Lecture 8: Linear Prediction: Lattice filters

Overview

• New AR parametrization: Reflection coefficients;
• Fast computation of prediction errors;
• Direct and Inverse Lattice filters;
• Burg lattice parameter estimator;
• Gradient Adaptive Lattice filters;
Lecture 8

Lattice Predictors

- **Order -Update Recursions for Prediction errors**

Since the predictors obey the recursive–in–order equations

\[
\begin{align*}
\mathbf{a}_m &= \begin{bmatrix} \mathbf{a}_{m-1} & 0 \end{bmatrix} + \Gamma_m \begin{bmatrix} 0 \cr \mathbf{a}_{m-1}^B \end{bmatrix} \\
\mathbf{a}_m^B &= \begin{bmatrix} 0 \cr \mathbf{a}_{m-1}^B \end{bmatrix} + \Gamma_m \begin{bmatrix} \mathbf{a}_{m-1} \cr 0 \end{bmatrix}
\end{align*}
\]

it is natural that prediction errors can be expressed in recursive–in–order forms. These forms results considering the recursions for the vector \(\mathbf{u}_{m+1}(n) \)

\[
\begin{align*}
\mathbf{u}_{m+1}(n) &= \begin{bmatrix} \mathbf{u}_m(n) \\
\mathbf{u}_m(n-m) \end{bmatrix} \\
\mathbf{u}_{m+1}(n) &= \begin{bmatrix} \mathbf{u}_m(n) \\
\mathbf{u}_m(n-1) \end{bmatrix}
\end{align*}
\]

Combining the equations we obtain

\[
\begin{align*}
f_m(n) &= \mathbf{a}_m^T \mathbf{u}_{m+1}(n) = \begin{bmatrix} \mathbf{a}_{m-1}^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u}_m(n) \\
\mathbf{u}_m(n-m) \end{bmatrix} + \Gamma_m \begin{bmatrix} 0 \cr \mathbf{a}_{m-1}^B \end{bmatrix}^T \begin{bmatrix} \mathbf{u}_m(n) \\
\mathbf{u}_m(n-1) \end{bmatrix} = \\
&= \mathbf{a}_{m-1}^T \mathbf{u}_m(n) + \Gamma_m (\mathbf{a}_{m-1}^B)^T \mathbf{u}_m(n-1) = \\
&= f_{m-1}(n) + \Gamma_m b_{m-1}(n-1)
\end{align*}
\]
\[b_m(n) = (a_m^B)^T u_{m+1}(n) = \begin{bmatrix} 0 & (a_{m-1})^T \end{bmatrix} \begin{bmatrix} u(n) \\ u_m(n-1) \end{bmatrix} + \Gamma_m \begin{bmatrix} 0 \\ u_m(n) \end{bmatrix} = \]
\[= (a_{m-1})^T u_m(n-1) + \Gamma_m(a_{m-1})^T u_m(n) \]
\[= b_{m-1}(n-1) + \Gamma_m f_{m-1}(n) \]

The order recursions of the errors can be represented as
\[
\begin{bmatrix} f_m(n) \\ b_m(n) \end{bmatrix} = \begin{bmatrix} 1 & \Gamma_m \\ \Gamma_m & 1 \end{bmatrix} \begin{bmatrix} f_{m-1}(n) \\ b_{m-1}(n-1) \end{bmatrix}
\]
\[
\begin{align*}
 f_m(n) &= f_{m-1}(n) + \Gamma_m b_{m-1}(n-1) \\
 b_m(n) &= b_{m-1}(n-1) + \Gamma_m f_{m-1}(n)
\end{align*}
\]

Using the time shifting operator \(q^{-1} \), the prediction error recursions are given by
\[
\begin{bmatrix}
 f_m(n) \\
 b_m(n)
\end{bmatrix} =
\begin{bmatrix}
 1 & \Gamma_m q^{-1} \\
 \Gamma_m & q^{-1}
\end{bmatrix}
\begin{bmatrix}
 f_{m-1}(n) \\
 b_{m-1}(n)
\end{bmatrix}
\]

which can now be iterated for \(m = 1, 2, \ldots, M \) to obtain
\[
\begin{bmatrix}
 f_M(n) \\
 b_M(n)
\end{bmatrix} =
\begin{bmatrix}
 1 & \Gamma_M q^{-1} \\
 \Gamma_M & q^{-1}
\end{bmatrix}
\begin{bmatrix}
 1 & \Gamma_{M-1} q^{-1} \\
 \Gamma_{M-1} & q^{-1}
\end{bmatrix}
\cdots
\begin{bmatrix}
 1 & \Gamma_1 q^{-1} \\
 \Gamma_1 & q^{-1}
\end{bmatrix}
\begin{bmatrix}
 1 \\
 1
\end{bmatrix}
\begin{bmatrix}
 f_0(n) \\
 b_0(n)
\end{bmatrix}
\]

Having available the reflexion coefficients, all prediction errors of order \(m = 1, \ldots, M \) can be computed using the Lattice predictor, in \(2M \) additions and \(2M \) multiplications.
Some characteristics of the Lattice predictor:

1. It is the most efficient structure for generating simultaneously the forward and backward prediction errors.

2. The lattice structure is modular: increasing the order of the filter requires adding only one extra module, leaving all other modules the same.

3. The various stages of a lattice are decoupled from each other in the following sense: The memory of the lattice (storing $b_0(n-1), \ldots, b_{M-1}(n-1)$) contains orthogonal variables, thus the information contained in $u(n)$ is splitted in M pieces, which reduces gradually the redundancy of the signal.

4. The similar structure of the lattice filter stages makes the filter suitable for VLSI implementation.

LATTICE PREDICTOR OF ORDER M
- **Lattice Inverse filters** The basic equations for one stage of the lattice are

\[
\begin{align*}
 f_m(n) &= f_{m-1}(n) + \Gamma_m b_{m-1}(n-1) \\
 b_m(n) &= \Gamma_m f_{m-1}(n) + b_{m-1}(n-1)
\end{align*}
\]

and simply rewriting the first equation

\[
\begin{align*}
 f_{m-1}(n) &= f_m(n) - \Gamma_m b_{m-1}(n-1) \\
 b_m(n) &= \Gamma_m f_{m-1}(n) + b_{m-1}(n-1)
\end{align*}
\]

we obtain the basic stage of the Lattice inverse filter representation.
LATTICE INVERSE FILTER OF ORDER M

SAMPLE OF WHITE NOISE $v(n)$

RESULTING SAMPLE OF AR PROCESS $u(n)$
• Joint–process estimation

Find the optimal (in MSE sense) filter recovering a desired signal $d(n)$ from the signal $u(n)$

- not using directly the observations $u(n), u(n - 1), \ldots, u(n - m)$ as in FIR filtering
- but using instead the samples $b_0(n), b_1(n), \ldots, b_M(n)$ which comes from the orthogonalization of $u(n)$ using a lattice filter.

The structure of the filter comprises two sections:

- one lattice predictor section with reflection coefficients $\Gamma_1, \Gamma_2, \ldots, \Gamma_M$, transforming the observations $u(n), u(n - 1), \ldots, u(n - m)$ into the sequence of uncorrelated errors $b_0(n), b_1(n), \ldots, b_M(n)$;
- a multiple regression filter, with parameters $\gamma_0, \gamma_1, \ldots, \gamma_M$ which uses as observations the samples $b_0(n), b_1(n), \ldots, b_M(n)$ to compute the output of the filter $y(n)$.

Denoting

$$b(n) = \begin{bmatrix} b_0(n) & b_1(n) & \ldots & b_M(n) \end{bmatrix}^T$$

$$\gamma = \begin{bmatrix} \gamma_0 & \gamma_1 & \ldots & \gamma_M \end{bmatrix}^T$$

we can write the optimal Wiener filter

$$\gamma = [Eb(n)b(n)^T]^{-1}Eb(n)d(n)$$
LATTICE FILTER BASED JOINT-PROCESS ESTIMATION
\textit{Relationship between Lattice parameters and optimal (direct) FIR filter parameters}

We found the autocorrelation matrix of backward errors to be

\[E[b(n)b(n)^T] = \begin{bmatrix} P_0 & 0 & \ldots & 0 \\ 0 & P_1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & P_M \end{bmatrix} = D \]

and from \(b(n) = Lu(n) \) we found

\[E[b(n)b(n)^T] = LE[u(n)u(n)^T]L^T = LRL^T = D \]

We can now compute the optimal \(\gamma \) parameters as

\[\gamma = [Eb(n)b(n)]^{-1}Eb(n)d(n) = D^{-1}Eb(n)d(n) = D^{-1}ELu(n)d(n) = D^{-1}Lp = D^{-1}LRw_o \]

Multiplying both sides with \(L^T \) and recalling \(R^{-1} = L^TD^{-1}L \) we obtain

\[L^T\gamma = w_o \]

Thus we have a one-to-one correspondence between the parameters of the optimal FIR filter, \(w_o \), and the parameters of the optimal lattice filter.

\textbullet \textbf{Burg estimation algorithm}

The optimum design of the lattice filter is a decoupled problem.
At stage m the optimality criterion is:

$$J_m = E[f_m^2(n)] + E[b_m^2(n)]$$

and using the stage m equations

$$\begin{align*}
 f_m(n) &= f_{m-1}(n) + \Gamma_m b_{m-1}(n-1) \\
 b_m(n) &= b_{m-1}(n-1) + \Gamma_m f_{m-1}(n)
\end{align*}$$

$$J_m = E[f_m^2(n)] + E[b_m^2(n)] = E[(f_{m-1}(n) + \Gamma_m b_{m-1}(n-1))^2] + E[(b_{m-1}(n-1) + \Gamma_m f_{m-1}(n))^2]$$

$$= E[(f_{m-1}(n) + b_{m-1}(n-1))^2(1 + \Gamma_m^2) + 4\Gamma_m E[b_{m-1}(n-1)f_{m-1}(n)]]$$

Taking now the derivative with respect to Γ_m of the above criterion we obtain

$$\frac{d(J_m)}{d\Gamma_m} = 2E[(f_{m-1}^2(n) + b_{m-1}^2(n-1))\Gamma_m + 4E[b_{m-1}(n-1)f_{m-1}(n)]] = 0$$

and therefore

$$\Gamma_m^* = -\frac{2E[b_{m-1}(n-1)f_{m-1}(n)]}{E[(f_{m-1}^2(n) + b_{m-1}^2(n-1))]}$$

Replacing the expectation operator E with time average operator $\frac{1}{N} \sum_{n=1}^{N}$ we obtain one direct way to estimate the parameters of the lattice filter, starting from the data available in lattice filter:

$$\Gamma_m = -\frac{2 \sum_{n=1}^{N} b_{m-1}(n-1)f_{m-1}(n)}{\sum_{n=1}^{N}[(f_{m-1}^2(n) + b_{m-1}^2(n-1))]$$

The parameters $\Gamma_1, \ldots, \Gamma_M$ can be found solving first for Γ_1, then using Γ_1 to filter the data $u(n)$ and obtain $f_1(n)$ and $b_1(n)$, then find the estimate of Γ_2....
There are other possible estimators, but Burg estimator ensures the condition $|\Gamma| < 1$ which is required for the stability of the lattice filter.

- **Gradient Adaptive Lattice Filters**
 Imposing the same optimality criterion as in Burg method

 $$J_m = E[f_m^2(n)] + E[b_m^2(n)]$$

 the gradient method applied to the lattice filter parameter at stage m is

 $$\frac{d(J_m)}{d\Gamma_m} = 2E[f_m(n)b_{m-1}(n-1) + f_{m-1}(n)b_m(n)]$$

 and can be approximated (as usually in LMS algorithms) by

 $$\hat{\nabla}J_m \approx 2[f_m(n)b_{m-1}(n-1) + f_{m-1}(n)b_m(n)]$$

 We obtain the updating equation for the parameter Γ_m

 $$\Gamma_m(n+1) = \Gamma_m(n) - \frac{1}{2}\mu_m(n)\hat{\nabla}J_m = \Gamma_m(n) - \mu_m(n)(f_m(n)b_{m-1}(n-1) + f_{m-1}(n)b_m(n))$$

 In order to normalize the adaptation step, the following value of $\mu_m(n)$ was suggested

 $$\mu_m(n) = \frac{1}{\xi_{m-1}(n)}$$

 where

 $$\xi_{m-1}(N) = \sum_{i=1}^{N} [(f_{m-1}^2(i) + b_{m-1}^2(i-1))] = \xi_{m-1}(N-1) + f_{m-1}^2(N) + b_{m-1}^2(N-1)$$
represents the total energy of forward and backward prediction errors.

We can introduce a forgetting factor using

$$\xi_{m-1}(n) = \beta \xi_{m-1}(n-1) + (1 - \beta)[f_{m-1}^2(n) + b_{m-1}^2(n - 1)]$$

with the forgetting factor close to 1, but $0 < \beta < 1$ allowing to forget the old history, which may be irrelevant if the filtered signal is nonstationary.
LEAST SQUARES LATTICE FILTER BASED JOINT-PROCESS ESTIMATION