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APPENDIX A: Contihuous—Time Signals and
Systems and the Basic Tools for Their Analy-

sis and Synthesis

e The purpose of this appendix is to give a short

review of continuous-time signals and systems as

well as the basic mathematical tools for studing

these signals and systems.

e This review consists of the following topics:

I.

I1.

I11.

IV.

VI.

Classification of continuous-time signals into

periodic, transient, and random signals.

Frequency-domain representation of periodic sig-

nals: Fourier series.

Frequency-domain representation of aperiodic

signals: Fourier transform.

Generalized Fourier transform including Fourier

series.

Generalization of Fourier Transform: Laplace

transform.

The use of the Laplace and Fourier transforms
in studing the input-output relation of a linear

time-invariant system.
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Classification of continuous-time signals

e The continuous-time signals, denoted by z,(t), can

be classified into:
1. Periodic signals:

e In theory, for —oo < t < oo the signal satisfies
z,(t + Ty) = x(t), where Ty is the periodity of
the signal.

e In practice, this is true for ¢; < ¢t < ty, where
to — t1 1s very large compared to the period
To. In addition, the signals are typically just

nearly periodic.

e Typical examples are waveforms of vowels and
an eletrocardiogram as well as the waveform
generated when playing one note using a pi-
ano, a guitar, or a harmonica. The actual
waveform can be picked up by using a micro-

phone.

e Page 3 shows the waveform for the Finnish
phoneme ’u’, whereas Page 4 shows the wave-

- form of the lower f played by a harmonica.
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Waveform for the the Finnish phoneme ’u’

Finnish u
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Waveform for the lower f played by a har-

monica

The fundamental frequency is approximately 350

Hz.

lower f played with a harmonica
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2. Transient signals:

e These are pulse-type signals of finite duration.

e Typical examples are waveforms of the phonemes
'k’, 'p’, and t’.

e Also, when playing a drum, we generate tran-

sients.

e Page 6 shows the waveform for the Finnish
phoneme ’t’.
3. Random and weakly correlated signals:
e Typical examples are (Gaussian noise as well as

the waveform of the Finnish phoneme ’s’. See

the next page.

e Page 8 shows shows the waveform for the Finnish

word ’sieppo’.
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Waveform for the Finnish phoneme ’t’ in
’aatta’

The two transients within the silence correspond
to two ’t’s. These two phonemes have been pro-

nounced very strongly.

Finnish t in atta
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Waveform for the Finnish phoneme ’s’

Waveform

Waveform
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Waveform for the Finnish word ’sieppo’

e 'p’s have been pronounced very strongly.

Finnish sieppo
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Frequency-domain representation of periodic

signals: Fourier series.

e From the theory of mathematics, it is well-known
that any real-valued continuous-time signal x,(%)
is expressible on the interval [ty — Ty/2, to — Ty/2]
in the forms shown in the next transparency.

e The different expression forms are due to the
facts e/ = cosw + jsinw, cosw = [e/¥ + e /2,
and sinw = [e/¥ + 7] /(27).

e Note also that if a complex number a + jb is ex-
pressed in the polar form a+jb = Re’?(= Rcos ¢+
jRsin¢), then R = v/a?2+ b2 and ¢ = atan2 (b, a),
where atan2 (b,a) is defined as shown on the next
page. Note that atan2 (b,a) takes on values be-
tween —m and m, whereas tan"!(b/a) takes on val-
ues just between —7/2 and 7/2, meaning that if
the later one is used, then only positive values are

allowed for a.

o If the interval under consideration, denoted by
[t1, t2] includes the interval [ty — Ty/2, to — Tp/2]
and z,(t) satisfies on [t1, t]

Tq(t + Tp) = x4(t),
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Expressions for a real-valued continuous-time
signal z,(t) on the interval [tg — Ty/2, ty — Ty/2]

(0@

zq(t) = Z cpel "t

n=—oo

_ %

o0
5 + Z (an cos nwot + by, sin nth) )

n=1

o0
= %9 + Z(An cos nwot + Pn)

n=1
where

wo = 2 /Ty,

to+To/2 . ;
Cn = 1/T0/ zq(t)e 0t
to—To/2

to+To/2
ap = 2/T0/ zq(t) cos (nwot)dt,
to—Tp/2

to+To/2
b, = 2/Tj / x4 (t) sin (nwot)dt,
to—Tp/2

]_ ) .
CO = a,(), Cn = ‘i(aﬂn — an) = An@j¢n,

C—n = %(an + jbn) = Ane_j¢n>
ap = ¢p+ Cc—pn, bn =jlcn —c—p),
and
Ap = /(a2 +b2) = |Fy,|, ¢n = —atan2(by,an)
with
tan~1 (by/an), ap >0
atan2(by,an) = ¢ 7 +tan"Y(by/an), an <0 and by >0
— + tan“l(bn/an), an <0 and b, < 0.
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that is, z,(t) is periodic on [t;, 5] with periodicity
equal to 1y, then the expressions shown in the pre-

vious page are valid on the overall interval [t1, ts].

e For practically interpreting the formulas of the
previous page, we consider a simple example of

the next page.



Example: z,(t) satisfies for —co < t < 00, (see the
next page)
.’Ea(t -+ T()) = SEa(t)
and on the interval [to — Tp/2, to + Tp/2]
{A, for t € [to — D/2, ty+ D/2]
Ta(t) =
0, elsewhere.

® The Fourier series for z,(¢) can be determined by

applying the equations of page 10. We obtain
(w() = 27 / T())

to+71y/2 .
c, = 1/T / T4 (t)e M0t dt
:

0—To/2
to+D/2 .
= 1/T0/ Ae—jnwgtdt
tO—D/2
— —A to+D/2 4 —jnwot
B jnonO/ to-D /2 A€
24 einwo(—to+D/2) _ ginwo(—tg—D/2)
- nweT, 27 ]
nwyD /2 —1nwyD /2
= —-——2A 62—_].7“‘)0150[6‘7 0D/2 e "0 / ]
nwolp 27
AD —J1nwoto e
= —T—e I O[Sln(nwoD/Z)/(nwoD/Q)]
0

_AD
-

where we define sinc (z) = (sinz)/x.

e~ /"Mgince (nwyD/2),
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e The periodic signal under consideration:

Xa(t)
A
——— A 4+ p——— ———
| | | _
tO-TO to— D/2 tO t0+ D/2 t0+ TO t

e ¢, is thus expressible as

AD |

c, = A,

A, = - sinc (nweD/2), ¢, = —nwpty.

0

e ¢, = A,e ™% and x,(t) is expressible as

where

T

zo(t) = Ao + Z (M (2),
n=1

inwot — jnuwt
) (1) = ce?™0t 4 _, eI

— A, eimeotton) 1 A o=ilnwot+on)

= 2A,, cos(nwot + ¢y,).
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Frequency-Domain Interpretation of z\" (t)
2A,, cos(nwot + ¢,)

(n)

e Since x4 ' (t) = 2A, cos(nwyt + ¢,,) is expressible as

(n (t) — A, e (nwot+én) 4 A, eI (nwot+én)

Y

it can be expressed as a sum of two phasors (see

the next page)
Phasor!T) () = A,,e/("ot+en)
= A, cos(nwot + ¢y) + jA, sin(nwot + ¢,,)
and
Phasor( ™) (t) = A, e (mot+en)
= A, cos(nwot + ¢y,) — J A sin(nwot + ¢,),
which form a conjugate pair.

e Phasor'™)(t) and Phasor(”)(t) are rotating along
the circle of radius A, anticlockwise and clockwise
with a speed of nwy radians per second such that
their angles at the time instant t are nwgt + ¢,

and —(nwot + ¢,), respectively.

e The sum of these two phasors is two times the

real part of both phasors.
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Construction of z" (t) = 24, cos(nwot + ¢,) using

two phasors
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e This sum achieves the same value after the time
period of Ty/n, since the phasors have been ro-
tated by by £nwy(Ty/n) = +m (wy = 27w/Tp) so
that they are at the same position.

e Therefore, the periodicity of 2 (t) = 2A,, cos(nwyt+
®n) is Ty/n.

e The overall signal is expressible as

z,(t) = Ay + Z 2 A, cos(nwot + @)

n=1
so that it consists of a constant term and cosine
terms with the fundamental angular frequency wy

as well as its harmonics nwy for n = 2,3, ....

e Any periodic signal is expressible in the above
form. After knowing Tj, we know the fundamental
harmonic frequency wy = 27/Ty. Then the signal
is completely determined after knowing the oscilla-
tion amplitudes A, and the phase shifts ¢, of the

cosine terms.

e The next page shows in our example case the

A,’s and nwy’s for various values of T and D.
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A,’s and nwy’s for various values of T, =T and
D =d. Ay is the constant occuring at w =0, A;
and A_; are situated at w = +wy; and so on

A/5

d = 1/10' T="1%
P —\\ wo=Aw = 47
/] N
N\ | - l/ w
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~407 —-20m 0 4T 207w 40T
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AN| ' il S—_)
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—40m —-207T 0\ T 20T 407
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Periodic signals expressed in terms of the
real’ frequency

e Previously, we expressed our cosine terms using
the angular frequencies which are measured by ra-

dians per second.

e In practice, the ’'real frequency’ f is measured in

Hz and it is realated to w trough
f=w/(2n).
e Using the substitution
nwy = 2mn fy,

our periodic signal takes the form

%(t) = ¢y + Z 2A,, cos(n27rf0t + &),

n=1

where
fo=1/Tq
is the fundamental frequency.

e The next page shows Ay and the four first terms
2A, cos(n2w fot + ¢,) in our example case when
Ty = 1/440 seconds, ty = Ty/3, D = Ty/3. In this
case fo = 440 Hz corresponding the basic a in the

pilano.
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Ay and the four first terms 2A, cos(n2x fot + ¢,)
for k = 1,2,3,4 in the case where T; = 1/440
seconds, A =1, t)=1,/2, and D = Ty/3

A0 and A_n*cos(n*2pi*fO+phi_n) for n=1,2,3,4
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Comments

e The perivious example was the ideal one.

e In practice, the signal is periodic only on a finite
interval and the series is only approximately peri-

odic.

e A typical example is the lower f note played us-
ing a harmonica. This was shown on page 4. In
this case fo ~ 350 Hz so that T, = 1/350 s. Note
that the amplitude level as well as the shape of

the waveform vary slightly with time.
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Frequency-Domain Representation of an Ape-

riodic Continuous-Time Signal: Fourier Trans-

form

Up to now, we have considered periodic signals

having a Fourier series representation.

This expression cannot, however, be used for ape-

riodic signals for which we use Fourier transform.

As an introductory example, we consider the sig-

nal x,(t) defined for —oo <t < oo and satisfying
{ A, fortelty—D/2, ty+ D/2]
z4(t) =
0, elsewhere.

In order to develop the Fourier transform for our

signal, we consider the following strategy.

First, we consider a signal 7,(¢) which satisfies for
—00 < t < 00, To(t+Ty) = Zu(t) and on the interval
[to — To/2, to+ To/2]
N A, fortelty—D/2, to+ D/2
LL’a(t) = { o [ 0 / 0+ / ]

0, elsewhere.

This signal (see the next transparency) is made

artifically periodic with period equal to fo.
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Development of the Fourjer transform: a pe-
riodic signal 7,(t) and its Fourier series coffi-
cients for m = 3 and m = 5 (T) = mD). A =1,
(see also the next page)

D
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Development of the Fourier transform: a pe-
riodic signal 7Z,(¢) and its Fourier series coffi-

cients for m =3 and m =5 (T\osz). A=1

Radii An given by circles for m=5
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e The second step is to consider what happens
when Ty — co. In this case, Tqo(t) — x4(t).

e According to the previous discussion, Z,(t) is ex-

pressible as (@y = 27 /Tp)

o0
:/Ea(t) — Z Cnejn@(),
n=-—00
where
C, = 1/T0/ ZIZ‘\a(ﬂe_]nthdt
t()—j—'\()
AD . -~ :
= ——e /"Mginc (n@yD/2) = A,e’?n
To
with AD
A, = ——|sinc (nwgD/2)|
To
and

5 — —niyt for sinc (—niyD/2) > 0
" | n@otg —  for sinc (nioyD/2) < 0.
o It is seen that the A,’s and ¢,’s are obtainable

from

X,(jw) = ADe*Msinc (Dw/2) = | X, (jw)|e’®8 Xeliw)

Y

where
| X, (jw)| = |ADsinc (Dw/2)]

and

—t for sinc (Dw/2) >0
arg Xa(jw):{ ow or sinc (Dw/2) >

—tow — m for sinc (nwyD/2) < 0
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according to

1
An = = Xa ]n@
TOI (3m800)

and
¢n, = arg X, (jniy).
Hence, the A,’s and ¢,’s are sampled versions of

1 X,(jw)|/Ty and arg X.(jw) such that the sam-

pling is performed at w = nd.

In order to simplify the following discussion, we

assume that 7, 0o = mD giving

Do = 27 /Ty = 21 /(mD),

A D 1
An = E[sine (7?,271'577—1)] — EIXLL(]ZNE%)L
and
b — =27ty for sinc (w%)-) >0
" —2mto—5 —m for sinc (W%) <0

) n
=arg Xo(j2m—05).

In this case, the A,’s and ¢,’s are the sampled
versions of |X,(jw)|/m and arg X,(jw) such that

the sampling is performed at w = 2T,

The figures on page 22 show the A,’s and ¢,’s for
m =3 and m = 5.



— 25 —
It is seen that as m (or Tj) increases, the fun-
damental angular frequency @&, as well as the

A,’s decrease (the envelope |X,(jw)|/m becomes

smaller).

Furthermore, the A,’s and ¢,’s become more
close spaced. Note that shapes of the envelopes
| X.(jw)|/m and arg X,(jw) remain the same, the

samples are just taken more closely.

As m — oo, T() — oo and the additional pulses
located around t = ¢, ~T 0o and t =t —l—T\o approach
—oo and 400, respectively.
In this case the artificial periodic Z,(t) approach
the original aperiodic z(t).
Simultaneously, the A,’s and ¢,’s become ex-

tremely closely spaced and the Fourier series has

become the Fourier transform.

The only problem left is the fact that A, is the
sample of |X,(jw)|/m at w = 2rL5. This means
that A, — 0 when m — oo.

However, the product ThA, is the sample | X, (jw)|
and fgcn = 'ngnejqb” is the sample of X,(jw), that

do not vanish as m — oo or Ty — oo.

As Ty — 00, Wy — 0, and the term ki, tends to
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a continuous rather than a discrete variable, de-
noted by w. In the similar manner, focn tends to

a continuous variable, denoted by X,(jw).

Hence, as Ty — oo
to—i—j—’\g

Toc, = / Tq(t)e Il dt
to—-fg
| —>
X.(Jw) :/ To(t)e 7 dt, (A)

This is the desired Fourier transform of our signal
zo(t).
The inverse transform can be obtained by consid-

ering what is happening to

oo

T,(t) = Z Cpe’ ™

when T, 0 > 00.
As fo — 00,

e = Xa(jw) /Ty = Xa(jw)do/ 2.
Furthermore, niy +— w and the fundamental fre-

quncy &y becomes vanishingly small and is writ-

ten as dw.

Finally, the summation in the expression of xz,(t)

above becomes an integration in the limit and we
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obtain the following inverse transform:
1 [ :
a(t) = o- /_  Xuw)e . (B)

Equations (A) and (B) are known as the Fourier

transform pair.

We can interpret equation (A) as a decomposi-
tion of z,(t) in terms of the continuum of the el-
ementary basis functions e’“t. X, (jw) plays the
same role as the c¢,’s in the Fourier series repre-

sentation. X,(jw)/27 is the ”coefficient” associ-
ated with e/t

Xq,(jw) is, in general, a complex function of w

and is expressible as
Xo(jw) = Re{X,(jw)} + jIm { X, (jw)}

— |Xa(jW) lejargXa(jw)

Y

where

[ Xa(jw)| = v/ (Re {Xa(jw)})? + (Im { Xa(jw)})>?
is the amplitude spectrum of x,(t) and

arg X,(jw) = atan2 (Im {X,(jw)}, Re{X,(jw)})

is the phase spectrum spectrum of x,(t).

In many cases, we are interested in the 'real’ fre-

quency f. Using the substitutuion w = 2xf, the
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spectrum is expressible in terms of f as follows:

Xo(527f) = Re {Xa(527f)} + jIm { X, (j2r f)}
= | Xa(g2m f)|erreRelenl),



Example: z,(t) = A for to — D/2 <t < tg+ D/2
and z,(t) is zero for other values of ¢

00 . to+D/2 '
X.(jw) :/ Tq(t)e ¥t :/ Tq(t)e VN dt
—00 to—D/2

= e 7% ADsinc (Dw/2) = | X,(jw)|e/®® Xaliw)
where
| X,(jw)| = |ADsinc (Dw/2)|
and
, —tow for sinc (Dw/2) > 0
arg X,(jw) = :
—tow — 7 for sinc(wD/2) < 0.
e In terms of the real frequency f, the amplitude

and phase spectra become (see the next page)
| Xa(j27f)| = |ADsinc (7D f)]

and

arg X, (j2n f) = { —27to f for sinc (7D f) > 0

—27ntof —m for sinc(wDf) < 0.
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The amplitude and phase spectra of the sig-
nal of the previous page for A =1, D = 1/200,
and t; = 1/200

arg Xa(j2pif)

x 10° Amplitude spectrum for xa(t)
6 T 1 1 i

2 | ! | ! |
-600 -400 -200 0 200 400 600
Frequency f in Hz

Phase spectrum for xa(t)

o .
-600 -400 -200 0 200 400 600
Frequency f in Hz
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The Fourier transform for periodic signals

Strictly speaking, the Fourier transformdoes not

exist for signals

z,(t) = Z cnej"wo (A1)
or OZ:_OO
zo(t) = Z cne?™0u(t), (A2)
where )
{ 1 for t >0
u(t) =
0 for t <O.
This is because in these cases

X,(jw) = /OO Tq(t)e ¥t dt

-0
becomes infinite.

However, this problem can get around by using
the continuous-time impulse 9,(¢) which is defined

on page 33.

By using this function, the Fourier transforms for

the above functions are expressible as

X, (jw) =27 Z Cnla(w — nwyp) (B1)

n=—oo

and
(0. @)]

X, (jw) = Z Cn(mda(w — nwy) + -

n=-—oo




g
e [t should be pointed out that these respresenta-
tion forms are not very important when filtering
periodic signals using continuous-time filters. The
output of a causal linear phase time invariant fil-
ter can be determined very easily without using
these forms at all, as we will see later in connec-

tion of examples.
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Continuous-time impulse function §,(%)

The continuous-time impulse function §,(t) is an

abstact pulse which can be developed as follows.

First, we generate a real pulse pa(t) having the
height of 1/A and the width of A so that its area
is 1 (see the figure shown below). The center of

this pulse is at ¢t = 0.

pa(t)
5.(t)
A 2
A—p 0
e
TAROAR % 0o T

d.(t) is then obtained by allowing A to approach

zero, that is,

50, (t) — E}gh pba (t) .

The height of §,(t) is thus infinite and the width

is zero such that the area is still unity.

0,(t) possesses the following properties:
0.(t) =0 for t#0,
04(t)is indefined for t = 0,
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/ S (t)dt = 1,

—00

| 10— )it = (),
and -
F(£)da(t — to) = f(t — to)-
e It should be pointed out that the abstract pulse

04(t) plays a very crucial role in considering continuou

time signals and systems.
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Fourier transform pairs and some properties

of the Fourier transform

e The following two pages give some Fourier trans-
form pairs and some properties of the Fourier
transform. In this pages, instead of z,(tf) and
X,(jw), f(t) and F(w) is used. The notation
f(t) < F(w) means that f(¢t) and F(w) are a
Fourier transfor pair. |

e Furthermore, fi(t) * f2(t) means the following con-

volution

oy / A(r) folt — 7)dr



Fourier Transform Pairs

- 36 -

Time Function, f(¢)

Fourier Transform, F(w)

ju—y
.

10.

11.

12.

13.

e tu(t)

te % u(t)

1, <X
gr®) =" 2

0, otherwise

Al——‘t—‘ lt| < T
T’

0, lt| > T

e—altl

e sin wyt u(t)

e~ cos wyt u(t)

a2
eat

g1
(n — D!
1
cos bt
sin bt

sl (e +3) =~ 3)]

e *y(t)

1

a+jo

1 2
(+7)
T sinc (ﬂ)
2
A T sinc? (w—zT )

2a
a2 + c02

)
(@ + jo)? + of
a+jo
(@ + jo)* + o

z e—w2/4a

1
(jo + a)*

ks
_ e_alwl
a

__7_T_ [e—alm—b] + e—a|w+b|]
2a

L [e—a]co——bl _ e—a|m+b[]
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Fourier Transform Pairs

Time Functions, f(¢)

Fourier Transform, F(w)

10.

11.

12.

13.

ko(t)
k

u(t)
sgn (¢)

COs wyf
sin wyt

e:imot

tu(t)

% 8t — kT)

k=—o0

w .

N=—o0
dno(t)
dat™

|]

tn

k
2k S(w)

m8(w) + _1_
]CO

2fjw
m[0(w — wy) + 6(w + wy)]
Jrld(w + wg) — é(w — wy)]
276(w — wg)

.o 1
jmd (w) — —
w

27

o0
g z 0w — nwy), wy = —
ne——0 T

- 0
20 Y F,0(0 — nwy)

(jo)*

-2

0)2

., d"0(w)
217_] dcon




- 38 -

Some Properties of the Fourier Transform

1. Transformation f(@) <> F(w)
2. Linearity a, [1(t) + ayfo(t) <> a, Fy (o) + ayFy(w)
3. Symmetry F(t) <> 2nf(—w)
4 li (at) <> L r(2
. Scaling f(a Tl (;
5. Delay f(t = tg) <> e 7*hF (w)
6. Modulation et (1) <> F(w — wq)
7. Convolution [1(@) * f5(t) <> F(0)Fy(w)
1
8. Multiplication [L(D) () — - Fi(w) * Fy(w)
w
dn . \n
9. Time Differentiation o f(t) <> (jo)"F(w)
i F(w) .
10. Time Integration f f(n)dr <> To + 7F(0)é(w)
J —0
. dF(w)
11. Frequency Differentiation —jtf () <> o
(¢ N gt
12. Frequency Integration f_—:——]Z > JF (o) do

13. Reversal f(=t) > F(—w)
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Laplace transform: Basic mathematical tool
for studing continuous-time signals and sys-

tems

e The two-sided Laplace transform of a signal z,(?)

is defined by
Xo(8) = Liwo{za(t)} = / To(t)e *dt.

e The region of convergence (ROC) consists of those
values of s = o for which

/ N |24 (t) e dt

—00

is finite. The ROC may consist of all values of s
or it is of the form a < s < b, s < b, or s >

a. There are also cases where there is no ROC at

all.

e In practice, singnals are causal and we can con-
centrate usually on signals which are zero for ¢t <
0. In this case, we can use the one-sided Laplace

tranform defined by

Xa(s) =L{z,(t)} = /OOO To(t)e " dt.

e For the one-sided Laplace tranform, the ROC may
consist of all values of s or it is of the form s >

a.
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The inverse Laplace transform, that is, the signal
Ta(t) whose Laplace tranfrom is X,(s), could be

evaluated as
o—700
z,(t) = L7HX,(s)} = X, (s)eds,

o—joo
where o is constant and taken to be in the ROC.
This is not worth doing. The simplest tech-
nique is to use simple techniques for developed
for determing the inverse Laplace transform. One
of them is to use the partial fraction expansion
(Xa(s) is a rational polynomial of s) and then to

use tabulated transform pairs for simple functions.

For most practical signals (except for periodic sig-
nals of infinite duration), the Fourier transform is
obtained from its Laplace transform X,(s) using
the substitution s = jw, giving X,(jw).

This is very wuseful in studing the frequency-

domain behavior of continuos-time filters.



— 4]_ —
Laplace transform pairs and some properties
of the Laplace transform

e The following two pages give some Laplace trans-
form pairs and some properties of the Laplace
transform. In these pages, instead of z,(f) and
Xu(s), f(t) and F(s) are used. The notation
f(t) < F(s) means that f(t) and F(s) are a

Laplace transform pair.

e Furthermore, fi(t) * fo(t) means the following con-

volution

f1(t) * fo(t) = /_OO fi(7) fa(t — T)dT.
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Laplace Transform Pairs

f@) F(s) Convergence Region
1
1. e %u(t) —Re (a) < Re (s)
s t+a
1
2. u(t) - 0 < Re (s)
s
1
3. tu(r) > 0 < Re(s)
5 .
4. t™u(t) n!/snt1 0 < Re (s)
5. @) 1 all s
6. 5'(¢) s all s
o)
7. sgnt = Re (s) =0
s
1
8. —u(—1) - Re (s) <0
S .
1
—at
9. te @ _u(t) m —Re (a) < Re (s)
—at n!
10. me—%%(t) mﬁ —Re (a) < Re (s)
—alt] 2a
11. e = - —Re (a) < Re (s) < Re (a)
at —s
12. (1 — e%tu(r) a4 max (0, —Re (a)) < Re (s)
A s(s + a)
s
13. cos ot u(t) 2 + o2 i 0 < Re (s)
. w
14, sin wt u(t) T 0 < Re(s)
, +o
15. e’ cos wt u(t 5 : —0o <R
u(t) G T o T o <Re ()
16. e sin wt u(t @ — R
wt u(t) Gt of T ot o < Re (s)
1 -], |t <1 sinh s/2\
17.
{o, lt] > 1 ( 52 ) all s
18. S & ) !
. t —nT all s
n§=:o 1 — T
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Some Properties of the Laplace Transform

(1) Linearity

afi(t) + bfy(t)<> aF(s) + bFy(s), max (o4, o) < ¢ < min (B, B5)
(2) Scaling

flat)or - F(ﬁ), lala < o < la| B

la] \a
(3) Time shift

f(t — 7)> F(s)e™™, a<ao<p
(4) Frequency shift
e~ (t)<> F(s + a), « — Re(a) < 0 < — Re(a)
(5) Time convolution
J1(0) * fo(t) <= F1(s)Fo(s), same as (1)

(6) Frequency convolution

RO f " ) oo <T<hith

] —Jjoo
X Fo(s — u) du, m<e<h

(7) Time differentiation

ﬂt—) — sF(s), same as (3)
(8) Time integration
f t F(s) '
S) due>—", max («, 0) < ¢ <
—® s
fwf(“)dUH@, « < o < min (B, 0)
t s
)] Frequency differentiation
(=)"f() > d”E(s) , same as (3)

gds"
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Importance of the Laplace and Fourier Trans-

forms

When using continuous-time filters (here we con-
sider just linear causal time-invariant systems) for
processing the the exitation z,(t) starting at time
t = 0, then the output signal y,(f) can be ob-
tained from the equation

Ya(t) = /too To(T)he(t — T)dT, (A)

=0
where h,(t) is an impulse response of our filter,

that is, the response to the exitation x,(t) = 6,(¢).

As an example, we consider the simple RC-filter

shown below.

R
o— MW 1 0
G(t) C = — 3y(t)
O~ } — O]
For this filter,
I _
ha(t) = iToh RCu(),

where

0 fort
u(t):{ or t <0

1 for t > 0.



e It should be pointed out that the RC-filter is the
simplest filter. However, the evaluation of the in-
tegral of Eq. (A) is very difficult especially for a

complicated input signal x,(t).

e Futhermore, we like to know the frequency-domain
behaviors of both our filter and y,(t).

e We are capable of solving both of the above-
mentioned problems by using the Laplace and
Fourier transforms. In the case of the Laplace
transform, the Laplace transform of the response
Yo(t) is simply given by

Ya(s) = Ha(s)Xa(s),
where H,(s) is the Laplace tranform of the im-
pulse response hy(t), called the filter transfer func-
tion, and X,(s) is the Laplace tranform of the ex-
itation x,(t).

e In the case of the Fourier transform, the the
Fourier transform of the output of a continuous-
time system, denoted by Y,(jw) is directly the
product of the Fourier transforms of the exitation
and the impulse response, denoted by X,(jw) and
H,(jw), that is,

Yo(jw) = Ha(jw) Xa(jw).
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Example: Determine the response of the RC-
filter to the exitation z,(t) = cos(wot + ¢)u(t).

e The Laplace transforms of the impulse response

ha(t) = a=e /%% and the exitation are

1
H.(s) =
) =TTRes

and
5COS ¢ — Wy Sin qb

s? 4+ wi
e Therefore, the Laplace transform of the output is

Xu(s) =

given by
SCOS ¢ — wp Sin ¢
X
Yalo) = Holo)Xuls) = T e (o7 4 )

o After some manipulations, we obtain

Ya(s) = |Ha(jwo)| X

scos(¢ + arg H,(jwy)) — wosin(¢p + arg Hy(juwy))

s + w3
_ RC[H,(jwo)| cos(¢ + arg H, alJw))
14+ RCs

o Here, H,(jw) is the frequency response of our RC-

filter and is expressible as

1 . .
H,(jw) = = |H,(j jarg Hq(jw)
(Jw) [T iRCw |Ho(jw)le ,
where .
|Ha(jw)| —

\/1 (RCw)?
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and
arg H,(jw) = —tan"'(RCw)

and the amplitude and phase responses of our

RC-filter.

By utilizing the facts that in the case of causal
signals, the inverse Laplace transforms of 1/(s+ a)
and (scosf — asinf)/(s* + o?) are e *u(t) and
cos(at+ B)u(t), the output signal can be expressed
as

Ya(t) = y1(t) + 12(2),
where

y1(t) = |Ha(jwo)| cos(wot + ¢ + arg Hy(jwo))u(t)

and
ya(t) = —|Ha(jwo)| cos(¢ + arg Hy(jwo))e "/ FCu(t).

Alternatively, using the substitution wy; = 27 f
these components can be expressed in terms of

the 'real’ oscillation frequency f; as

Y1(t) = |Ho(327 fo)| cos(2m fot+d+arg H, (527 fo))u(t)

and

ya(t) = —|Ha(52m fo)| cos(¢ + arg Ha(527 fo))e ™/ "u(t).



— 48 —
o Here, |H,(j27fy)| and arg H,(j27f;) are samples
at f = fy taken from the frequency response of

the filter expressed in terms of f, that is,

1 . .
H,(72 = = |H,(j2 jarg Ha(j27 f)
where .
H, (727 f)| =
l (J f)' \/1 + (RC’27rf)2
and

arg H,(j2nf) = —tan ' (RC2x f)

and the amplitude and phase responses of our
RC-filter in terms of f.

e The following page gives the amplitude and phase
responses of our RC filter for RC' = 1/(27100). In
this case, |H,(j27f)| achieves the value of 1/+/2
at f = 100 Hz. This is the so called 3-dB point in
the filter theory.



Amplitude and Phase Responses of our RC
Filter for RC = 1/(27100)

Amplitude response for our RC-filter

___________________________________

0 200 400 600
Frequency f in Hz

Phase response for our RCfilter
2 T T I I

2 i | ! | |
-600 -400 -200 0 200 400 600
Frequency fin Hz
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Interpretation of the terms y;(t) and y,(t)

e According to the previous discussion, the overall

input is expressible as

Ya(t) = y1(t) + 2(),

where

y1(t) = |Ha(327 fo)| cos(2m fot+d+arg H, (527 fo))u(t)

and
y2(t) = —|Ha(j2 fo)| cos(¢ + arg Ha(j2m fo))e™ ' u(t).

e y;(t) resemples the exitation
x,(t) = cos(2m fot + @) u(t).

e The only difference is that the oscillation ampli-
tude has changed from unity to H,(j27fp)| and
there is an additional phase shift of arg H,(j27 fp).
Therefore, this term is called as a steady-state re-

sponse.

e The second term is a short-duration transient part

which affects in the very beginning.

e This is exemplified in the following two pages
in two cases for the RC-circuit with RC =
1/(27100). In these cases, fy = 20 Hz and fy =
200 Hz. In both cases, ¢ = 0.
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e As seen from these figure, in both cases, y,(t) be-
comes a sinusoidal signal with a different oscilla-
tion amplitude and a phase shift after the tran-

sient part.

o In the first case, |H,(j27fy)| is close to unity so

that the oscillation amplitude is almost one.

e In the second case, |H,(j27fy)| is approximately
equal to 0.45 so that the oscillation amplitude is

also approximately equal to 0.45.



Exitation z,(t) = cos(27fy)u(t) with fy = 20 Hz
for the RC-filter with RC = 1/(27100) and the
response y,(t)

Exitation xa(t)=cos(2pifOt) with f0=20 Hz

o
(8]
T

-1 | | | | i
0 0.05 0.1 0.15 0.2 0.25
Time t in seconds

0.3 0.35 0.4

Response ya(t) for f{0=20 Hz

_________

o
(8}
T

-7 -

- 1 -

- q -

-4 -

- 9 -

______

0.15

0.2

1
0.25

Time t in seconds

0.4
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Exitation x,(t) = cos(2m fo)u(t) with f; = 200 Hz
for the RC-filter with RC = 1/(27100) and the

response y,(t)

Exitation xa(t)=cos(2pifOt) with f0=200 Hz

1
0.5F
S OoF il
>
-0.5F- ; . n
-1 ‘ | | | A
0 0.015 0.02 0.025 0.04
Time t in seconds
Response ya(t) for {0=200 Hz
05 T 1 T T T T T
S ofF--V-- e b oo e e e
>
i i | A | i i
0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time t in seconds

-0.5
0.005



Example: Determine the response of the RC-
filter to the exitation z,(t) = u(t — (tc — D/2)) —
u(t — (to+ D/2))

o This exitation is unity for tg — D/2 <t <ty+ D/2

and zero otherwise. Its Laplace transform is

X, (s) = [eto=D/2)s _ g=(totD/2)s) /g

e Since H,(s) = 1/(1 + RCs), the Laplace tranform

of the response is
e—(to—D/Q)s . 6—(t0—|—D/2)3

Yols) = Hu(s) Xals) = —— 77755

o Y,(s) is expressible as
Y, (s) = [e”to=D/Ds _o=(to+D/2)s1[y /s RC'/(1+ RC's)]
so that the inverse transform is
a(t) = (1€ ") fu(t—(to=D/2)) ~u(t—(to+D/2))].

e The following page shows the exitation x,(t) for
D = 1/200 and ty = 1/200 and the response of
the RC filter with RC = 1/(27100).
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Exitation z,(t) for D = 1/200 and ¢, = 1/200
and the Response of the RC Filter with RC =
1/(27100)

Exitation xa(t)

0.8

et

© 0.6
X

0.4
0.2

O | | 1 1
0 0.005 0.01 0.015 0.02 0.025
Time t in seconds

Response ya(t)
1 | T

)
o ©
H (o))
1 |

o
N
T

0 1 1 L
0 0.005 0.01 0.015 0.02 0.025
Time t in seconds
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Relation of the Fourier Transform of the Out-
put to Those of the Exitation and the Im-
pulse response

According to the previous discussion we know
that the Fourier transform of the output signal

Yo(t) is given in terms of the real frequency f as

Yo(52mf) = Ha(j2m f) Xa(5270f).

Furthermore,
H, (521 f) = |Hy(j2m f)| 78 Hal2mh),
where |
H, (727 f)| = —
2N = =R
and
arg H,(j2nf) = —tan ' (RC27 f).
and
Xo(j2rf) = | Xo(j2m f)|eforeXeli2ns),
where
X,(j27f)| = |ADsinc (xD )|
and

—27to f for sinc (7D f) >

0
Xo(g27mf) =
arg Xa(j2mf) { —27tof — 7 for sinc (7D f) < 0.
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e From this, it follows that
Ya(j2r f) = |Ya(j2m f)|e7*8 Xeli?r),
where

Ya(52mf)| = |Ha(527 f)|| Xa(527 f))

and
arg Y,(j2nf) = arg H,(j2nf) + arg Xa(j27f)

e These relations are exemplified in the following

pages.
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The Amplitude spectrum of the response of
the exitation of z,(t) = u(t — (to — D/2)) — u(t —
(to+D/2)) in the case of a RC filter with RC =
1/(27100)

x10° Amplitude spectrum for xa(t)

= 4
[o R
2
(L]
X0

-2 '

-600 -400 -200 0 200 400 600

Frequency f in Hz
Amplitude spectrum for ha(t)

%i

NOSF----- et s

[}

X

| | | . |
-600 -400 -200 0 200 400 600
Frequency f in Hz
x 10> Amplitude spectrum for ya(t)

400 600

-600 -400 -200 0 200
Frequency f in Hz



The Phase spectrum of the response of the
exitation of z,(t) = u(t — (to — D/2)) — u(t — (to +
D/2)) in the case of a RC filter with RC =
1/(27100)

Phase spectrum for xa(t)

-600 -400 -200 0 200 400 600
4 Frequency f in Hz
Phase spectrum for ha(t)

_____________________________

-600 -400 -200 0 200 400 600
Frequency f in Hz
Phase spectrum for ya(t)

arg Ya(j2pif)

-600 -400 -200 0 200 400 600
Frequency f in Hz
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APPENDIX B: Why is the spectrum of a impulse train with

sample values as weights periodic?

Consider the following system:

s(t)
x(t) xs(M=s@)x(®) Tl _ -

T—| | |

s(t)

0 T 2T

In this system, a continuous-time signal x(t) is multiplied
by a pulse train s(t). The resulting output is xg(t)=x(t)s(t):

2 I T T oT ™, l\l t

Since s(t) is periodic, it can be expressed in the following
form assuming that the height of s(t) is 1/1:

s(t)=cg + 2 2c cos{n(2TtFg)t},
n=1

where
ck = Fs sinc (nFgT).
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Hence, x(t) is expressible as

Xg(t) =cg+2c 4 x(t)cos{(2mFg)t} + 2c 5 x(t)cos{2(2mFg)t} + -~ .

From this it follows from the modulation theorem that the
spectrum of xg(t) becomes

Xs(f) = 6o X(f) +64[X(f -Fs) + X(f + Fs)] +Co[X(f - 2Fs) + X(f + 2Fs) ]
+C3[X(f-3Fg) + X(f+3Fg)] +C4[X(f - 4Fg) + X(f + 4Fg) ] + -

where X(f) is the spectrum of x(t). See the following figures.

A X(f)
I I -
Xs(f)
CoX(f +3Fs)  coX(f+Fs) | ¢4 X(f -Fs) c3X(f -3Fs)

coX(f +2Fs) l CoX() | ¢ X(f -2Fs)

\

I I
-3Fg -2Fg -Fs -Fs/20 Fg/2 Fg 2Fs  3Fg f
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As T 0, s(t) and xg(t) approach the following impulse
trains

s(t)=Y o(t-nT), xg(t)= Y x(nT) 8(t - nT).

N=—co N=—oco
according to the following figures:
s(t)
x(t) Xs(t)=s(t) x(t)
s(t) | t
0 T 2T
xg(t) "
X
“’ ",u' '..‘.. ‘
T 8 3T

O(t-nT) is an impulse which is generated by centering att = nT

a pulse with height of 1/T and width of T and allowing T to

approach zero. The area of the resulting pulse is unity, the
height is infinite, and the width is zero.
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As T — 0, then ckx — cq = Fs ja the spectrum of xg(t)

becomes perfectly periodic:

Xs(f) =Fg Y X(f-nFg)

N=— oo

A X(H)

-Fg/2 Fgl2

Xs(f)
FsX(f)

_3FS —2Fs —Fs —Fsl20 FS/2 FS

2Fg

3Fg
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Reconstruction of the continuous-time signal

The original continuous-time signal can be reconstructed
by filtering xg(t) with a continuous-time filter with amplitude

equal to 1/Fs for -Fg/2 < f < Fg/2 and zero elsewhere :

Desired filter H(f)

A Result after filtering: X(f)

_Fs/2 Fs/2 f
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Resulting continuous-time signal

The impulse response of our filter is given by
h(t) = sinc(t/T), T= 1/Fg.

Since xg(t) is a sum of weighted (weights equal to the sample

values x(nT)) and shifted impulses, the output is the following
sum of weighted and shifted impulse responses:

y(t) = Z X(nT) h(t - nT) = Z x(nT) sinc[(t = nT)/T] = x(t).

N=—oc0 N=—co

Again, we ended up with the sinc-interpolation !!
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APPENDIX C: Input-output relation for continuous-time

signals in the case of the ideal sampling and reconstruction

Consider the following system:

Ideal Digital filter with Ideal r i
—| 'dea _»-limpulse re- || 'O r€CON-

. —
x(t) sampling X(n)

sponse h(n) Y(n) | Struction | y)

This system is characterized by the equations (these become

more clear later in this course):

X(n) = x(nT), T is the sampling interval
Y(n) = Y h(k) X(n—k)

K=—o0
y(nT) = Y(n)

yt)y= Y y(nT) Si?&’:_(;}';?rm = 3" y(nT) sinc [(t-nT)/T] .

N=—c0

N=—c0

These are the time-domain relations between y(t) and x(t).

The next transparency considers the frequency-domain

relations.
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On page B4 of Appendix B we noticed that if the Fourier

transform of x(t) is X(j2rtf), then the Fourier transform of

Xg(t) =Y x(nT) &6(t-—nT)

N=—co

is given by o
Xg(i2nt) = Fs ), X(ji2m(f-kFs)).

k=—co
For the sequence X(n) = x(nT) the z-transform is given by
Py < —n
E(z) = Y, X(n) z
N=—c0

jonflFs ¢

By substituting z=e =1/T, we obtain

5(el?™/FS) _x (j2nf) = FsY X(2n(f-kFs)).
K=—o0

This is the frequency-domain basic relation between the

sequence X(n) and t he sampled continuous-time signal x(t).
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For Y(n) satisfying

Y(n) = Y h(k) X(n—k)

k=—co
the z-transform is

P@2)=Y, Yz =H@E@), H@ =Y hmnz™

N=—oc0 N=—co

Here, H(z) is the transfer function of the digital filter.

The Fourier transform of

ys(t) =, ¥(nT) 8(t-nT), y(nT) = Y(n)

N=—oc0

is given by

Yq(j2nf) = W ej27chFs) _ H(ejan/Fs) =( ej2nles)

= H(el2™/Fs) x4(jonf) = Fg H(eizﬂf/FS)f, X(i2m(f-kFsg)).
K=—c0

The Fourier transform of

y(t) = Z y(nT) Si?&’ti(:‘%-l;?rn] = Z y(nT) sinc [(t-nT) /T]

N=—c0 N=—c0
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is obtained from that of yg(t) using an analog filter with

frequency response equal to 1/Fg in the frequency range
from —=Fs/2 to Fg/2 and zero elsewhere (analog filter with

impulse response equal to h(t) = sinc (/T)).

The Fourier transform of y(t) is thus related to that of x(t)
according to (assuming that no aliasing occurs)

Y(j2nf) = G(j2rf) X(j2rf),
where

G(j2rf) = HE2™Fs) for - Fg/2 << Fg/2
and zero elsewhere.

Hence, the input-output relation for y(t) and x(t) in the

frequency range from -Fs/2 to Fs/2 is simply obtained

j2nf/Fs

by using the substitution z=e in the transfer function

H(z) of the digital filter.



APPENDIX D: Fourier Tranform of Discrete-
Time Signals

e The purpose of this appendix is to give a short
review of the Fourier transform of discrete-time

signals.

e The main emphasis is on the practical use of this
transform on analysing discrete-time signals and

systems.
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FOURIER TRANSFORM

e The z-transform of a sequence x[n| was defined by

n=—oo

e The Fourier transform of this sequence is obtained
by using the substitution z = e’“ in the above
equation, giving

oo

X(e®) = > znle ™. (A)

n=—oo

o Alternatively, after knowing X (e’/¥),
1 (7 S
o] = o /_ X(@)e, (B)

e Equations (A) and (B) form a Fourier transform
pair.

o Strictly speaking, X(e/*) exists (|X (&) < o0)
provided that z[n| is absolutely summable, that

is,

e In this case, the series of equation (A) converges

uniformly to a continuous function of w.



o Example: Let z[n| = a"u[n]. Then,

0.@)

ejw Zan —jnw __ Z (ae—jw)n

n=-—0

:1/(1 —ae ) if |ae™| < 1 or |a| < 1.

o Clearly, if |a| < 1, then z[n] is absolutely summable,
that is,

> la"=1/(1 —a]) < oo

e Some sequences that are square summable, that

> Iz

n=——oo

can be represented by a Fourier transform if we

is,

relax the condition of uniform convergence of the
infinite sum defining X (e/*).

e Example: Let
X (&%) = {

e In this case,

1 [ i
x[n] = ———/ el = sm(nwc)) —00 < n < 0.

1, |w| < we
0, w.<|w| <.

2 N

e This sequence is square summable, but not abso-

lutely summable.
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e By including only the terms —M < n < M gives
the partial sum

- U sin(nw,)
XM(ejw) — Z c e Inw.

nm
n=—M

e It is well-known from the theory of mathematics,
that as M — oo, Xy(e’*) has allways an over-
shoot of value 1.09 before the point w = w, and
an undershoot of value —0.09 after this point in-
dependent of the value of M.

e This is the well-known Gibbs phenomenon and is
illustrated in the following figure for several values

of M.

Hylei@), M=1 Hylel®), M=3

T\ AL\

/1N 2R

(a) (b)

Hy(el“), M=7 , Hy (el@), M=19
oI\ / \ .- A J
N? - > 4 AN A\ A
- V—wc 0 wcv Tw -7 v\’—wc 0 W, vy ™ g

(c) (d)

Figure 2.20 Convergence of the Fourier transform. The oscillatory behavior at w = w, is often
called the Gibbs phenomenon.
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In this case, Xj(e’) converges to X(e/¥) as
M +— oo except for the discontinuity point w = w.,.

The sequence

z[n] = Acos(nwy + ¢) = Afelmotd) 4 o=ilnwotd)) /9
(A)
does not have the Fourier transform in the normal

mamnner.

If desired, we can utilize the fact that the Fourier

transform of z[n] = e/(™0+9) can be expressed as

X(e¥) =27 Z 796, (w — wy + 27k),

k=—0o0
where J,(z) is the Dirac delta function defined on

page 33 in Appendix A.

Based on this, the Fourier transform of the se-

qunce given by equation (A) can be expressed as

X () =n Z 78, (w — wy + 27k)

k=—o00
+ 7 Z e 95, (w + wo + 27k).
k=—00
Fortunately, this formula is seldom wused!! It is

preferred to use the z-transform when treating si-

nusoisal signals and we have other ways to check
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what is happening to this signal when it is a
passing a digital filter, as we shall see elsewhere

in this course.

Basic Rule: If you like to know the Fourier
transform of an absolutely summable sequence
(most practical signals are of this type), find
first the z-transform X(z) of this sequence. The
Fourier transform X (e’*) is then obtained from

X (z) by using the substitution z = e/*.
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FREQUNCY-DOMAIN INTERPRETATION
OF THE FOURIER TRANSFORM

e We recall that the Fourier transform pair is de-

fined by the following two equations:

oo

X(e) = > aln]e™ (A)
and .
z[n| = %[ X ()l (B)

e Here, equation (A) is the analysis formula. Equa-
tion (B) is the synthesis formula, that is, it rep-
resents x[n] a sum of infinitesimally small complex
sidusoids of the form

1 S
X Jw Jjnw
27T (6 )8 ?

with w ranging over the interval [—m, =] and
X (e’*) determining the relative amount of each

complex sidusoidal component.

e In other words, X(e’*) tells us how the signal
z|n] is distributed in the frequency range w ¢
|—m, 7.

e Note that since e/h2mw) — ¢iv for | = +1,+2, 43, ...
X (e/k2m)) = X (e%) for k = +£1,42,+3, ... This
means that X (e’*) is periodic with periodicity
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equal to 27w. Therefore, we can concentrate on
studing its performance only on the ’basic’ inter-

val [—m, .

X (e’¥) is, in general, a complex function of w and

is expressible as

X (e") = Re {X(*)} + jIm {X (¢/*))}
= | X (/)| efere X (e") '

Here,

X () = v/ (Re {X (%) })2 + (Im { X () })?
is the amplitude spectrum of z[n| and
arg X (/) = atan2 (Im {X (e’*)},Re {X (¢/*)})

1s the phase spectrum spectrum of z[n].

It should be pointed out that the above definition

of arg X (e’*) forces it to stay between the limits
T

However, we can any integer multiple of 27 to
it without affecting the result of the complex ex-
ponential. In many cases, it is desired to make
arg X (e’*) continuous.

This is possible at all points except for those

where | X (e’?)| achieves the value of zero. At this
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points, arg X (e’*) has always a jump of m or —r,
as we shall see later in this course.

e Now it is time for an example.
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EXAMPLE

e Consider a signal x[n| that has the value of 1/8

for 0 < n <7 and is zero elsewhere.

e The Fourier transform of this signal is then

7 .
1 . 11— e /8
2 -
(e nz ¢ TR I-em
16 _izge €0 — eI 16 i35, Sin(4w) |
8 ejw/2 — e=iw/2 8 sin(w/2)

The following transparency shows the amplitude

and phase spectra for this signal.
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AMPLITUDE AND PHASE SPECTRA FOR
OUR EXAMPLE SEQUENCE

-

o
0

-------------------------------------------------------------

o
(o))

o
n

IX(eNjomega}l

O ; | l ; ; ] | |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Angular frequency omega/pi

arg X(e’\{jomega})
(@] N

1
N

A
-k

1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Angular frequency omega/pi
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FOURIER TRANSFORM OF A FILTERED
SIGNAL

o If the z-transforms of the input signal z[n] and
the impulse response h[n] of the filter (also called
the transfer function) are X(z) and H(z), respec-

tively, the z-transform of the output signal is

e Using the substitution z = €/* in the above equa-

tion gives
Y (™) = H(e™) X (),

that is, the Fourier transform of the output signal
1s the product of the Fourier transforms of the in-

put signal and the impulse response of the filter.

o H(e) is called the frequency response of the fil-
ter and is considered in more details elsewhere in

this course.

e Based on the above equation, we can express
Y (e/¥) as

Y (e7) = |V (el?)]ef28Y ("),

where

V()| = [H(e)[| X (),
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and
arg Y (e/¥) = arg X (&) + arg H(e'*).

In other words, the amplitude spectrum of the
output signal is obtained from that of the exci-
ation by multiplying it by |H(e’*)| that is called
the amplitude response of the filter.

The phase spectrum of the output signal is ob-
tained from that of the exciation by adding to it

arg H(e’) that is called the phase response of the
filter.

It is again time to consider an example in order

to make the above relations more clear.
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EXAMPLE

Consider a signal z[n] that has the value of 1/8
for 0 < n < 7 and is zero elsewhere. As shown
previously, |
X(ejw) _ _1_e—j3.5w s.in(4w) .
8 sin(w/2)
The impulse response of our filter is hln] =
0.1(0.9)"u[n]. The z transform of this signal is
H(z) =0.1/(1 —0.9271) so that the Fourier trans-

form is

5 0.1
H(e™) = T hoe

In the time domain, the output sequence is given

by

yln] = hlklz[n — k.
k=0

In the following, the first, second, and third trans-
parencies show the relations between y[n] and
z[n]; between |Y(e’*)| and |X(e’*)|; and between
arg Y (/) and arg X (e/%).

It is seen that our filter preserves the amplitude
spectrum near the zero frequency, whereas it at-
tenuates this spectrum more and more as w ap-

proaches the value of 7 or —7.
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RELATIONS BETWEEN y[n] AND z[n] IN
OUR EXAMPLE

I T I T T I T 1 T
[0}
_01r -
C
3
0 c-0-6-666046-660066000060000000068H6600066000H0000
0 5 10 15 20 25 30 35 40 45
n in samples
OJCO T T T T T T T T T
cnnsL i
- TTTT
0 TTTTTTTT?????QQ¢¢QQOO®OQQQmmmmmmnnnomgooo
0 5 10 15 20 25 30 35 40 45
n in samples
0.1 1 T I T I I T T I
= o i
. TTT T T T T
(ﬁTT | TTTTTTTT??????QQQQQOOOOQQmmmmmmngonnq
0 5 10 15 20 25 30 35 40 45

n in samples
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RELATIONS BETWEEN |V (e/%)| AND | X (e/¥)]
IN OUR EXAMPLE

—r

IX(eNjomega}l
o
(6]

__________________________

__________________________________

1 O

1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Angular frequency omega/pi

= 1 T I T T I 1 T I
- . . . x , . . :
(@]
£
905F----- et A i e i
) : | |
== : i i ;

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Angular frequency omega/pi

Y (eMjomega}l

1 O

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Angular frequency omega/pi



- 17 -

RELATIONS BETWEEN argV(e®) AND
arg X (/) IN OUR EXAMPLE

(8,1

arg X(eMjomega})
: o

1
Y
1
o
oo
'
o
(0]
1
o
1

' .
-0.2 0 0.2 0.4 0.6 0.8 1
Angular frequency omega/pi

N

arg H(eMjomega})
o

-1 -0.8 -0.6 -04  -0.2 0 0.2
- Angular frequency omega/pi

(3]

arg Y(eMjomega})
o

. ! I
-0.2 0 0.2 0.4 0.6 0.8 1
Angular frequency omega/pi

1
ry
1
o
oo
1
o
(0]
1
o
D
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OTHER PROPERTIES OF THE FOURIER
TRANSFORM

e In the following, we use the notation
z[n] <= X(e¥)

to indicate that z[n] and X(e’*) form a Fourier

transform pair.
Linearity: If
ri[n] <= X;(e’)
and
zo[n] <= Xo(e’),
then
azri[n] + bro[n] < aX;(e’) + bX,y ().
Time and frequency shiftings: If
z[n] <= X (&),
then
z[n —ng| <= e "X ()
and
e IMg[n] —= X (/w0
Time reversal: If

zn] <= X(e),
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then
r[—n] <= X(e™¥).
Differentiation in frequency: If
z[n] <= X(,
then

dX (el
nxn] < j d(w )

Parseval’s Teorem: If
z[n] = X(e*),
then

0 1 T y
B=Yleflf = 5- [ 1X()Pdo.

e The function |X(e/*)|? is called the energy den-
sity spectrum since it determines how the en-

ergy is distributed in frequency.
The Windowing Teorem: If
r[n] <= X(¥),
wln] <= W(e),

and

then
Y (e) = 51_ / X (YW (7“9 dp.
T —Tr



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

