

ATAC

Dealing with testability issues – some patterns for solutions

Project number: ITEA 2 10037

Edited by: Matti Vuori, TUT

Date: 2014/04/04

Document version no.: 1.0

Table of Contents

1. Introduction ... 3

2. Testability results from many decisions and actions ... 3

3. Some problems and possible helping strategies and practices ... 4

3.1. Tool strategies ... 4

3.1.1. Use generally available tools instead of in-house tools .. 4

3.1.2. Test multi-platform technologies in a better environment ... 4

3.2. General lack of testability in technology choices or in design .. 4

3.2.1. Collaborate ... 4

3.2.2. Do testability reviews .. 5

3.2.3. Fix bad testability now, not later .. 5

3.2.4. Use platform libraries or common testing tools for adaptation 5

3.2.5. Use non-instrumented adaptation .. 5

3.2.6. Tell developers about testability .. 6

3.2.7. Accept some problems in testability .. 6

3.3. Testability errors .. 6

3.3.1. Have developers provide basic automation for new controls .. 6

3.3.2. Check UI mark-up in integration testing ... 6

3.4. Development strategies .. 6

3.4.1. Live with change and embrace it ... 6

3.4.2. Testing Tool Driven Development.. 7

4. References .. 7

1. Introduction

Testability problems are something that organisations have to live with. But there are strategies
practices that may help the situation. This report shows some of them. In this report we use a
simple “pattern” format that presents the (possible) solving idea, the problem and the solution in
more detail. This is a so-called Portland form (Portland, 2014).

2. Testability results from many decisions and actions

Some things that testability results from are shown in Figure 1

Testability mind map (in test automation)

Testing tools

Fast extensibi l i ty to new needs

Usabil i ty of tools

Maintainabil i ty of test assets

Support for MBT online testing

Scripting languages supported

Support for high abstraction levels

Suitabil i ty to what is tested

Suitabil i ty to technology

Test environments

Measurement of SUT, environment

System simulation

Safe execution of harsh tests

Adaptation

Testing APIs

Adaptation l ibraries

UI api

Platform faci l i ties

In development process

Order of developmentWhat things are needed for testing

Collaboration towards testabi l i ty

Testabi l i ty checking in integration

Testabi l i ty review

Testabi l i ty goals

Development tools

Development OS
Choices in mobile app development

Some are better than others

Support for test fixtures
Stubs and mocks

xUnit

Available developer testing tools

IDE capabil i ties

Tracing

Testing

Debugging

S/w design

UI design

Interruptions

Actuation Touch, gestures...

Dynamism

Detectabi l i ty of elements
Texts

Icons

Monitorabi l i ty of actions, changes

Controls
Type

Technology

API design

Testable design Architecture

Observabil i ty

"Things to attach to"

Interfaces

Modulari ty

Layers

New UI technologies
Gestures etc...

Sensors

Technology choices
Platform esoterics <> generics

Inherent testabi l i ty

Testabi l i ty

Technical factors

Security
Cloud

Remote

Efficiency of tests

Maintenance of tests

Traceabil i ty

Simulabi l i ty

Observabil i ty

Control labi l i ty

Abil i ty to test

Of al l l i fecycle phases, events

Updates

Usage

Configuration

Instal lation

Deployment

In simulated and real systems

In an activity system

For i ts purpose

In al l environments

Software in a system

Software

Platform

Platform openness Can you plug in things automation needs

Remote executabi l i ty

Emulators and simulators

Platform architecture

Organisational factors

Choosing of testing tools Who, how, cri teria

Developer perceived roles

Test automation expertise

Respect for testing

Quali ty culture

Figure 1. Testability mind map.

Some key points:

 Testability is not only about the ability to execute an application, but to do that when it is used
for a purpose, in an environment, in a larger system – including real users.

 Testability is quality and the main factor it results from is the quality attitudes of the participants
in development.

 Not many people have ever had any training on testability.

 Testability is like any other quality – you notice it when it is lacking. Planning and designing for it
is easy to forget.

 When platforms or new product concepts (technology concepts) are designed, testability almost
always comes as a second thought.

 As with anything in development, collaboration is one key issue in reaching testability of
applications.

 There are many decisions in the selection of technologies, tools and architectures that greatly
affect testability.

 Reaching it is an ongoing process and it needs attention in all phases and tasks in a
development process.

 Testability problems in designs and implementations are defects and need to be caught as early
as possible. The may be blockers to the whole automated testing or just parts of it, but dealing
with them takes time and energy off the testing.

3. Some problems and possible helping strategies and practices

3.1. Tool strategies

3.1.1. Use generally available tools instead of in-house tools

Problem:

In-house testing tools are always a little behind the development of the SUT and getting them takes
all the time and energy that could be used in testing.

Therefore:

Use only generally available tools with minimal tailoring. Developers of those have seen all the
issues that your in-house tool will see next year… (But if they have problems, with open source
tools you still can make the little fixes.)

3.1.2. Test multi-platform technologies in a better environment

Problems:

Sometimes a development OS or an SDK for a platform does not provide good testability tools.

Therefore:

Use another platform for much of the testing – in a virtual machine that is easy.

3.2. General lack of testability in technology choices or in design

3.2.1. Collaborate

Problem:

Testability problems often result from lacking understanding what test automation is capable of and
requires, especially when automated testing is done outside the development team.

Therefore:

Close collaboration and plenty of discussions between developers and testers helps with
communication issues.

3.2.2. Do testability reviews

Problem:

Sometimes technologies or design patterns are chosen that have inherently bad testability, which
should be avoided.

Therefore:

A testability review is recommended at an early phase of a project, when the architecture is first
drafted. When a new component type is proposed, its testability should be reviewed. Technologies
and designs should be agreed with testers – if there are alternatives that do not compromise value
to customer. Testing is after all an essential and integral part of any software development.
Reviews should be aided with checklists and guidelines for testability. Note: in some domain these
reviews can be quite strict and heavy, but in modern agile development they should be short, lean
and flexible and tailored to the current state of development.

3.2.3. Fix bad testability now, not later

Problem:

Often the developers promise that testability will be fixed in the next release. But that fixed next
release never comes.

Therefore:

Fix testability problems immediately. Consider them as development blockers that most be solved
now, before doing anything else.

3.2.4. Use platform libraries or common testing tools for adaptation

Problem:

Automation systems often need an adaptation layer or tool to be able to control and monitor the
system under test. Sometimes small in-house tools are crafted that may soon be found out as
lacking.

Therefore:

It pays to find out if the system has a robust adaptation library (as a build-in tool or an add-in
available in a repository) that could be used. Also, some open source testing tools are not used
primarily for test design, but because they have good adaptation libraries that can control most any
system.

3.2.5. Use non-instrumented adaptation

Problem:

Application-level instrumentation can be difficult in some circumstances.

Therefore:

Consider using “pure” UI automation based on machine vision and OCR that does not require any
access to the UI API or object model, just an ability to recognize icons and text (an OS level library
may be needed). There are tools for that for most platforms. Note that this approach has its own
special benefits and pitfalls. It increases validity of the tests, but the icons that are detected need a
reference library that requires maintenance and are prone to change during the system’s
development.

3.2.6. Tell developers about testability

Problem:

New developers may not appreciate testability – they will learn about that later. They do not learn
about it in school or in any programming course.

Therefore:

Tell developers about testability and how to achieve it. Give them guidelines that help in achieving
good testability. Raise testability up in “all” discussions when talking about technology, architecture
or implementation choices..

3.2.7. Accept some problems in testability

Problem:

People don’t like it when some things are difficult to test using test automation and would like to
have everything automated perfectly.

Therefore:

The problem here is in the thinking. It is unrealistic to think that all testing is automated – we need
exploratory testing anyway and some things just may be too difficult to automate. That is the nature
of technology. One must think of the overall picture and not just how automated testing succeeds.
The world is not perfect.

3.3. Testability errors

3.3.1. Have developers provide basic automation for new controls

Problem:

Sometimes an UI control turns out to be difficult to automate with the company’s tools.

Therefore:

Let the developer, who is using that control in her implementation, provide basic test automation for
that. That way she will use only components that can be automated. The tester can work further
with the basic fixtures.

3.3.2. Check UI mark-up in integration testing

Problem:

A common problem for testability is lacking or erroneous marking of UI elements, such as missing
IDs for controls.

Therefore:

Such problems – and even bad naming conventions – can be checked during integration testing (in
continuous integration) using a suitable tool.

3.4. Development strategies

3.4.1. Live with change and embrace it

Problem:

Constant change will cause problems for test automation.

Therefore:

That should not be seen as a hindrance to testability, but a positive thing. Just live with it! Find a
new balance between test automation and exploratory testing.

3.4.2. Testing Tool Driven Development

Problem:

When a new type of a feature is designed, current testing tools may lack support for it.

Therefore:

Find out about the tool situation before taking the development further than a proof of concept. Can
the tools be extended – by vendor, or a temporary self-made hack (those are never temporary…).

4. References

Portland Repository. 2014. http://c2.com/ppr/about/portland.html. [Checked 2014-03-25]

http://c2.com/ppr/about/portland.html

