
Seminar TIE-11406: Backend as a Service (BaaS)
Tampere University of Technology

01.10.2013

http://www.deployd.com/
technology presentation

Juha Nurmi, Timo Kokko

http://www.deployd.com/
http://www.deployd.com/

Deployd - technology presentation

1. Introduction
2. Overview of the system and its design

principles
3. Existing demos
4. Walkthrough of a complete example
5. Evaluation (benefits, drawbacks, usefulness,

possible measurements)
6. Summary

Introduction

Deployd - what is it?

● Backend as a service
● homepage: http://www.deployd.com/
● An open source platform
● Apache license version 2.0
● GIT: https://github.com/deployd/deployd
● Host it yourself or use Deployd’s cloud
● Documentation & community

http://www.deployd.com/
https://github.com/deployd/deployd

Deployd - what is it?

● Deployd is designed to replace traditional
backends for web and mobile apps

● Perform advanced queries over HTTP
● Push data to clients over WebSockets in real

time
● Transform and validate your data as it

changes

Why Deployd?

Build apps, not backends.
● By removing the complexity of backend development,

Deployd lets you focus on the part of your app that
really matters: the front-end.

Deploy your app effortlessly.
● Just click a button and the latest version of your app is

online. Show your friends what you've made without the
pain of setting up servers and databases.

Team Tailored Experience

● Collaboration and version control
○ Everything on the dashboard is separated into JSON

and JavaScript files in the filesystem which can be
easily version controlled

● Develop apps locally
○ Develop apps locally and deploy when ready

● Open source
○ Apache 2 license
○ Modify and run as you like

● Static file support
○ Host static HTML, JavaScript, images, and other

static assets under /public directory

The Simplest Way To Build API

1. No Boilerplate
● API up and running with one command
● Empty canvas waiting to add resources

2. Resources
● Resources can be defined through Deployd

dashboard
3. Dashboard

● Add and manage APIs through web- based
dashboard

4. 1-Step Deploy
● Deploy API to scalable cloud or host it yourself

Do More With Less
● One API for both server side and client side code.
● Store your data as JSON objects.
● Run advanced queries directly from your mobile or JavaScript app.
● Create and authenticate users without any setup or boilerplate code.
● Easily validate and transform data as it changes.
● Keep all your clients in sync in realtime with a single line of JavaScript.
● Serve your app's files without any setup.
● Insert, Update and Delete Objects from your client without a custom web

app or api.
● Extend Deployd by installing modules that expose useful apis to your

clients

Flexibility Through Modularity

● Consists of core library with modular API to
extend application
○ Quickly add custom client-facing Resources
○ Integrate third-party services or APIs
○ 17 000 + node modules to extend API

● Resource distribution feature
○ Makes easy to add external modules to app
○ Currently under development

Death to Polling

● Keep all client application in sync
● Avoid needless refreshes with Deployd’s

real-time capabilities
● Easy to listen and respond to changes in

app using dpd.js or another client which can
support websockets

● Easy to validate, secure, and scope real-
time messages to specific users or groups

Activity in Github

● 1122 commits
● 13 branches
● 38 releases
● 16 contributors

Overview of the system and its
design principles

Javascript Throughout

● Build on Node.js and MongoDB
● Server-side build with JavaScript
● Unified dpd.js client/server library
● Real-time capability through Websockets
● All data stored as JSON
● API endpoints also exposed over REST

Other Features
● Unified API to app resources on client and server

○ New resource added to API is automatically available via dpd
[‘resourceName’]

● Flexible validation
○ Javascript code inside of events to validate users role and request

● Easy graph data
○ Multi-dimensional data through relating and embedding data

● Out of the box user management
○ Custom properties and roles to users
○ Custom event scripts to control access to users

● Client-side advanced queries
○ Perform queries against Collections in the client

Getting started with Deployd

● Host it yourself or use Deployd’s cloud
● Get the source from the GIT
● Basically install it to your Linux server
● Build on MongoDB 2.0.x and NodeJS 0.8.x

Getting started with Deployd

● Web-based IDE (Dashboard)
● You are working with JSON+JavaScript
● Or just using JSON HTTP API without

JavaScript

Existing demos

Existing demos

● Many basic demos, for instance,
○ todo list demo
○ login-form demo
○ chatroom demo

Check what the browser does

● Data is stored dynamically in the JavaScript
→if the sending to the backend fails the data is
lost when the browser is closed

● It is send to the backend using HTTP POST
→ webSockets can be used to listening events

Walkthrough of a complete example

Walkthrough of a complete example

● See Deployd’s documentation
● # dpd create comments
● # cd comments
● HTML and JavaScript files to /public/
● # dpd --open --port 80
● See the result http://37.252.125.242:2403/
● Create a new collection using the dashboard

http://37.252.125.242:2403/dashboard/
● /resources/comments# cat config.json

http://docs.deployd.com/docs/getting-started/your-first-app.md
http://docs.deployd.com/docs/getting-started/your-first-app.md
http://37.252.125.242:2403/
http://37.252.125.242:2403/dashboard/
http://37.252.125.242:2403/dashboard/

Evaluation

Evaluation

● benefits: open source, manage your data
● drawbacks: command line does not work :(
● usefulness: easy to use

Does it scale?

● MongoDB and Node.js are scalable
→ Unfortunately, there is no documentation

how to scale Deployd application

Evaluation: performance

● We know that Node.js and MongoDB have
good performance

● Let’s test the full Deployd system
● Using comments demo
● How the client side and server side performs
● Add 1000 lines of data → small load
● Add 10 000 lines of data → disaster

Evaluation: performance
var MAX = 10000; //destroys the whole Deployd system, reboot does not help!
var MAX = 1000; //handles without problems and without consuming CPU/RAM
for(var i = 0; i<MAX; ++i) {
 var name = Math.floor(Math.random()*1000001)+"x";
 var comment = Math.floor(Math.random()*100000001)+"x"
 dpd.comments.post({
 name: name,
 comment: comment
 }, function(comment, error) {
 if (error) {

 console.log(error);
}

 });
}

Evaluation: performance

(node) warning: Recursive process.nextTick detected. This
will break in the next version of node. Please use
setImmediate for recursive deferral.

RangeError: Maximum call stack size exceeded

→ WTF? Kills the whole Deployd permanently

Summary

Summary

● Open source
● You can host it yourself and control your

data
● Good documentation
● Easy to use
● Problems with heavy load :(
● Command line does not work :(
● How to scale?
● Future? Community? Development?

Possible technology demonstration

Motivation

● http://apps4finland.fi/
● https://github.com/apps4finland/haaste-kaupungin-viat
● http://dev.hel.fi/apis/issuereporting
 → why not to create a map based issue tracking system?

http://apps4finland.fi/
http://apps4finland.fi/
https://github.com/apps4finland/haaste-kaupungin-viat
https://github.com/apps4finland/haaste-kaupungin-viat
http://dev.hel.fi/apis/issuereporting
http://dev.hel.fi/apis/issuereporting

Issue tracking system for Tampere

Issue tracking system for Tampere

● Will be BSD licenced and free
● Any city can take and use it :-)
● Client side

○ JavaScript + HTML5
○ HTML5 geolocation
○ Google Maps JavaScript API v3

● Server side
○ Deployd

■ Chat nick name, location, messages...
■ Integration to existing open source ticket system

