
interval (ICI) algorithm the window size is selected as adaptive
pointwise varying. This adaptation gives the phase estimate with
the accuracy close to optimal in the mean squared sense. For
calculations we use a Gauss-Newton recursive procedure initiated
by the phase estimates obtained for the neighboring points. It
enables tracking properties of the algorithm and its ability to
go beyond the principal interval [−π, π) and to reconstruct the
absolute phase from wrapped phase observations even when
the magnitude of the phase difference takes quite large values.
The algorithm demonstrates a very good accuracy of the phase
reconstruction which on many occasion overcomes the accuracy
of the state-of-the-art algorithms developed for noisy phase
unwrap. The theoretical analysis produced for the accuracy of the
pointwise estimates is used for justification of the ICI adaptation
algorithm.

Index Terms—Adaptive window size, interferometric imaging,
local polynomial approximation, phase image reconstruction,
phase unwrapping
EDICS: RST-OTHR, GEO

I. INTRODUCTION

A variety of imaging systems deal with phase measure-
ments using coherent radiation in order to illuminate

objects. The reflected scattered return carries information on
the physical and geometrical properties of objects such as
shape, deformation, structure of surface and movement. Two-
dimensional phase estimation has many important applications
in different areas. For instance, in synthetic aperture radar
interferometry the phase value is proportional to a terrain ele-
vation height, in magnetic resonance imaging the phase is used
to measure a magnetic field inhomogeneity. Other examples
are in adaptive optics, diffraction tomography, nondestructive
testing, deformation and vibration measurements (e.g. [1], [2],
[3]).
Common to these applications is that the observations are

periodical functions of the phase which can be interpreted
as the principal phase value, or wrapped phase, defined
on the interval [−π, π). Accordingly, it is impossible to
unambiguously reconstruct the original, nonrestricted values,
hereafter referred to as the absolute phase, unless additional
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assumptions are introduced. If an absolute phase value is
outside the principal interval [−π, π), the observed value is
wrapped into this interval, corresponding to an addition or
subtraction of an integer number of 2π. The wrapped φ and
absolute phase ϕ are linked by the equation ϕ = φ + 2πk,
φ ∈ [−π, π), where k is integer. The wrapping operator is
equivalent to division by module 2π, φ = mod{ϕ+π, 2π}−π,
which separate ϕ on two parts: the fractional part φ and the
integer part defined as 2πk.
Many applications start from estimation of the phase for

the principal interval and further extend these estimates to
nonrestricted values. This last procedure is known as phase
unwrapping. What make this problem more difficult is that the
measured values are usually corrupted by noise. The standard
formulation of the noisy phase unwrapping starts from the
observation model in the form

zφ =W (ϕ+∆ϕ), (1)

where ϕ is the absolute phase,∆ϕ is a random error additive to
ϕ, zφ is the observed noisy wrapped phase. Here W denotes
a wrapping operator transforming the noisy absolute phase
zϕ = ϕ+∆ϕ to the interval [−π, π).
Assume that the observations are given on the regular

2D grid, X = {x, y : x = 1, 2, ...Nx, y = 1, 2, ...Ny}.
The unwrapping problem is to reconstruct the absolute phase
ϕ(x, y) from the wrapped noisy zφ(x, y) provided x, y ∈ X.
There is no one-to-one relation between the wrapped and

unwrapped phase. Surprisingly, differentiation of the obser-
vations can resolve this ambiguity or at least to reduce it.
Assume for a moment that there is no noise in observations,
i.e. zφ = φ =W (ϕ).
Let ∆x and ∆y be difference operators on arguments x

and y respectively: ∆xϕ(x, y) = ϕ(x, y) − ϕ(x − 1, y),
∆yϕ(x, y) = ϕ(x, y)− ϕ(x, y − 1).
Proposition 1 [4]. Assume that the absolute phase ϕ satisfy

to the conditions

−π ≤ ∆xϕ(x, y) < π, − π ≤ ∆yϕ(x, y) < π (2)

then

∆xϕ(x, y) =W (∆xφ(x, y)), ∆yϕ(x, y) =W (∆yφ(x, y)).
(3)

According to Proposition 1 the phase ϕ(x, y) can be re-
stored by a two stage algorithm. First, the differences (deriv-
atives) ∆xϕ(x, y) and ∆yϕ(x, y) are calculated according to
the formula (3). Second, the phase ϕ(x, y) is reconstructed by
summation (integration) of these differences. It gives the phase
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estimate up to an additive constant. The result (3) applied to
the noise data (1) says that by differentiation of the noisy data
and wrapping these derivatives we obtain the derivatives of
the unobserved noisy absolute phase ϕ(x, y)

∆x(ϕ(x, y) +∆ϕ(x, y)) = W (∆xzφ(x, y)), (4)
∆y(ϕ(x, y) +∆ϕ(x, y)) = W (∆yzφ(x, y)).

(2) can be treated as the Nyquist condition stating that
the harmonic signal should be sampled at least twice for
the period. In this case there are no aliasing effects and the
absolute phase can be reconstructed from the samples.
The techniques developed for phase unwrapping can be

roughly separated in two large classes. The algorithms of the
first class use the mentioned above two stage approach with
estimation of the gradient at the first stage and the following
integration of this gradient at the second stage.
There are two main difficulties in this approach. First, the

sampling conditions (2) often are not fulfilled for noisy data.
Then the procedure cannot guarantee a correct phase recon-
struction. Smoothness assumptions imposed on the absolute
phase are used for regularization of the problem in order
to improve the situation. Second, numerical differentiation
as well as numerical integration are not trivial operation for
noisy data. The differentiation results in increasing the noise
level and the integration is an inverse ill-conditined operation
also sensitive to noise. Thus, this two stage procedure should
include filtering attenuating noise effects.
The algorithms of the second class are based on direct

reconstruction of the absolute phase. Some of these algorithms
are simple and unwrap the phase information by adding or
subtracting 2π along the line and row whenever the phase
difference between adjacent pixels is larger than 2π. However,
abrupt phase changes in the absolute phase and experimental
errors result in phase-unwrapping errors. Modified and more
complex versions of the algorithm are based on modeling the
absolute phase surface and include special tests on congruence
of the phase estimate. A lot of methods are developed based
on local and global phase modeling and test criteria.
A comprehensive review of the phase unwrap field is given

in [1]. A recent advance in the area is reviewed in [5]-[9].
Further we highlight briefly some of the basic methods and
recent results in connection to the approach proposed in this
paper.

A. Differentiation-integration methods
If the hypothesis (2) is not fulfilled the integration of the

gradient results are path dependent, i.e. the phase deviation
between two points depends on the integration path linking
these two points. Path following algorithms [10], [11] are
developed for integrations over lines in the wrapped phase
image where the Itoh condition (2) holds and the integration
gives self-consistent results. In branch-cut methods [12] the
integration paths are restricted by cuts, which cannot be
crossed. These cuts are defined as the local inconsistencies
calculated from the discrete derivatives.
An efficient solution to the unwrap problem is the minimum

cost flow algorithm [13]. This algorithm is based on the

consideration that when the condition (2) is violated the
difference between the derivative of the absolute and wrapped
phase is equal to multiples of 2π which should be added to the
measured wrapped phase derivatives to achieve the absolute
phase derivatives. The algorithm chooses these multiples by
minimizing a global least-square norm criterion.

B. Direct phase fit
Another approach to 2-D phase unwrapping is based on

mathematical formulation of the problem with reconstruction
obtained by a constrained or non-constrained global optimiza-
tion. These methods are based on a least square estimate of the
phase by minimizing the squared norm between the derivative
estimate and unknown derivatives of the unwrapped phase
[14], [15]. Non-quadratic norms Lp with p < 2 also used
for this sort of fitting [1], [16], [17] formulated as follows

J =
X
x,y

|W (∆xzφ(x, y))−∆xϕ(x, y)|p + (5)X
x,y

|W (∆yzφ(x, y))−∆yϕ(x, y)|p,

where zφ(x, y) are given data and ϕ is the estimated absolute
phase. Minimizing (5) yields a smooth phase reconstruction
but may have large phase random error in the presence of noise
and phase discontinuities [18]. This unwrapped phase usually
fails the congruence test, which requires that rewrapping the
unwrapped result reproduce the measured phase. In order to
reduce these noise effects a pixel-by-pixel weighting in (5) has
been proposed [19].
The criterion

J = −
X
x,y

λ(x, y) cos(ϕ(x, y)− zφ(x, y)) + (6)

μ

2

X
x,y

[v(x, y)|∆xϕ(x, y)|2 + w(x, y)|∆yϕ(x, y)|2]

is minimized on ϕ in the ZπM algorithm recently proposed
in [5]. Here the first summand is a fidelity term measuring a
data-estimate divergence and the second summand is a penalty
term imposing the smoothness conditions for the estimated
absolute phase ϕ. The ZπM algorithm is recursive with the
unwrapping step minimizing the penalty term with respect to
the integer k in ϕ = φ + 2πk provided that the wrapped
values of the phase are fixed. This step requires a discrete opti-
mization implemented by the network programming technique.
The smoothing step is minimization of (6) with respect to the
wrapped values of the phase provided a given k. The level
of the smoothing is controlled by the regularization parameter
μ and the weights v and w, in particular indicating the ares
where the absolute phase may be discontinuous.

C. Energy minimization
A general non-quadratic version of the penalty term from

(6)

J =
X
x,y

[v(x, y)V (∆xϕ(x, y)) + w(x, y)V (∆yϕ(x, y))] (7)
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is proposed in [9] as a novel energy criterion for phase
unwrapping. Here V is a non-quadratic loss function. Inserting
in (7) ϕ = φ + 2πk with φ given by observations the
unwrapping is reduced to minimization of J on integer k .
This complex combinatorial minimization is solved by the
algorithm which is justified for both convex and non-convex
V . The criterion (7) is argumented in [9] as a prior distribution
for the first-order Markovian random field model for the
absolute phase. For the quadratic V the criterion (7) is
a typical choice appealing to the gaussian distribution. A
motivation behind selection of the non-quadratic V is to make
the solution minimizing J to be sensitive to discontinuities
and irregularities in the absolute phase ϕ.

II. PROPOSED APPROACH

We start from calculation of cos/sin functions of the ob-
served wrapped phase values and replace the original wrapped
phase observations φ by cosφ and sinφ. Because cosφ =
cosϕ and sinφ = sinϕ a difference between wrapped and
unwrapped phases disappears and we use a fit of these trans-
formed observations for the absolute phase reconstruction. The
wrapped phase is discontinuous even for a continuous absolute
phase. It is one of the reasons to work in the phase domain
(using cosφ and sinφ) instead of the original wrapped phase
observations.
It is assumed in our approach that the absolute phase is a

continuous function of the arguments x, y and allows a good
polynomial approximation in a neighborhood of the estimation
point. It is important that the size and possibly the shape of
this neighborhood can be unknown and also is a subject of
estimation.
In general, this approach is from the class of the non-

parametric regression techniques. The algorithm developed
in this paper is based on two independent ideas: local ap-
proximation for design of nonlinear filters (estimators) and
adaptation of these filters to unknown smoothness of the
spatially varying absolute phase. We use local polynomial
approximation (LPA) for approximation and intersection of
confidence intervals (ICI) for adaptation.
In this paper the LPA is applied for direct approximation of

the absolute phase using a polynomial fit in a sliding window.
The window size as well as the order of the polynomial
define the accuracy of this approximation. The window size is
considered as a varying adaptation variable of the algorithm.
The ICI is an adaptation algorithm. It searches for a largest

local window size where the variance and the bias of the
phase estimates are balanced. It is shown that the ICI adaptive
LPA is efficient and allows to get a nearly optimal quality of
estimation in particular for many image processing problems
[20].
The polynomial modeling for the phase unwrap is a popular

idea starting from the work [21], where it has been used
for the global phase fitting. The efficiency of the local phase
fitting is demonstrated in particular in [22], where the phase
unwrapping appeared in connection with two-dimensional
magnetic resonance imaging data. In the paper [23] the linear
local polynomial approximation is developed for height profile

reconstruction from multifrequency InSAR data. In the method
called "local planes parameters estimation" the coefficients
of the LPA are estimated by optimization of the likelihood
criterion. Note that in this paper the efficient unwrap is
achieved due to the multifrequency measurements.
Using the LPA fit for the phase unwrap based on the phase

tracking is a main subject of papers [24] and [25].
The LPA and phase tracking developed in this paper

are original mainly by the adaptive window size selection
making the noise suppression more efficient and the risk of
unwrapping error much lower.
There is a variety of phase observation models depending

on measurement principals where the developed technique is
applicable. Here we wish to mention two basic ones:
(1) Cos/sin observations

u1 = A cosϕ+ n1, u2 = A sinϕ+ n2, (8)

where A is the amplitude of the harmonic phase function, and
n1 and n2 are noises. Then the wrapped phase φ is calculated
according to the formulas

cosφ =
u1p

u21 + u22
, sinφ =

u2p
u21 + u22

. (9)

(2) Phase-shifting observations

ul = A0 +A1 cos(ϕ+ δl) + nl, l = 1, ..., L, (10)

where δl are fixed shifted phases, A0 is a background intensity,
A1 is an amplitude of the harmonic phase function, and nl are
noises.
One of the most popular choices is δl = (l − 1)π/2, l =

1, 2, 3, 4. Then, the intensities A0, A1 and the phase ϕ can be
found with the phase defined according to the formulas

cosφ =
u1 − u3p

(u4 − u2)2 + (u1 − u3)2
, (11)

sinφ =
u4 − u2p

(u4 − u2)2 + (u1 − u3)2
.

A number of phase-shifting observations with different
phase shifts and different number of observations are used
in interferometric measurements ([2], pp. 245-251).
All observation models similar to (9) and (11) can be

represented in the form (1), where zφ is a noisy wrapped phase
and ∆ϕ is an error of the absolute absolute phase ϕ. With
random nl in (8), (10) and possibly random amplitudes A the
error ∆ϕ is random and in general phase dependant.
We assume that the observed data are already in the phase

form (9). As the first step we calculate

z1 = cos(zφ), z2 = sin(zφ) (12)

and call these variables transformed noisy observations. These
noisy input data for the phase unwrap always can be repre-
sented as

z1 = cos(ϕ+∆ϕ), z2 = sin(ϕ+∆ϕ), (13)

where ∆ϕ denotes the error in the absolute phase ϕ caused
by he observation errors in zφ.
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We apply LPA in order to approximate ϕ as an argument
of the harmonic functions in (13). In principal this idea can be
exploited directly in the argument of the wrap operator W in
(1). However, the wrap operator is discontinuous with respect
to ϕ and use of the cos/sin transform allows to replace it by
the smooth differentiable one.
We call the proposed algorithm PhaseLa from "phase

local approximation". The contribution of this paper is a
development of this algorithm. Experiments show that this
novel algorithm demonstrates a very good performance in
comparison with some of the state-of-the-art techniques.
The rest of the paper is organized as follows. Section III

introduces the idea and computational aspects of the LPA for
the pointwise estimation and tracking the varying phase. The
adaptive version of the LPA is introduced in Section IV, where
the ICI rule is presented as the algorithm for the pointwise op-
timization of the window size. Overall the PhaseLa algorithm
organization is discussed in Section V. Simulation experiments
analyzing the accuracy of the proposed algorithm are given in
Section VI. The results are discussed in Section VII.

III. PHASE LPA
Let us recall the basic ideas of LPA (e.g. [20]) and

introduce LPA estimates of the phase. Assume that in some
neighborhood of the point (x, y) the phase ϕ(x, y) can be
represented in the form

ϕ̃(xs, ys|c) = pT (xs, ys)c, (14)

where p = (p1, p2, p3)
T is a vector of the first order poly-

nomials p1 = 1, p2 = x, p2 = y, and c = (c1, c2, c3)
T is a

vector of unknown parameters. The loss function of the local
fit is defined as

Lh(x, y, c) = (15)
1

2

X
s

wh,s{[z1(x+ xs, y + ys)− cos ϕ̃(xs, ys|c)]2+

[z2(x+ xs, y + ys)− sin ϕ̃(xs, ys|c)]2},
wh,s = wh(xs, ys) ≥ 0.

The straightforward manipulations show that this expression
is equivalent to

Lh(x, y, c) =
X
s

wh,s[1−cos(zφ(x+xs, y+ys)−ϕ̃(xs, ys|c))],

(16)
and the fit parameter c is defined as a solution of the
optimization problem

ĉ(x, y) = argmin
c

Lh(x, y, c). (17)

The LPA estimates of the phase ϕ and the first derivatives
ϕ
(1)
x , ϕ(1)y are as follows [20]

ϕ̂(x, y) = ĉ1(x, y), ϕ̂x(x, y) = ĉ2(x, y), ϕ̂y(x, y) = ĉ3(x, y).
(18)

The window wh,s in (16) defines a set of neighborhood
observations and their weights in estimation for x. The window

size (scale) parameter h in wh gives the size of the window
and usually used in the form wh(x, y) = w(x/h, y/h), h > 0.
In particular, for the square uniform window w = 1 for

|x| ≤ 1, |y| ≤ 1 and w = 0 otherwise, it means that wh = 1
for |x| ≤ h, |y| ≤ h and wh = 0 otherwise. A smaller or
larger h narrows or widens the window wh, respectively.
The window function wh can be symmetric or non-

symmetric with respect to the origin point x = 0, y = 0.
It is assumed that the size of the support of wh is larger then
three (number of the parameters in c to be found).
The formula (18) shows that we obtain simultaneously the

estimates of the phase ϕ̂ and the instantaneous spatial fre-
quencies ϕ̂x and ϕ̂y. These estimates depend of the coordinate
(x, y) and the window size h.
We wish to emphasize the nonparametric nature of the

introduced estimates as the polynomial approximation (14)
is used only for a single "central" point xs = ys = 0. For
the phase it gives ϕ̂(x, y) = ϕ̃(0, 0|c) = ĉ1(x, y), and for
the derivatives ϕ̂x(x, y) = ∂ϕ̃(x, y|c)/∂x|x=0,y=0 = ĉ2(x, y),
ϕ̂y(x, y) = ∂ϕ̃(x, y|c)/∂y|x=0,y=0 = ĉ3(x, y). The result of
this pointwise use of LPA is that the parametric estimate (14)
becomes nonparametric ones, i.e. ϕ̂(x, y) is a nonlinear with
respect to x and y sometimes more depending on the data
than on the order of the used approximation. All ideas of the
standard LPA concerning the window w (shape, anisotropy,
directionality, etc.), the scaling h (scalar, multivariate), es-
timation of the signal and derivatives [20] are valid in the
considered nonparametric pointwise estimation of the phase.
Here we discuss the linear first order LPA as it is used

in the forthcoming simulation experiments. A generalization
to higher or lower degrees of polynomials in the model
(14) or to the basis functions different from polynomials is
straightforward.

A. Pointwise estimate calculation
Minimization of Lh(x, y, c) non-quadratic with respect

to c cannot be expressed in an analytical form and re-
quires numerical recursive calculations using the vector-
gradient: ∂cLh(x, y, c) = (∂ciLh(x, y, c))M×1, and the
second derivative (Hessian) matrix: ∂c∂cTLh(x, y, c) =
(∂ci∂cjLh(x, y, c))M×M . Here we use M to denote the di-
mension of the vector c with M = 3 for the the considered
particular case.
A gradient descent recursive procedure for (17) has the

standard form (e.g. [26], [27], [28])

c(k+1) = c(k) − γkA
(k)∂cLh(x, y, c

(k)), k = 0, 1, ..., (19)

where c(k) are successive iterations of c, and the gradient
∂cLh is calculated for c = c(k).
The possible procedures are different by an M ×M weight

matrix A(k) and a step size parameter 0 < γk ≤ 1:
1) Simple gradient descent. The identity matrix is used for
A(k), A(k) = IM×M . The convergence rate is linear,
||c∗ − c(k+1)|| ≤ qk||c∗ − c(k)||, characterized by the
parameter qk, 0 ≤ qk < 1. Here c∗ is a vector of the
optimal values of c minimizing Lh(x, y, c). The step
size parameter γk = γ is selected in order to enable the
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convergence of the iterations, qk < 1. A main drawback
of the algorithm is a low convergence rate as qk is close
to 1 if the Hessian matrices ∂c∂cTLh(x, c(k)) are ill-
conditioned.

2) Newton method. The inverse Hessian matrix is used for
A(k),

A(k) = (∂c∂cTLh(x, y, c
(k)))−1. (20)

Here we assume that A(k) is inverse or pseudo-inverse
of theM×M matrix ∂c∂cTLh(x, c(k)).The convergence
is quadratic, ||c∗ − c(k+1)|| ≤ qk||c∗ − c(k)||2, qk > 0.
This convergence rate is very good but the algorithm is
sensitive with respect to initialization. For the quadratic
convergence a good initial guess c(0) is required.

3) Gauss-Newton method. The A(k) in (19) is a special
approximation of the inverse Hessian matrix. The con-
vergence rate is linear but with small qk. The conver-
gence rate is comparatively insensitive with respect to
the initialization.

In our experiments we use the Gauss-Newton algorithm for
calculation of the estimates as the most practically efficient
one.

The straightforward manipulations give the vector-gradient
and the Hessian matrix in the form:

∂cLh =
X
s

wh,s sin(zφ(x+xs, y+ys)−ϕ̃(xs, ys|c))p(xs, ys),

(21)

H = ∂c∂cTLh = (22)X
s

wh,s cos(zφ(x+ xs, y + ys)−

ϕ̃(xs, ys|c))p(xs, ys)pT (xs, ys).

For the Gauss-Newton method the matrix A in (19) is
calculated as follows [28]. First we produce linearization of
sin ϕ̃(xs, ys|c+δc) and cos ϕ̃(xs, ys|c+δc) in (15) assuming
that ϕ̃(xs, ys|c+δc) = pT (xs, ys)c+pT (xs, ys)δc, where δc
is a small variation of c:

sin ϕ̃(xs, ys|c+δc) =
sin ϕ̃(xs, ys|c) + cos ϕ̃(xs, ys|c) · pT (xs, ys)δc,
cos ϕ̃(xs, ys|c+δc) =
cos ϕ̃(xs, ys|c)− sin ϕ̃(xs, ys|c) · pT (xs, ys)δc.

Further, substitute these series in Lh(x, y, c) given in the
form (15), then the matrix corresponding to the Gauss-Newton
method is calculated as

Ĥ = ∂δc∂δcTLh =
X
s

wh,sp(xs, ys)p
T (xs, ys) (23)

and in (19) A = Ĥ−1. The formula (23) can be obtained from
(22) assuming that the error approximation of cos(zφ(x +
xs, y + ys) by ϕ̃(xs, ys|c) is small.
The Hessian matrix (22) is useful to analyze the convexity

of the criterion Lh(x, y, c). For the noiseless case we have

zφ(x + xs, y + ys) = ϕ(x + xs, y + ys). Substituting these
expressions in (22) we find that

∂c∂cTLh =
X
s

wh,s(cos(ϕ(x+ xs, y + ys)− (24)

ϕ̃(xs, ys|c)) · p(xs, ys)pT (xs, ys).

Let the polynomials p(xs, ys) be linear independent in
the area where wh,s > 0. It follows that the matrixP

swh,sp(xs, ys)p
T (xs, ys) is positive definite. Then we may

conclude for (24) that provided

|ϕ(x+ xs, y + ys)− ϕ̃(xs, ys|c)| < π/2 (25)

cos(ϕ(x + xs, y + ys) − ϕ̃(xs, ys|c)) > 0 and the matrix
∂c∂cTLh is also positive definite. It proves that the criterion
Lh(x, y, c) is locally strongly convex and the convergence of
the gradient style algorithm (19) can be guaranteed at least
locally provided a proper selection of the matrix A and the
step size parameter γ.

B. LPA phase unwrapping
The recursive algorithm (19) gives the estimate for any

(x, y) provided that in the neighborhood of this point there
is sufficient number of observations (xs, ys). With initial-
ization independent for each point this is only a denoising
algorithm which does not assume the phase unwrap. Let us
use this pointwise estimator as an element of a more complex
procedure with a special sequence of the estimation points
(x, y) arranged with underlying intention to reconstruct, say,
a continuous surface ϕ(x, y).
A straightforward idea is to use for initialization the esti-

mates already obtained for neighboring points. In particular,
it can be a line-by-line sequence starting from the pixel (1, 1)
and going along the first line as (1, 2), (1, 3), ...,(1, Nx),
further the pixels of the second line (2, 1), (2, 2), ...,(2, Nx),
and in a similar way up to the last line (Ny, 1), Ny, 2),
...,(Ny, Nx). In this way we order all pixels of the phase image
as the sequence {x(n), y(n)}n=1,...N1N2 .
Let c(n)(x(n), y(n)|c) be the estimate for the point

(x(n), y(n)) provided that the recursive algorithm (19) is initi-
ated by the vector c. The proposed tracking phase unwrapping
algorithm can be given in the following sequential form

c(n) = c(n)(x(n), y(n)|c(n−1)), (26)
ϕ̂(x(n), y(n)) = c

(n)
1 , ϕ̂x(x

(n), y(n)) = c
(n)
2 , (27)

ϕ̂y(x
(n), y(n)) = c

(n)
3 , n = 2, ..., Nx ·Ny.

Note that this recursive procedure includes the recursive
pointwise estimator (19) as an imbedded one.
The procedure (26) is initiated by c(1) for the first point

(x(1), y(1)), i.e. we need to define the phase and the first two
derivatives of the phase for this point. These values can be
taken from original observations, from boundary conditions
or as a priori information. It maybe surprising but this simple
idea works and works very well combining two complemen-
tary important goals: noise suppression and reconstruction of
continuous (or piece-wise continuous) absolute phase surface.
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Our experiments show that the algorithm is successful
provided that the absolute phase differences in the neighboring
pixels are not large, mainly not larger the magnitude than
0.5÷ 1 radians. If the absolute phase differences are smaller
the accuracy is very good even for a high level of the
random noise. Once more note that the unwrapping property
of the algorithm is appeared as a result of tracking the phase
evolution from pixel to pixel.

IV. SPATIALLY ADAPTIVE LPA
A. Estimate accuracy
Using a linearization of (13) for small ∆ϕ we can rewrite

this model in the standard additive-error form:

z1 ' cosϕ+ ε1, z2 ' sinϕ+ ε2, (28)
ε1 = −∆ϕ · sinϕ, ε2 = ∆ϕ · cosϕ.

Let us derive the formula for the random phase-error ∆ϕ.
According to (9) we have for (13) z1 = u1/

p
u21 + u22, z2 =

u2/
p
u21 + u22 , where u1 and u2 are defined by (8). Using

the Taylor series with respect to small n1 and n2 we find that

z1 ' cosϕ+
1

A
sin2 ϕ · n1 −

1

A
sinϕ cosϕ · n2,

z2 ' sinϕ− 1

A
sinϕ cosϕ · n1 +

1

A
cos2 ϕ · n2.

Comparing these formulas with (28) we conclude that ∆ϕ
in (13) is calculated as

∆ϕ = − 1
A
sinϕ · n1 +

1

A
cosϕ · n2. (29)

With E{n1} = E{n2} = 0 and var{n1} = var{n2} = σ2

we find for ∆ϕ that

E{∆ϕ} = 0, σ2ϕ = E{(∆ϕ)2} = σ2/A2. (30)

Thus, for small level of the noise we can assume that the
random ∆ϕ in (13), (28) is zero-mean with signal independent
variance σ2ϕ as defined in (30).
The estimation accuracy is characterized by the error be-

tween the absolute phase and the corresponding estimate:
eϕ(x, y) = ϕ(x, y) − ϕ̂(x, y). This error is composed from
the systematic (bias) and random components corresponding
to the deterministic ϕ and the random noise ε, respectively.
The window size h is a crucial parameter for the accuracy

of estimation. When the window size h is small, the LPA
gives a good smooth fit of signals but then fewer number
of observations are used and the estimates are more variable
and sensitive with respect to the noise. The best choice of
h involves a trade-off between the bias and variance, which
depends on the degree of the LPA, a sample period, the noise
variance and the derivatives of ϕ of the orders beyond the
degree used in the LPA.
We present the accuracy analysis of the LPA estimates in

order to illustrate these statements. We derive the formulas
for the bias and the variance valid for small estimation errors.
Further we use these results in the algorithm for data-driven
adaptive window size selection.

The bias of the estimate is a difference between the true
signal and the expectation of the estimate: E{eϕ(x, y)} =
ϕ(x, y)− E{ϕ̂(x, y)}. Properties of ϕ should be specified in
order to evaluate this error.
Let us assume that the phase is a continuous twice differen-

tiable function. The finite Taylor series with the residual term
in the Lagrange form gives

ϕ(x+∆x, y +∆y) = ϕ(x, y) + (31)
ϕx(x, y) ·∆x+ ϕy(x, y) ·∆y +
ϕxx(x+ λ∆x, y + λ∆y) · (∆x)2/2 +
ϕyy(x+ λ∆x, y + λ∆y) · (∆y)2/2 +
ϕxy(x+ λ∆x, y + λ∆y)∆x ·∆y, 0 ≤ λ ≤ 1.

We restrict our analysis to the class of smooth differentiable
functions with bounded second derivatives

max
xs,ys∈Uh

(|ϕxx(x+ xs, y + ys)|, |ϕyy(x+ xs, y + ys)|, (32)

|ϕxy(x+ xs, y + ys)|) ≤ L2(x, y),

where L2(x, y) is finite and Uh is a support of the window
wh,s in (16).
Then it follows from (31)-(32) that for any ∆x and ∆y

|ϕ(x+∆x, y +∆y)− ϕ(x, y)− ϕx(x, y) ·∆x−(33)
ϕy(x, y) ·∆y| ≤ L2(x, y)(|∆x|+ |∆y|)2/2.

Proposition 2 (pointwise accuracy). Let the hypothesis (32)
hold, the observation model be in the form (28)-(30). Assume
also that the window function w is symmetric (even with
respect to both arguments x and y) then the accuracy of the
estimates (18) of the phase is defined as following:
for the bias

|E{eϕ(x, y)}| ≤
L2(x, y)

P
s wh,s(|xs|+ |ys|)2
2
P

swh,s
, (34)

for the variance

var{eϕ(x, y)} '
σ2

A2

P
s w

2
h,s

(
P

swh,s)2
. (35)

The proof of this proposition is given in Appendix.
Discussion of Proposition 2.
1) The bias of signal estimates is defined by the absolute
values of the second derivatives (through L2). It is
interesting that the bias of the estimates does not depend
on sin and cos functions. These formulas for the bias
errors coincide with the ones derived for the linear
LPA estimates in ([20], Ch. 5). Following the technique
used in this book , the orders of the bias errors can
be specified with respect to h. It can be shown thatP

swh,s(|xs| + |ys|)2/(2
P

s wh,s) ∼ 0 (h2). Smaller
h results in a smaller bias error. It corresponds to the
intuitively clear idea, that with a smaller window size
the LPA is able to give a better approximation to a
smooth signal with a smaller error.

2) It can be shown that
P

swh,s ∼ 0 (h) and
P

sw
2
h,s ∼

0 (h). Then we obtain for the variance of the estimates
that var{eϕ(x, y)} ∼ 0 (1/h). Naturally, larger window
means smaller variance.
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3) This dependence of the bias and variance with respect
to h says that the mean squares error E{e2ϕ(x, y)} =
|E{eϕ(x, y)}|2 + var{eϕ(x, y)} has a minimum on
h, which gives the optimal bias-to-variance balance
with the best mean squared accuracy of estimation.
The analysis of the optimization and varying optimal
selection of h is one of the subjects discussed in detail
in ([20], Ch. 5).

B. Adaptive window size selection

The theoretical analysis and experiments show that the effi-
ciency of the local approximation estimates can be essentially
improved provided a correct selection of the window size h.
It can be varying or invariant but properly selected. In signal
processing and in statistics window size selection is a subject
of many publications exploiting different ideas and techniques.
Recently, a novel class of algorithms known under a generic

name Lepski’s approach has been introduced in statistics and
shown to be efficient. These algorithms are proposed for
the pointwise varying window size adaptive nonparametric
estimation. One of the modification of this general approach
named the intersection of confidence interval (ICI) algorithm
is simple in implementation and found a number of efficient
applications in image processing. Here we explain the idea
of this algorithm with reference for details to the book ([20],
Ch.6).
Let H be a set of the ordered window sizes H = {h1 <

h2 < ... < hJ}. The estimates ϕ̂h ≡ ϕ̂(x(n), y(n)) (27) are
calculated for all h ∈ H and compared. The subscript h in the
estimate emphasizes its dependence on h. A special statistic
is exploited in order to identify the window size close to the
optimal one. This statistic needs only the estimates ϕ̂h and the
variances of these estimates σ2h both calculated for h ∈ H .
Then the confidence intervals of these estimates are defined
as

Qh = {ϕ̂h−Γ · σh, ϕ̂h + Γ · σh}. (36)

where Γ > 0 is a parameter of the algorithm and σh is
calculated according to (35), σ2h ≡ var{eϕ(x, y)}.
The ICI rule defines the adaptive window size denoted

h+ as the largest h of those in H which estimate does not
differ significantly from the estimates corresponding to the
smaller window sizes. In order to identify this adaptive h+

the successive intersection of the confidence intervals Qh

is considered starting from Qh1 and Qh2 . Specifically, the
pairwise intersection of the intervals Qhj , 1 ≤ hj ≤ hi, is
considered with increasing hi. Let h+ be the largest of those
hi for which the intervals Qhj , 1 ≤ hj ≤ hi, have a point
in common. This h+ defines the desired adaptive window size
and the adaptive estimate as ϕ̂h+ .
For the varying pointwise adaptive estimation these calcu-

lations are produced for all points (pixels). In implementation,
the ICI algorithm is used when the estimates for all points
(x, y) are already calculated for all h. Then the algorithm
works as a selector of the proper window size estimate for
each point.

It is emphasized that the ICI adaptive window size enables
values close to the optimal ones minimizing the means squared
error. However, Γ in is important parameter of the algorithm
controlling the bias-variance balance in the estimate. Smaller
Γ means a shift of this balance in favor of the bias, as smaller
Γ results in smaller bias of the estimate. Contrary to it, larger
Γ means a shift in favor of the variance, as larger Γ results in
smaller variance of the estimate but possibly larger bias.

V. PhaseLa ALGORITHM

The variables z1, z2 defined by (12) are input signals of the
PhaseLa algorithm.
Initialization of the vector c:

c= c(1) : c
(1)
1 = φ(x(1), y(1)), (37)

c
(1)
2 =W (∆xφ(x

(1), y(1))), c
(1)
3 =W (∆yφ(x

(1), y(1))),

where φ is the observed wrapped phase;
For every pixel of the sequence (x(n), y(n)), n = 2, ...,

NxNy:
1: calculate the vectors c(n) and the point-wise estimates

ϕ̂
(n)
h according to (19), (23), (26)-(27);
2: repeat these calculations for all h = h1, h2, ...;
3: apply the ICI rule for selection of the best window

size and the adaptive window size estimate ϕ̂(n)h+ .
The initialization (37) by the observed wrapped phase values

is used only for the first pixel (x(1), y(1)). For further pixels the
initiation is produced using the adaptive window size estimates
obtained for the neighboring pixels where these estimates are
already calculated according to the recursive procedure (27).
The estimates for different h are calculated with the same
initialization common for every particular pixel.

VI. SIMULATION EXPERIMENTS

We are focussed on simulated data in order to be able to
evaluate the algorithm performance accurately. The observa-
tion models used in the experiments are described in detail.
As the accuracy criterion we use the root-mean-squared-error,
RMSE =

q
1

NxNy

P
(ϕ(xs, ys)− ϕ̂(xs, ys))2 . The LPA is

exploited with the uniform square windows wh defined on the
integer grid Uh = {x, y : x = −h,−h+ 1, ..., 0, ..., h − 1, h,
y = −h,−h+ 1, ..., 0, ..., h− 1, h}.
Mainly, the ICI algorithm parameter Γ = 2.0 and the set

of the window sizes H = [1, 2, 3, 4].
As a bench mark for comparison we use the results obtained

by the ZπM algorithm [5], which is considered as one of
the best algorithms developed for noisy data. We produce
our experiments using the first order polynomial model. The
derivative estimates play important role in unwrapping as the
initialization of the recursive pointwise estimates includes also
the initialization for derivative estimates. In this way the phase
tracking essentially exploits the continuity of the phase.
For all experiments, we use the Matlab codes of the

PhaseLa algorithm available at http://www.cs.tut.fi.



8

A. Pyramidal phase

The pyramidal absolute phase test function (Figure 1) is
defined by the formulas

ϕ = 0.5 ·min(ϕ1, ϕ2, ϕ3, ϕ4), ϕ1 = x,

ϕ2 = y, ϕ3 = 255− x, ϕ4 = 255− y

on the integer grid x = (0 : 255), y = (0 : 255). The
maximum of ϕ is equal to 63.5 radians and the maximum of
the pixel-wise difference is .5 radians.
In Figure 2 one can see the wrapped true absolute phase ϕ,

the noisy wrapped phase calculated according to the formulas
(8)-(9), and the rewrapped phase reconstruction W (ϕ̂). Com-
paring the wrapped true absolute phase and W (ϕ̂) one may
conclude that the filtering and unwrapping are quite accurate.
The adaptive window sizes shown in Figure 3 give insight

how the adaptation works. Mainly the largest window size is
selected excluding the areas near pyramid edges, where the
adaptive window size takes the minimum value. In this way
the algorithm enables the maximum smoothing of the noise
for the flat surfaces where the used linear model perfectly
fits to the surface and the maximum window size can be
used. For the edges small window size allows to avoid the
surface oversmoothing however at the price of a higher level
of random errors. The effects of the varying window selection
is illustrated also by the last image in Figure 2 showing the
absolute errors of the phase reconstruction. These errors are
minimal on flat surfaces of the pyramid where the window
sizes take maximal values and these errors are maximal along
the pyramid edges where the adaptive window sizes are
minimal.
Numerical evaluation of the algorithm performance is il-

lustrated in Table I. It shows the results for PhaseLa with
invariant values of h = 1, 2, 3, 4 and with ICI varying
adaptive ones. The results are given for different values of
the additive zero mean gaussian noise in (8). We can see in
this table a difference between the estimates with invariant h
and varying adaptive one in the row corresponding the ICI
adaptive algorithm. In all cases the adaptive algorithm enables
minimization of RMSE values and even slightly better results
that the best one achieved by for the invariant window size.
We show also the results given by the ZπM algorithm

(10 iterations). Comparing these results versus PhaseLa with
the adaptive window size selection we may conclude that
this adaptive algorithm gives a valuable improvement of the
accuracy. RMSE values are about 1.5 times better for the
PhaseLa algorithm than those for the ZπM algorithm.

TABLE I
RMSE FOR THE PhaseLa AND ZπM ALGORITHMS, PY RAMID TEST

FUNCTION

Algorithm \ σ .1 .2 .3 .4 .5
PhaseLa, h = 1 .039 .071 .109 .152 .200
PhaseLa, h = 2 .048 .059 .074 .098 .122
PhaseLa, h = 3 .073 .077 .082 .095 .108
PhaseLa, h = 4 .214 .201 .185 .112 .119
PhaseLa, ICI .029 .054 .075 .095 .113
ZπM .058 .084 .117 .154 .190

B. Ramp phase
For the linear (ramp) absolute phase the PhaseLa al-

gorithm demonstrates the perfect performance as the ICI
adaptation automatically selects the largest window size and in
this way enables the best noise attenuation giving the unbiased
estimate of the phase. In these experiments we use larger
values of the window sizes, H = [3, 5, 7, 9] and Γ = 5.0.
The RAMP function is defined as ϕ(x, y) = 0.5 · x for

x = (0 : 127), y = (0 : 127). Thus the maximum value
of ϕ is 63.5 with the maximum difference between pixels .5.
The numerical results are shown in Table II for different noise
standard deviation σ in the observation model (8). Comparing
PhaseLa versus the ZπM algorithm is definitely in favor of
PhaseLa. Figure 4 illustrates what this difference in RMSE
values means visually. These images are given for σ = 1. The
adaptive PhaseLa nearly perfectly suppresses the noise in
this heavy noisy data with only a few erroneous pixels clear
seen in the image.

TABLE II
RMSE FOR THE PhaseLa AND ZπM ALGORITHMS, RAMP TEST

FUNCTION

Algorithm \ σ .1 .2 .3 .4 .5 .7 1.0
PhaseLa, h = 3 .015 .03 .044 .060 .074 .115 .175
PhaseLa, h = 5 .010 .019 .028 .039 .048 .072 .110
PhaseLa, h = 7 .008 .013 .021 .028 .034 .053 .077
PhaseLa, h = 9 .006 .012 .018 .025 .032 .046 .065
PhaseLa, ICI .006 .012 .018 .025 .032 .047 .066
ZπM .050 .078 .115 .147 .186 .255 .325

C. Parabolic phase
In these experiments we use the model studied in [18] 1.

The phase ϕ is a parabola defined by the formula:

ϕ = 2π · ϕ̄, ϕ̄ = 3− (x− 64)2/80− (y − 64)2/80,
where ϕ̄ is a normalized phase to be estimated.
The level of the additive gaussian noise is characterized

by the signal-to-noise ratio SNR = 20 log10(A/σ). The
observation model has a form (8) with A = 1. The maximum
values of ϕ and the phase difference are 18.85 and 2.28,
respectively.
It is shown in [18] that the algorithm developed by the

authors of this paper and the algorithm by Chen and Zebker
[29] demonstrate nearly identical results which are much better
than those obtained by the least square method sensitive with
respect to noise.
In Table III we show RMSE values for: the best results

from [18], and the results obtained by the PhaseLa and ZπM
algorithms. In this competition the ZπM algorithm shows
much better accuracy than that in [18] and the PhaseLa
algorithm enables even better accuracy. Comparing with the
ZπM algorithm we can see that the accuracy of the PhaseLa
algorithm is about 1.5 times better for all SNR.

1The model and conditions of this experiment important for comparison
with the results in [18] are due to personal communication with Lei Ying.
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TABLE III
RMSE VALUES OBTAINED BY THE ALGORITHMS: PROPOSED IN [18],

ZπM AND PhaseLa.
SNR Ying et al. [18] ZπM PhaseLa
8 .166 .027 .019
10 .128 .023 .015
12 .102 .020 .013
14 .077 .017 .012
16 .067 .016 .010
18 .050 .015 .008
20 .045 .014 .008

D. InSAR model

Here we use the interferometric synthetic aperture radar (In-
SAR) model as it is introduced in [5] and follow assumptions
and parameters discussed in details in this paper. The observed
InSAR data are given by complex variables

x1 = a1 exp(−jϕ1) + n1, x2 = a2 exp(−jϕ2) + n2, (38)

where a1, a2 are complex valued amplitudes of the harmonic
phase signals and n1, n2 are complex-valued observation
errors.
All these variables are random independent gaussian. The

phase shift ϕ = ϕ1 − ϕ2 is a parameter of interest. It is as-
sumed that θ2 = E{|a1|2} = E{|a2|2} and α = E{a1a∗2}/θ2
is real.
The input for the signal processing is calculated as the

product q = x1x
∗
2. If there is no noise, n1 = n2 = 0, we

have

q = a1a
∗
2 exp(−jϕ) = |a1||a2| exp(−j(ϕ+∆ϕ)),

where the random error in the phase ∆ϕ is a phase difference
of the random phases of a1 and a2.
Being rewritten in the form (8) it gives u1 =

|a1||a2| cos(ϕ+∆ϕ), u2 = |a1||a2| sin(ϕ+∆ϕ) and further
for the wrapped phase φ

z1 = cosφ =
u1p

u21 + u22
= cos(ϕ+∆ϕ), (39)

z2 = sinφ =
u2p

u21 + u22
= sin(ϕ+∆ϕ).

In this way we arrive to the model (13) used as a starting
point of our algorithm. It follows from Proposition 2 that the
variance of the estimates depending on A = |a1||a2| becomes
random. If the noises n1 and n2 are non-zero the situation
becomes even more complex with the amplitude A random
and depending on the unknown absolute phase ϕ.
The ZπM algorithm is compared in [5] versus a number of

prominent algorithms proposed for phase unwrapping. Those
of these algorithms which are developed for noiseless data are
considered with a special prefiltering of the observed noisy
wrapped phase. It is shown (see Table 1 in [5]) that the
ZπM algorithm with simultaneous smoothing and unwrap-
ping demonstrates a great deal of advantage over all compared
algorithms when the phase unwrapping is produced from noisy
data. This fact gives a reason to compare in this paper the
PhaseLa algorithm versus the ZπM algorithm only as it is
the best algorithm at least in the group studied in [5].

TABLE IV
RMSE VALUES OBTAINED BY THE ALGORITHMS ZπM AND PhaseLa

FOR COHERENCE α.

Algorithm \ α .7 .75 .8 .85 .9 .95 .99
PhaseLa, h = 2 .26 .23 .20 .18 .16 .13 .11
PhaseLa, h = 3 3.31 10.27 .23 .22 .21 .20 .20
PhaseLa, h = 4 7.73 6.78 7.7 8.2 5.9 4.3 2.53
PhaseLa, h = 5 8.17 8.04 9.4 6.1 3.4 5.1 2.60
PhaseLa, ICI .25 .23 .21 .19 .17 .15 .11
ZπM 2.54 1.18 .27 .24 .21 .17 .11

According to [5] the following is assumed. The absolute
phase is gaussian ϕ = Aϕ exp(−x2/(2σ2x)−y2/(2σ2y)), σx =
10, σy = 15, Aϕ = 14π, with integer arguments x, y, −49 ≤
x, y ≤ 50. The amplitudes a1 and a2 are random with the
variance θ = 1 and n1 = n2 = 0 in (38). The coherence α is
a varying parameter of simulation experiments.
The maximum values of the absolute phase is equal to 14π

with the maximum value of the differences about 2.5 radians.
For the considered noisy data the phase difference is often
takes values close to 2π.
Smaller and larger values of α correspond respectively to

larger and smaller noise level in observations starting from
α = 0.7 what means a very high intensity of the noise and
going up to α = .99 corresponding to nearly ideal noiseless
data. The RMSE values are shown in Table IV for different
values of the coherence α.
The PhaseLa algorithm compared versus the ZπM algo-

rithm mainly demonstrates a better performance. This advan-
tage is very impressive for the high noise level with α = 0.7,
0.75, where the ZπM algorithm fails what follows from
very large values of RMSE while the PhaseLa algorithm
gives a reasonable accuracy of phase unwrapping. For lower
level of the noise (α → 1) the accuracy of the compared
algorithms becomes close with the negligible difference for
α = 0.99. The quality of the PhaseLa method for noisy data
(α = 0.8) is illustrated in Figure 5, where one can observe the
noisy observations and the rewrapped phase estimate W (ϕ̂).
It is seen that visually the estimate is quite good. The 3D
imaging in Figure 6 gives further illustrations. One can see
here the true phase and what we call "hypothetical noisy
true phase". The last signal is obtained by unwrapping the
noisy wrapped observations zφ and used only to give an idea
what kind of a noisy signal, ϕ+∆ϕ, corresponds to zφ. We
show also the reconstructions obtained by the PhaseLa and
ZπM algorithms. The PhaseLa estimate is smoother and as
followed from the smaller value of RMSE is more accurate
than that for the ZπM algorithm.
A distribution of the ICI adaptive window for α = 0.8 is

illustrated in Figure 7.
It is important to emphasize a crucial role of adaptive

window size selection in this experiments. Table IV shows
that the unwrap using the LPA with a fixed window size
fails with h = 4, 5 for all α, and with h = 3 for α = 0.7,
0.75. Nevertheless, we can see that the unwrap with the ICI
adaptive window size is successful with a good accuracy. It
says, that the ICI treats the fails in unwrapping as large
bias errors. In this way the ICI rule filters out the estimate



10

with errors in unwrapping. However, it works correctly, if the
estimates with different h starts from the properly unwrapped
estimates.

VII. CONCLUDING REMARKS

This paper presents an efficient approach for absolute phase
reconstruction from noisy wrapped phase measurements. The
local approximation technique is exploited for the phase es-
timation and attenuation of noise effects. The unwrapping is
achieved by successive phase reconstruction for neighboring
pixels. The window size adaptation enables a reasonable
compromise between the noise smoothing and preservation of
details in phase image.
In what follows in this section we discuss some principal

and technical issues concerning our approach.
(1) Overall the developed LPA technique is the nonlinear

least square method with a pointwise estimation in a sliding
window. It can be treated also as a nonlinear recursive filter
tracking (from pixel-to-pixel) phase values. To the best of
our knowledge this novel recursive filter is essentially different
from recursive and non-recursive procedures which have been
used before now for noisy phase unwrap.
In [1], the filtering is considered as a preprocessing pre-

ceding the main unwrapping algorithm. It is recommended in
Ch. 3 of this book to filter independently two signals cosφ
and sin φ with following recalculation of the wrapped phase
values through these filtered cosφ and sin φ. Our filtering is
different because the local approximation is used directly for
the reconstructed absolute phase as the argument of cos/sin
functions. In this way the observation model is thoroughly
exploited in the developed estimator with naturally a much
more efficient filtering.
If we compare our algorithm versus the Kalman-Busy style

filter proposed in [30], we may note, first, that the filter in
[30] is applied to observations given in the form (8), where the
noise is additive. Our algorithm starts from the wrapped phase
data and then there is no additive noise in the observations
(13). Recall, that the observation noise is essential for the
Kalman-Busy technique where no noise is a singular situation.
Thus, different observation models and as a results a different
setting of the problem are considered. The accuracy control
imbedded in the recursive pointwise estimation in (19) and
the window size adaptation makes a difference between our
algorithm and the algorithm from [30] even deeper.
(2) In this paper we treat the ZπM algorithm as a bench

mark and use it for comparison. We show that on many
occasion our algorithm demonstrates a better accuracy. It is
interesting to discuss a difference between the algorithms.
2.1 The ZπM algorithm is a procedure with a solution

obtained by minimization of the global (defined over whole
image) criterion (6). The smoothness of the reconstructed
phase ϕ is defined by the parameter μ. With μ→ 0 there is no
smoothness constraints at all and any ϕ(x, y) = zφ(x, y)+2πk
gives the minimum value J →μ→0 0. For large μ → ∞
the corresponding solution approaches a constant value as
the phase differences should go to zero in order J will be
bounded.

Note, that in the PhaseLa algorithm the estimate with an
increasing window size gives the estimate which is linear with
respect to the argument (x, y). Thus, the zero-order polynomial
approximation is used in the ZπM algorithm and the first
order in the PhaseLa algorithm.
Using the parameter μ and weight λ(x, y) in (6) we can

vary the smoothness of the solution and generate a variety of
versions of the unwrapped absolute phase. In our simulation
experiments we assume that the parameters of the ZπM
algorithm are fixed as they are given in the author’s code and
show that in this case the PhaseLa algorithm demonstrates
more accurate results. It is quite possible that there exists such
tuning of μ and λ(x, y) that the ZπM algorithm performs
better than the PhaseLa algorithm.
However, variations of the weight λ(x, y) can result in

global changes of the phase ϕ, and it is a nontrivial task to
enable the desirable pointwise smoothness correction through
the solution of the global optimization.
Contrary to ZπM the PhaseLa procedure is local minimiz-

ing the local criterion (17) in the pointwise manner. In this way
the size of the estimation window is an efficient instrument for
precise and straightforward control of the smoothness for every
pixel individually. The ICI algorithm gives a rule to select a
reasonable distribution of the window sizes over the phase
image. Thus locality and globality is the first issue differs the
discussed two algorithms.
2.2. The unwrapping is a key point of the ZπM algorithm

while the PhaseLa algorithm is focussed on approximation
and noise suppression. The minimization of J over integer k
in (6) produces a global unwrapping.
In the PhaseLa algorithm the unwrapping is a result of the

accurate approximation and careful fusing of the estimates for
neighboring pixels. It means that for unwrapping we use the
local analysis of the estimates only. The experiments confirms
that this idea works well.
2.3 Concerning the complexity of the ZπM and Phasela

algorithm we wish to note that the computation time of these
algorithm is more less the same provided that 4 iterations
are used in the ZπM algorithm. Larger number of iterations
naturally mean longer computation time.
3. Using the adaptive window size for the phase unwrap

is originated in our conference paper [31]. In this paper
the tracking of the phase is produced with a fixed window
size. Thus, we obtain the estimates calculated with invariant
window sizes and the ICI is used in order to select the best
estimate for each pixel.
In the PhaseLa algorithm presented in this paper the phase

tracking is performed on the estimates with already adaptive
window sizes. Comparison of the algorithms is definitely in
favor the PhaseLa algorithm which demonstrates much better
performance.
4. The line-by-line phase restoration implemented in the

PhaseLa algorithm is a not universally best strategy. In
particular, the tracking mimicking path-dependent integration
methods with local phase congruence tests can give a further
improvement of the algorithm.
5. The LPA and the ICI procedures as they are presented

in this paper are proposed for continuous and differentiable
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phase functions.
However, the LPA with the adaptive window size selection

allows a number of modifications for more complex problems
with non-differentiable and discontinuous functions.
Let ϕ(x, y) be a piece-wise continuous differentiable phase

function. It means that the area I where this function is defined
can be segmented on nonoverlapping subareas Ir, ∪Lr=1Ir = I ,
Ir ∩ Ir0 = φ if r 6= r0, such that for any (x, y) exist Ir
where ϕ(x, y) is continuous and differentiable. Introduce the
indicator (mask) function for Ir subarea, Mr(x, y) = 1 for
(x, y) ∈ Ir and Mr(x, y) = 0 otherwise. Assume that this
segmentation is given. The PhaseLa is applicable for the
phase unwrap in Ir provide that the weight wh,s in (16) are
replaced by wh,s ·Mr and the algorithm is initiated by the data
from this area. Figure 8 illustrates the work of the algorithm
in this situation. There are two subareas where the considered
absolute phase is continuous. In one of these areas it the
gaussian density while in the second subarea (quadrant sector)
the phase function is equal to zero. Figure 8 shows the noisy
absolute phase, the observed wrapped phase and the PhaseLa
reconstructed unwrap phase. The algorithm demonstrates a
very good performance.
To deal with non-smooth functions when the piece-wise

segmentation is unknown the adaptive anisotropic LPA can be
applied. In this concept the symmetric square window function
wh,s is replaced by four/eight sectorial windows with the
ICI window size selection independent for each sector. The
final estimate is obtained by aggregation of the sectorial ones.
These anisotropic estimates are highly sensitive with respect
to discontinuity and anisotropic behavior of the reconstructed
functions. This sort of methods in applications for image
processing are discussed in ( [20], Ch. 7-8).
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APPENDIX

Proof of Proposition 2.

The minimum condition for unconstrained optimization (17)
has a form ∂cLh(x, y, ĉ) = 0, where ĉ is a vector-estimate.
Using the first two term of the Taylor series this equation gives

∂cLh(x, y, ĉ) = (40)
∂cLh(x, y, c

∗) + ∂c∂cTLh(x, y, c
∗)∆c = 0,

where c∗ = (ϕ(x, y), ϕx(x, y), ϕy(x, y))T is a vector of true
values of the phase and the derivatives, ∆c = c∗ − ĉ.
The vector gradient ∂cLh and the Hessian matrix ∂c∂cTLh

are defined in (21) and (22). Let us calculate the expectation
of the Hessian matrix. Using (28) we have E{z1} ' cosϕ
and E{z2} ' sinϕ and then

E{∂c∂cTLh(x, y, c∗)} ' (41)X
s

wh,s[cosϕ(x+ xs, y + ys) cos ϕ̃(xs, ys|c∗) +

sinϕ(x+ xs, y + ys) sin ϕ̃(xs, ys|c∗)]×
p(xs, ys)p

T (xs, ys) =X
s

wh,s cos(ϕ(x+ xs, y + ys)−

ϕ̃(xs, ys|c∗))p(xs, ys)pT (xs, ys).

According to (33)

|ϕ(x+ xs, y + ys)− ϕ̃(xs, ys|c∗)| ≤ (42)
L2(x, y)(|xs|+ |ys|)2/2.

For a small h we have |ϕ(x+xs, y+ys)−ϕ̃(xs, ys|c∗)| ' 0
and cos(ϕ(x+ xs, y + ys)− ϕ̃(xs, ys|c∗)) ' 1 then

E{∂c∂cTLh(x, y, c∗)} ' (43)X
s

wh,sp(xs, ys)p
T (xs, ys) > 0.

For an increasing number of samples in Uh there is a
convergence in probability

∂c∂cTLh(x, y, c
∗) → PE{∂c∂cTLh(x, y, c∗)} 'X

s

wh,sp(xs, ys)p
T (xs, ys).

Inserting the last formula instead of ∂c∂cTLh(x, y, c∗) in
(40) we can solve this equation with respect to ∆c:

∆c ' (44)
Φ−1

X
s

wh,s[z1(x+ xs, y + ys) sin ϕ̃(xs, ys|c∗)−

z2(x+ xs, y + ys) cos ϕ̃(xs, ys|c∗)p(xs, ys)],
Φ =

X
s

wh,sp(xs, ys)p
T (xs, ys).

According to (28) the random estimation errors is

∆c0 '
Φ−1

X
s

wh,s[ε1(x+ xs, y + ys) sin ϕ̃(xs, ys|c∗)−

ε2(x+ xs, y + ys) cos ϕ̃(xs, ys|c∗)]p(xs, ys),

where ε1 = − sinϕ(x + xs, y + ys) · ∆ϕs, ε2 = cosϕ(x +
xs, y + ys) ·∆ϕs
Using these expressions for ε1 and ε2

∆c0 ' −Φ−1
X
s

wh,s[cos(ϕ(x+ xs, y + ys)−

ϕ̃(xs, ys|c∗))]p(xs, ys)∆ϕs.

If the estimates are accurate ϕ ' ϕ̃ and cos(ϕ−ϕ̃) ' 1 and
the covariance matrix of the random estimation errors ∆c0 is
calculated as
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E{∆c0(∆c0)T } = (45)
σ2

A2
Φ−1

X
s

w2h,sp(xs, ys)p
T (xs, ys)Φ

−1,

where σ2/A2 is the variance of ∆ϕs. For a symmetric window
function, wh, with (xs, ys) ∈ Uh, the polynomials p1 = 1,
p2 = xs, p3 = ys are orthogonal on Uh and the matrices
Φ and

P
sw

2
h,sp(xs, ys)p

T (xs, ys) are diagonal. Then the
matrix E{∆c0(∆c0)T } is also diagonal. The first element of
this matrix gives the formulas (35) for the estimate variance.
Others give the variances of the derivative estimates.
For the bias evaluation we consider the systematic part of

(44)

E{∆c} ' Φ−1 × (46)X
s

wh,s[cosϕ(x+ xs, y + ys) sin ϕ̃(xs, ys|c∗)−

sinϕ(x+ xs, y + ys)×
cos ϕ̃(xs, ys|c∗)]p(xs, ys) = Φ−1 ×X
s

wh,s sin(ϕ̃(xs, ys|c∗)− ϕ(x+ xs, y + ys))p(xs, ys).

Using (42) we have

| sin(ϕ̃(xs, ys|c∗)− ϕ(x+ xs, y + ys))| ≤
|ϕ̃(xs, ys|c∗)− ϕ(x+ xs, y + ys)| ≤

L2(x, y)(|xs|+ |ys|)2/2.

Then |E{∆c1}|≤L2(x, y)
P

swh,s(|xs| +
|ys|)2/(2

P
s wh,s). It proves the formula (34) for the

bias error of the estimates. Other items of the vector E{∆c}
in (46) can be used in order to derive the bias of the derivative
estimates.
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Fig. 1. Pyramid test function.

Fig. 2. Wrapped Pyramid phase: a) true absolute, b) noisy, c) PhaseLa rewrapped, d) absolute errors between the true absolute and PhaseLa unwrapped
phases.

Fig. 3. ICI adaptive window sizes for Pyramid.

Fig. 4. Wrapped Ramp phase: a) noisy, b) PhaseLa rewrapped, c) ZπM rewrapped.
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Fig. 5. The noisy data, wrapped true phase and rewrapped phase reconstruction obtained by the PhaseLa algorithm (α =0.8).

Fig. 6. The true absolute phase, hypothetical noisy absolute phase, PhaseLa and ZπM reconstructions (α =0.8).

Fig. 7. The adaptive window sizes for the PhaseLa phase unwrap (α =0.8).

Fig. 8. Discontinuous absolute phase: noisy data and PhaseLa reconstruction
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