Filterbanks and transforms

Filterbanks
- Introduction
- Critical sampling, half-band filter
- QMF-filterbank, prototype filter
- Avoiding aliasing errors, modified bank
- Perfect reconstruction, complementary filters
- MCF-filterbank

Transforms
- Introduction
- Discrete Fourier transform
- Discrete cosine transform
- Modified DCT
- Filterbanks vs. transforms
1 Introduction

- Filterbanks are used for example in
 - Perceptual audio coding
 - Multi-band equalizers
 - Bandwise dynamic range control
 - Machine hearing and audio content analysis

- The human auditory system performs frequency analysis
 - Critical bands in hearing, structure of the inner ear
 - One reason why we encounter filterbanks in many audio processing applications
Introduction

Filterbanks in audio coding

- In perceptual audio coding, the input signal is processed at subbands
 - That allows us to utilize the auditory masking phenomenon
 → A filterbank is required, in other words, a set of filters that select
 neighbouring narrow subbands that cover the entire frequency range

- The filterbanks used in audio coding consist of
 - Analysis filterbank that decomposes a signal into subbands
 - Synthesis filterbank that reconstructs a wideband signal to the output

- In audio coding, typically critically sampled, perfect reconstruction
 filterbanks are used
 - *Critical sampling*: if the filterbank subdivides the frequency range into K
 bands, the signal at each band is downsampled by factor $1/K$
 → Amount of data does not increase
 - *Perfect reconstruction*: if no processing takes place at subbands, the
 signal can be reconstructed without errors using a synthesis filterbank
2 Critical sampling at two subbands

- Figure: block diagram of a two-band critically sampled \textit{analysis-synthesis filterbank}

- Figure: magnitude responses of the filters applied at the two bands
Critical sampling at two subbands

2.1 Decimation in the analysis bank

- What happens in the analysis filterbank?
 - LP + $\downarrow 2$: Lowpass filter and downsample by factor 2
 - HP + $\downarrow 2$: Highpass filter and downsample by factor 2

- When the upper half-band $[f_s/4, f_s/2]$ is decimated, it is aliased (mirrored) to the lower frequencies $[0, f_s/4]$
 - The aliasing does not corrupt spectral information since the lower frequency components were filtered out using a highpass filter
 - Figure: (a) original signal spectrum, (b) highpass filtered (HP) spectrum, (c) highpassed and decimated (HP + $\downarrow 2$), aliased spectrum
 - Note the lower sampling rate in panel c) \Rightarrow Nyquist frequency is 4 kHz
Critical sampling at two subbands

2.2 Interpolation in the synthesis bank

- What happens in the synthesis filterbank?
 - $\uparrow 2 + \text{LP}$: Upsample by factor 2 and lowpass filter
 - $\uparrow 2 + \text{HP}$: Upsample by factor 2 and highpass filter

- $\uparrow 2$ operation in practice:
 - Add zeros between the sample values in the signal (vector of numbers)
 - Multiply the signal by 2 in order to keep its level unchanged

- Let’s look again at the upper half-band

- Figure: (c) spectrum of the signal that was highpassed and decimated in analysis bank, (d) spectrum obtained by interpolating ($\uparrow 2$) signal in c, (e) after interpolating and highpass filtering ($\uparrow 2 + \text{HP}$) the signal in c
Critical sampling at two subbands

Interpolation in the synthesis bank

- Also the higher half-band was (almost exactly) reconstructed despite the decimation at the subband
- The entire original signal can be reconstructed by summing the upper and lower half-bands at the output of the synthesis bank
3 Several subbands uniformly distributed

- Two subbands are not of much use yet
- The principle scales easily to n uniformly distributed subbands
- Figure: n subbands, each decimated by factor k
 - Bandwidths must be equal in order that all of them can be decimated by factor k → *uniformly distributed subbands*
 - Critical sampling if $n=k$
Several subbands uniformly distributed

■ What happens in the analysis bank at n subbands?
 – Spectrum in range $[0, f_s/2]$ is divided into n bands, each of width $(f_s/2) / n$
 – Bandpass filter $H_m(f)$ in the analysis bank selects band m
 – Band m covers the frequencies
 \[
 \left[\frac{mf_s}{2n}, \frac{(m+1)f_s}{2n} \right], \quad m = 0, 1, \ldots, n-1
 \]
 – In downsampling, the band is aliased to frequencies $[0, f_s/(2n)]$
 • No problem, since those frequencies were filtered out by $H_m(f)$

■ In the synthesis bank
 – Interpolation by factor k ($k=n$) replicates the subband $[0, f_s/(2n)]$
 at all subbands
 – Each subband is selected at its correct frequency range using synthesis bandpass filter $G_m(f)$ (same passband as $H_m(f)$)
4 Half-band FIR filter

- Let’s return to the two-band filterbank
- Half-band filters have the nice property that they can be implemented very efficiently computationally
- Figure: example of an 80-tap FIR filter that passes the upper half-band $[f_s/4, f_s/2]$
 - Even-numbered filter coefficients are zero, except for the middle value
 - Impulse response is symmetric
 - Convolving with n-length FIR requires only $n / 4 + 1$ multiplications for each input signal sample
 - Can design relatively steep transition bands using FIR filters
Figure: magnitude and phase response of the highpass half-band filter presented on the previous slide
- Advantage of FIR: phase response in passband is exactly linear
 → Filtered signal is a delayed copy of the original signal in passband
Aliasing error

- It is clear that in a critically-sampled filterbank some unwanted aliasing happens at the subbands
 - Filters are not ideal (transition band, not step function)
 - For example when downsampling by factor 2, the part that exceeds the new Nyquist frequency $\pi/2 = f_s/4$ is aliased

- Figure below shows the low- and highpass filters applied in the two-band critically sampled filterbank
Aliasing error

- The filterbanks used in audio coding are usually designed so that the *synthesis bank eliminates the aliasing* that occurs at the subbands
 - Achieves perfect or near-perfect reconstruction despite the unwanted aliasing at subbands
 - Reconstruction errors in the filterbank are insignificant compared to the errors introduced in the encoding and decoding
 - In the following we study the QMF filterbank that eliminates the aliasing in the synthesis bank
A shortcoming of the above-described filterbank is that perfect reconstruction is not possible due to unwanted aliasing.

Figure: Two-band analysis-synthesis Quadrature Mirror Filter (QMF) bank

- $H_0(z)$ and $F_0(z)$ are lowpass filter.
- $H_1(z)$ and $F_1(z)$ are highpass filters.

Idea of QMF: filters $H_0(z)$, $F_0(z)$, $H_1(z)$ and $F_1(z)$ and be designed so that the aliasing in analysis part is eliminated in the synthesis part. Perfect reconstruction is achieved (if not processing at subbands)
QMF filterbank

- Figure: QMF filter bank subdividing a signal into octave bands using critical sampling (octave=frequency range $[f, 2f]$)
 - successive lowpass/highpass subdivisions into half bands
 - decimation of the half bands by factor 2 after each subdivision
 - lower band is recursively subdivided

- Acronyms:
 - QMF bank = Quadrature Mirror Filter bank
 - SP = signal processing
 - LP = lowpass filtering
 - HP = highpass filtering
 - $\downarrow 2$ = downsampling
 - $\uparrow 2$ = upsampling
5.1 Subbands in the QMF-bank

- As a result, we get subbands \(Y_1 \ldots Y_N \)

- The frequency boundaries of the bands are given by
 \[
 \Omega_{Ck} = 2^{-k} \pi \quad \Rightarrow \quad f_{Ck} = 2^{-k} \left(f_s / 2 \right)
 \]
 where \(k = 1,2,\ldots,N - 1 \)

- The above frequency range subdivision results from:
 - The downsampled upper half-band is ready as it is
 - The lower half-band is recursively split into two half-bands (see the block diagram on the previous slide)
Subbands in the QMF-bank

- QMF-bank has *non-uniform frequency resolution*

- Bandwidths and sampling rates are different at each subband (halving at each step towards lower frequencies)
 - Lower subbands are subjected to multiple downsampling steps (and multiple upsampling steps in the synthesis bank)

- Note that *the amount of data remains the same* as a result of the subdivision into subbands and downsampling
 - amount of data in the original signal is $S \cdot f_s$, where S is signal duration in seconds and f_s is the sampling rate
 - amount of data after the division into subbands is:

 $S \cdot (0.5f_s + 0.25f_s + 0.125f_s + ...) \approx S \cdot f_s$

 where the sampling rates have been given starting from the highest subband

 → critical sampling *regardless* of the number of subbands
5.2 QMF Modifications

- An M-band filter bank can be implemented with a tree-structured cascade of the two-band QMF.
 - The two high-pass and low-pass bands are both divided again into two bands to receive 4 equally spaced bands. The process can be repeated to obtain 8 bands, 16 bands, etc.
 - An octave band filter-bank can be created by splitting the lower band of the two-band QMF into two bands and keeping the higher band as is.
 - Caveats: long delays, potential for irregular channel responses

- Pseudo-QMF
 - Uses cosine-modulation to transfer a low-pass prototype filter into a band-pass filter. Several such band-pass filters form a parallel M-band filter-bank with “nearly perfect” reconstruction and critical sampling.
QMF modifications

Prototype filter

- The same lowpass or highpass filter can be used in all successive lowpass/highpass subdivisions
 - The term "prototype filter" is used
- Response of a filter is always given proportional to the sampling rate
 - For example the cutoff frequency defined as 0.3\(f_s\)
- E.g. when the sampling rate of the lower half-band is decreased by factor 2, we get a new sampling rate
 \[\hat{f}_s = \frac{f_s}{2} \]
- In the new sampling rate, the lower sub-band \([0, \hat{f}_s / 4]\) fills the entire frequency range \([0, \hat{f}_s / 2]\)
 - Now the cutoff frequency of the same filters is \(\hat{f}_s / 4 = \frac{f_s}{8}\)
 - By applying the same prototype filter as it is in the new sampling rate, it subdivides the lower half-band again
 - From the viewpoint of the original sampling rate, the passband gets twice narrower, but also the transition band gets twice steeper
 - So-called multirate signal processing: steep filters with few coefficients
6. Avoiding aliasing errors

- Aliasing errors in the QMF-bank output part were avoided by appropriate synthesis filter design (if no processing is done in the subbands).

- However in many applications it is not enough that the synthesis part compensates for the aliasing that happens in the analysis part.
 - Multi-band equalizers, dynamic range control, audio content analysis apply non-linear processing in the sub-bands that leads to aliasing errors.

 \[\textit{We have to (also) design an analysis filterbank, where aliasing does not happen at subbands} \]
Avoiding aliasing errors

- The analysis filterbank can be slightly modified in order to avoid aliasing at subbands
 - Harmful aliasing occurs at the boundary between the low- and highpass bands, since downsampling by factor 2 is applied even though the filters are not perfect

- Figure: response of the modified prototype filter (multi-complementary filter bank, MCF) compared to the previous bank (QMF)

- In the modified filterbank, the half-band boundary has been moved from $\pi / 2$ to a lower frequency $\pi / 3$
 - When downsampling the lowpass band by factor 2, no aliasing occurs
 - *The upper band cannot be downsampled at all*
6.1 Modified filterbank

- Figure: modified filterbank where the new subband division is repeated
 - Difference to QMF-bank is that the upper band is not downsampled

- Subband boundaries:
 \[\Omega_{Ck} = \frac{\pi}{3} 2^{-k+1} \]
Avoiding aliasing errors

Modified filterbank

- The amount of data does not remain the same, but increases as a result of splitting the signal into subbands
 - amount of data in the original signal is $S \cdot f_s$, where S is signal duration in seconds and f_s the sampling rate
 - amount of data after the division into subbands is:
 $S \cdot (f_s + 0.5f_s + 0.25f_s + 0.125f_s + ...) \approx 2Sf_s$
 where the sampling rates have been given starting from the highest subband

 → Amount of data doubles in dividing the signal into subbands, regardless of the number of subbands

- In many applications, reasonable growth in the amount of data is not a problem
 - Equalization, multi-band dynamic range control, audio content analysis, etc.
6.2 Complementary filters in modified filterbanks

- Use of so-called *complementary filters* enables perfect reconstruction at the output of the filterbank.

- Figure 1: basic block that subdivides the input into two subbands.

- Figure 2: the basic block implemented using complementary filters.
 - Upper band is obtained by reconstructing the lower band and subtracting it from appropriately delayed input signal.
 - Guarantees that summing the subbands gives the original input signal.
6.3 Complementary filters

- Figure: implementation of complementary filters and the interdependency of their frequency responses
 - The complementary filter of a certain FIR filter $H_C(z)$ is obtained by
 (i) filtering the input signal with $H_C(z)$
 (ii) subtracting the filtered signal from the original input signal which has been delayed by the amount of (group) delay caused by $H_C(z)$
Perfect reconstruction

6.4 MCF-bank

- Multi-complementary filter bank is a filterbank where
 - The half-band boundary is moved from $\pi/2$ to a lower frequency to avoid harmful aliasing, and the upper half is not downsampled (amount of data doubles in the subband division)
 - The basic lowpass / highpass divisions blocks are implemented using complementary filters to enable perfect reconstruction
7 Transforms

- In frame-based processing, the kth frame of input signal $x(n+Lk)$ is windowed after which a (frequency) transform can be applied, $n=0,\ldots,N$, where N is window length, $k=0,1,2,\ldots$ is window index, and L is hop size.

- The transform consists of calculating an inner product between the windowed signal and basis functions of the transform.

- In audio signal processing, the basis functions are typically sines and cosines with different frequencies, or complex exponents.

- Output represents the spectrum of the signal in the frame.

- Efficient algorithms exist for computing the transform at all frequencies simultaneously (e.g. fast Fourier transform).
7.1 Discrete Fourier transform (DFT)

- Basis functions are complex exponents

 \[X(k) = \frac{1}{\sqrt{2M}} \sum_{n=0}^{2M-1} x(n)e^{-j\frac{nk\pi}{M}}, \quad 0 \leq k \leq 2M - 1 \]

- Efficient algorithm: FFT

- Frequency responses:
Discrete Fourier transform (DFT)

- First few basis functions (blue: real part, red: imag. part)
7.2 Discrete cosine transform (DCT)

- Basis functions are cosines:
 \[X(k) = c(k) \sqrt{\frac{2}{M}} \sum_{n=0}^{M-1} x(n) \cos \left(\frac{\pi}{M} \left(n + \frac{1}{2} \right) k \right), \quad 0 \leq k \leq M - 1 \]

- Where \(c(0) = 1 / \sqrt{2} \)
 \(c(k) = 1, \quad 1 \leq k \leq M - 1 \)

- Efficient algorithm:
 Fast cosine transform

- Frequency responses:
Discrete cosine transform (DCT)

- First few basis functions (real-valued)
7.3 MDCT

- Modified discrete cosine transform (MCDT) is a
 - Perfect reconstruction, real-valued, and critically sampled transform
 - Has central importance in audio coding and is implemented by several standards.

- Analyses with *half-overlapping frames*; frame input signal \(x(n), n=0,\ldots,N-1\), is length \(N\) and *hop-size* \(L=N/2\) samples
 -> generates aliasing that is cancelled by opposite effect in following frame, by proper design of analysis/synthesis window function pair \(w_a(n) w_s(n)\).

\[
X(k) = \sum_{n=0}^{2^{N-1}} w_a(n)x(n)\cos\left(\frac{\pi}{N}\left(n + \frac{1+N}{2}\right)\left(k + \frac{1}{2}\right)\right), k = 0,\ldots,N-1
\]

\[
y(n) = w_s(n) \frac{2}{N} \sum_{k=0}^{N-1} X(k)\cos\left(\frac{\pi}{N}\left(n + \frac{1+N}{2}\right)\left(k + \frac{1}{2}\right)\right)
\]

\[
w_a(n) = w_s(n) = \sin\left(\frac{\pi}{4N}(2n + 1)\right), \quad \text{(also other windowing pairs exist)}
\]
7.4 Filterbanks vs. transforms

- In a filterbank, the signal at subband \(k \) is obtained by convolving the filter \(h_k(n) \) with the input signal, computed every \(M \) samples (downsampling).

- In a transform, the coefficient corresponding to basis function \(k \) is obtained as an inner product between the windowed signal and basis vector \(g_k(n) \).

- Differences in implementation: transforms are fast to compute when there are a lot of subbands.

- Filterbank implementation facilitates non-uniform frequency resolution and specification of the filters separately for each band.