Harmonic-Percussive Source Separation with Deep Neural Networks and Phase Recovery

Konstantinos Drossos¹, Paul Magron¹, Stylianos Ioannis Mimilakis², Tuomas Virtanen¹

¹Laboratory of Signal Processing, Tampere University of Technology, Finland, ²Fraunhofer IDMT, Ilmenau, Germany

Harmonic/Percussive Source Separation (HPSS)

- Separate percussive (e.g. drum, percussion) from harmonic (e.g. guitar, piano, singing voice) components.

- Applications: rhythm analysis, augmented mixing, time-stretching, etc.

Contributions

- We propose a novel HPSS method, based on two components.
 1. A recently proposed deep neural network (DNN) method for monaural music source separation [1].
 2. A recently introduced algorithm for phase recovery [2].

- Reproducible research → Source code available, results on freely available dataset.

Proposed method

A two-stage approach based on DNNs and phase recovery

1. A DNN for estimating the percussive spectrogram [1].
 - Input → the magnitude spectrogram of the mixture.
 - Output → the magnitude spectrogram of the percussive component.
 - We estimate harmonic components by spectral subtraction.

2. Time-domain signal reconstruction, using either:
 - The phase of the mixture, or
 - An iterative algorithm for improved phase recovery [2].

Magnitude estimation: MaD TwinNet

A two-step monaural source separation system [1].

- Based on denoising auto encoders framework (DAEs).
- First applies a time-frequency mask, then a time-frequency denoising filter.
- Takes into account long temporal dependencies through TwinNet regularization.

Phase recovery: PU-iter

Sinusoidal phase

- The harmonic source is modeled as a sum of sinusoids.
- Explicit phase relationship between successive time frames:
 \[\phi_{\text{harmo}} = \phi_{\text{harmo}}^{(t-1)} + 2\pi l\nu_{\text{f}}^{(t)} \]

Iterative procedure [2]

- Minimizes the mixing error;
- Initialized with the mixture’s phase (percussive part) or sinusoidal phase (harmonic part);
- Does not modify the target magnitudes (= MaD TwinNet estimates).

Training & Evaluation

- Demixing secret dataset 100 (DSD100) → 100 audio mixtures and their isolated sources.
- Two different STFT settings:
 1. One in favor of MaD TwinNet (worked better).
 2. One in favor of the phase recovery algorithm.
- Compared against Kernel Additive Model (KAM) [3].
- Separation quality measured with the signal to: artifacts ratio (SAR), interference ratio (SIR), distortion ratio (SDR).

Objective results

Conclusions & future work

- Supervised HPSS based on deep learning and phase recovery.
- MaD TwinNet and phase recovery improves over KAM.
- Future work
 - Joint magnitude/phase recovery.
 - Phase recovery based on deep learning.

References
