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This chapter reviews several design techniques for finite impulse response (FIR)
filters along with computationally efficient realization methods. The outline of this
chapter is given in Section 4-2 after introducing the filter design problem for both
FIR and infinite impulse response (IIR) filters.

4-1 DIGITAL FILTER DESIGN PROBLEM

4-1-1 Digital Filter Design Process

Digital filter design involves usually the following basic steps:

1. Determine a desired response or a set of desired responses (e.g., a desired
magnitude response and/or a desired phase response).

2. Select a class of filters for approximating the desired response(s) (e.g., lin-
ear-phase FIR filters or IIR filters being implementable as a parallel connec-
tion of two allpass filters).

3. Establish a criterion of ‘‘goodness’’ for the response(s) of a filter in the
selected class compared to the desired response(s).

4. Develop a method for finding the best member in the filter class.

5. Synthesize the best filter using a proper structure and a proper implementa-
tion form, for example using a computer program, a signal processor, or a
VLSI chip.

6. Analyze the filter performance.
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In most cases, the desired response is the given magnitude response or the given
phase (delay) response or both. The desired magnitude response is usually speci-
fied by determining the frequency region(s) where the input signal components
should be preserved and the region(s) where the signal components should be re-
jected. The phase response, in turn, is often desired to be linear in those frequency
intervals where the signal components are preserved. In certain cases, time-domain
conditions may be included, for example, in the design of Nyquist filters where
some of the impulse-response values are restricted to be zero-valued. There are
also applications where constraints on the step response are imposed.

The second step consists of determining a proper class of filters to approximate
the given response(s). First, it must be decided whether to use FIR filters or IIR
filters. After this, a proper class of FIR or IIR filters is selected. For many com-
putationally efficient or low-sensitivity FIR and IIR filter structures, there are con-
straints on the transfer function. In these cases, the design of the transfer function
and the filter implementation cannot be separated, and the desired filter structure
determines the class of filters under consideration.

In order to find the best member in the selected filter class, an error measure is
needed by which the nearness of the approximating response(s) to the given re-
sponse(s) is determined. There are several error measures, as will be seen in Sec-
tion 4-1-3. In many cases, the maximum allowable value of the error measure, for
example, the maximum allowable deviation from the given desired response, is
specified. In this case, the problem is to first determine the minimum complexity
of a filter (e.g., the minimum filter order) required to meet the criteria. The re-
maining problem is to find the best member in the class of filters with this com-
plexity to minimize the error measure.

The fourth step is to find or develop a method for finding this best member.
This chapter and the following chapter describe several design methods for FIR
and IIR digital filters. The fifth step involves synthesizing the filter designed at the
previous step. The final step is to test whether the resulting filter meets all the
given criteria. Also the performance under finite-precision arithmetic is studied.
The last two steps are considered in Chapters 6 and 7.

The above design process is often used iteratively. If the resulting filter does
not possess all the desired properties, then the desired response(s), the filter class,
or the error measure should be changed and the overall process repeated until a
filter is obtained with a satisfactory overall performance.

4-1-2 Filter Specifications

The requirements for a digital filter are normally specified in the frequency domain
in terms of the desired magnitude response and/or the desired phase (delay) re-
sponse. In the lowpass case, the desired magnitude response is usually given by

{1 for w € [0, w,]
D) = @.1)
0 for w e [w,, w]
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FIGURE 4-1 Tolerance limits for approximation of an ideal lowpass filter magnitude
response.

and the specifications are given for the realizable magnitude response |H(e’)| as
shown in Figure 4-1. It is desired to preserve signal components in the region
[0, w,), called the passband of the filter, and to reject signal components in the
region [w;, 7], called the stopband of the filter. w, and w; are called, respectively,
the passband edge and stopband edge angular frequencies. The permissible errors
in the passband and in the stopband are §, and §,, respectively. The dashed line
represents an acceptable magnitude response staying within the limits 1 + §, in
the passband and being less than or equal to §; in the stopband. To make it possible
to approximate the desired function as close as possible, the specification includes
a transition band of nonzero width (w; — w,) in which the filter response changes
from unity in the passband to zero in the stopband. Note that, because of the
symmetry and periodicity of the magnitude response |H(e/*)|, it is sufficient to
give the specifications only for0 < w < 7.

Usually, the amplitudes of the allowable ripples for the magnitude response are
given logarithmically (i.e., in decibels) in terms of the maximum passband vari-
ation and the minimum stopband attenuation, which are given by

1+6
20 log, [ —= ) dB (4.2a)
? 1-3,

—20 logy, (5,) dB, (4.2b)

b
1

and

A,

respectively. Note that both these quantities are positive. Another commonly en-
countered passband specification is the peak deviation from unity expressed log-
arithmically, that is, 4, = 20 log,q (8,); A, is then specified as 4; = 20 log,, (5,).
These quantities are negative.
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Above, the passband and stopband edges, w, and w;, have been given in terms
of the angular frequency w. If the sampling frequency of the filter is f;, then w is
related to the real frequency f through the equation

w = 2xf/f. 4.3)

For instance, if the sampling frequency is 20 kHz and the passband and stopband
edges of a lowpass filter are 4 and 5 kHz, then the band edges in terms of the
angular frequency become w, = 0.47 and w, = 0.57. The third alternative is to
specify the edges in terms of the normalized frequency defined by

Jrom = f/£ 4.4

In the above example, the normalized passband and stopband edges are 0.2 and
0.25.

In some applications, it is necessary to preserve the shape of the input signal.
This goal is achieved if the phase response of the filter is approximately linear in
the passband region [0, w,]; that is, arg H(e Jy approximates on [0, w,] the linear
curve

¢(w) = —7190 + 7Y, 4.5)

where 74 and 7, can be freely chosen. Instead of the phase response, the criteria
for the phase are usually given in terms of the group delay response

_darg H(e™)

'rg(w) = o (4.6a)
or the phase delay response
arg H(e’®
7,(w) = —%. (4.6b)

These responses have simpler representation forms than the phase response and
are often easier to interpret. For instance, the value of the phase delay at a specified
frequency point w = w, gives directly the delay caused by the filter for a sinusoidal
signal of frequency w. If the input signal is periodic or approximately periodic,
as an electrocardiogram signal, then the phase delay is required to approximate in
the passband a constant 7, with the given tolerance 6, as shown in Figure 4-2.
Since the delay of all passband signal components is approximately equal, the
signal shape is preserved. If the signal is not periodic, then instead of the phase
delay, the group delay may be used. Note that for a constant phase delay, 7, is
forced to be zero in Eq. (4.5),' whereas in the case of a constant group delay, 7,
can take any value.

'In the bandpass or highpass case, the shape of a periodic signal is preserved if 7, is a multiple of 27
and 7, is a constant.
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FIGURE 4-2 Tolerance limits for approximation of a constant group or phase delay re-
sponse.

In the most general case, there are several passbands and stopbands, the desired
magnitude response D (w) is arbitrary in the passbands, and the allowable approx-
imation error depends on w in each band. In this case, the specifications can be
stated as (see Figure 4-3)

D,(w) — €,(w) < |H(e’)| < D,(w) + ¢,(w) forweX,  (4.7a)
|H(e™)]

IA

e (w) forwe X, (4.7b)

where X, and X, denote the passband and stopband regions of the filter, respec-
tively. e, (w) is the permissible deviation from the desired passband respouse D, (),
whereas e, (w) is the allowable deviation from zero in the stopband region. These
general specifications can be used, for example, in cases where the input signal of
the filter is distorted before or after filtering and it is desired to equalize the am-
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FIGURE 4-3 General specifications for the magnitude response.
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plitude distortion. An example of an amplitude distortion occurring after filtering
is the one caused by a zero-order hold when reconstructing an analog signal from
a discrete-time signal.

The specifications of Eq. (4.7) can be written alternatively in terms of the pass-
band and stopband weighting functions W, (w) and W, (w) as

-8, < W,()[|H(™)| — D,(w)] <= §, forweX, (4.8a)
W,(w) |H(Ee™)| =6, forwelkX,. (4.8b)
e,(w) is related to 6, and W, (w) through the equation
e, (w) = 8,/ W,(w), (4.9a)
whereas e, (w) is related to §; and W, (w) through
e,(w) = 6,/ W (w). (4.9b)

The specifications of Eq. (4.8) can be combined to give the following form, which
is useful in many filter design techniques:

E@)| <€ forweX =X, U X, (4.102)
where

E(w) = W(w) [|H(e’)| — D(w)] (4.10b)

with
€=, (4.10¢)
D) = {D”(w) forw &% (4.10d)

for w € X,
and

W, (w) forwe X,
W(w) = 5, (4.10e)
5 W, (w) forweX,.

D (w) and W (w) are called the desired function and the weighting function, respec-
tively, and E (w) is the weighted error function. If the maximum absolute value of
this function is less than or equal to € on X, then |H(e’*)| is guaranteed to meet
the given criteria.
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For instance, in the bandpass case, the specifications are usually stated as

1 -8, < |H@E™)| =1+38, forwe [w,, wp,l, (4.11a)
|H(e’)| < 8, forw e [0, wy] U [wy, 7. (4.11b)

These criteria can be written in the above form using

X =10, wgy] U [wp, wpo] U [wg, 7, (4.12a)
1 for w € [w,, wy]
D(w) = G (4.12b)
0 forwe [O, wxl] U [wﬂa 7r],

1 for w € [wyy, wpy] (4.12c)
W(w) =
8,/8, forwe [0, wy] U [wy, ],

and

e=3, 4.12d)

In a similar manner, the general specifications for the group or phase delay can
be stated in terms of the weighted error function as

|E,(w)| =€ forwelX, (4.13a)
where
E, (@) = W,(@[r(w) — D,(w) — 7ol. (4.13b)

If it is desired to equalize the delay distortion caused by an elliptic filter, then the
criteria for an allpass delay equalizer can be written in the above form by selecting
D, (w) = —71,(w), where 7,(w) is the delay response of the elliptic filter. It should
be noted that the actual value of 7, in Eq. (4.13b) is not fixed but is an adjustable
parameter.

In some cases, it is desired to optimize the frequency-domain behavior of a
filter subject to the given time-domain conditions. For instance, in the case of
Nyquist or Lth band filters, every Lth impulse-response value is restricted to be
zero except for the central value. Furthermore, in some applications, the overshoot
of the step response of a digital filter, optimized only in the frequency domain, is
too large. In this case, the filter has to be reoptimized with constraints on the ripple
of the step response.

4-1-3 Approximation Criteria

Three different error measures are normally used in designing digital filters.
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4-1-3-1 Minimax Error Designs. Some applications require that the transfer
function coefficients be optimized to minimize the maximum error between the
approximating response and the given desired response. The solution minimizing
this error function is called a minimax or Chebyshev approximation. In the case of
the weighted error function E (w) as given by Eq. (4.10b), the quantity to be min-
imized is the peak absolute value of E(w) on X, that is, the quantity

¢ = max |E(w)|. @.14)

weX

If the maximum allowable value of ¢ is specified, then the approximation prob-
lem is to first find the minimum order of a filter required to meet the given criteria
and then optimize the coefficients of a minimum-order transfer function to mini-
mize e. Examples of minimax solutions are elliptic (Cauer) IIR filters and equirip-
ple linear-phase FIR filters.

4-1-3-2 Least-Squared Error Designs. In some cases, instead of the minimax
norm, the L, norm is used. Here, it is desired to minimize the function®

E, = SX (W@I|H™)| — D@ do, (4.15)

where p is a positive even integer. It can be shown that as p — oo, the solution
minimizing the above quantity approaches the minimax solution. This fact is ex-
ploited in some IIR filter design methods. For FIR filters, L, error designs are of
little practical use since there are efficient algorithms directly available for design-
ing in the minimax sense FIR filters with arbitrary specifications. The exception
is the L, error or least-squared error designs, which can be found very effectively.
In this case, the quantity to be minimized is

E, = SX [(W()[|H(e™)| — D) dw. (4.16)

4-1-3-3 Maximally Flat Approximations. In the third approach, the approximat-
ing response is obtained based on a Taylor series approximation to the given de-
sired response at a certain frequency point and the solution is called a maximally
flat approximation. In some cases, such as in designing maximally flat (Butter-
worth) IIR filters, there are two points, one in the passband and one in the stop-
band, where a Taylor series approximation is applied.

Most of the methods developed for designing digital filters use one of the above
approximation criteria. In some synthesis techniques, a combination of these cri-

?In the literature, the weighting function W(w) is not usually raised to the power of p. If it is desired
that the solution minimizing E, approach the minimax solution as p ~ oo, then E, has to be formed
as given by Eq. (4.15).
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teria is used. For instance, in the case of Chebyshev IIR filters, a Chebyshev
approximation is used in the passband and a maximally flat approximation is used
in the stopband.

There exist also several simple filter design techniques that do not use directly
the above criteria at all. A typical example of such methods is the design of FIR
filters using windows, where the Fourier series of an ideal filter is first truncated
and then smoothed using a window function.

4-2 WHY FIR FILTERS?

In many digital signal processing applications, FIR filters are preferred over their
IIR counterparts. The main advantages of the FIR filter designs over their IIR
equivalents (see Chapter 5 for a review of IIR filter design methods) are the fol-
lowing:

1. FIR filters with exactly linear phase can easily be designed.
2. There exist computationally efficient realizations for implementing FIR fil-
ters. These include both nonrecursive and recursive realizations.

3. FIR filters realized nonrecursively are inherently stable and free of limit
cycle oscillations when implemented on a finite-wordlength digital system.

4. Excellent design methods are available for various kinds of FIR filters with
arbitrary specifications.’

5. The output noise due to multiplication roundoff errors in an FIR filter is
usually very low and the sensitivity to variations in the filter coefficients is
also low.

The main disadvantage of conventional FIR filter designs is that they require,
especially in applications demanding narrow transition bands, considerably more
arithmetic operations and hardware components, such as multipliers, adders, and
delay elements than do comparable IIR filters. As the transitions bandwidth of an
FIR filter is made narrower, the filter order, and correspondingly the arithmetic
complexity, increases inversely proportionally to this width. This makes the im-
plementation of narrow transition band FIR filters very costly. The cost of imple-
mentation of an FIR filter can, however, be reduced by using multiplier-efficient
realizations, fast convolution algorithms (see Chapter 8), and multirate filtering
(see Chapter 14).

This chapter reviews some commonly used methods for designing FIR filters
along with several computationally efficient realization methods. The outline of
the remaining part of this chapter is as follows. Section 4-3 reviews the properties
of linear-phase FIR filters. Sections 4-4 through 4-7 are devoted to very fast design

3The design of arbitrary magnitude IIR filters is usually time-consuming and the convergence to the
optimum solution is not always guaranteed.
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methods. Section 4-4 considers the design of FIR filters based on windowing,
Section 4-5 outlines the design of filters that are optimum in the least-mean-square
sense and Section 4-6 treats the design of maximally flat filters. Section 4-7 gives
some simple analytic design techniques. Section 4-8 is devoted to the design of
FIR linear-phase filters that are optimum in the minimax sense. Section 4-9 shows
how the design of conventional minimum-phase filters can be accomplished by
using a linear-phase filter as a starting point. In Section 4-10, the design of filters
having some additional constraints on the frequency- or time-domain response is
considered. Finally, Sections 4-11 and 4-12 are devoted to the design of compu-
tationally efficient FIR filters. The filters of these two sections are constructed
using subfilters as building blocks. In Section 4-12 these subfilters are identical,
whereas in Section 4-11 they are different and are obtained from a conventional
transfer function by replacing each unit delay element by multiple delays.

4-3 CHARACTERISTICS OF LINEAR-PHASE FIR FILTERS
Some properties of linear-phase FIR filters are reviewed in this section, such as

the conditions for linear phase and the zero locations of these filters as well as
different representation forms for the frequency response.

4-3-1 Conditions for Linear Phase

Let {h[n]} be the impulse response of a causal FIR filter of length N + 1. The
transfer function of this filter is

N
H(z) = §0 hinlz™". “4.17)

The corresponding frequency response is given by

N
H(e’®) = go hlnje ™. 4.18)

In the above, N is the order of the filter.
For many practical FIR filters, exact linearity of phase is often desired. This
goal is achieved if the frequency response of the filter is expressible in the form
H(e’) = H(w)e’*, (4.192)

where

d(w) =aw + B (4.19b)
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and H(w) is a real and even function of w. The magnitude and the phase of the
above function are, respectively,

|H(e’)| = |H(w)| (4.20a)
and
) {aw +8 for ﬁ(w) =0
arg H(e’") = _ (4.20b)
aw + B — 7 for Hw) < 0.

H(w) is called the zero-phase frequency response® to distinguish it from the mag-
nitude response |H(e’*)|. To simplify the notation, let H(w) represent the zero-
phase frequency response. It should always be clear from the context whether H
is a function of z, e/, or w, that is, whether the transfer function, the frequency
response, or the zero-phase frequency response is considered. The relationships
between H(w) and |H(e’*)|, and between ¢ (w) and arg H(e’*), are shown in
Figure 4-4. Note that the zero-phase frequency response of the filter may take both
positive and negative values, whereas the magnitude response is strictly nonneg-
ative.
There are the following four types yielding the phase linearity:

Type I: Niseven and k[N — n] = h(n] for all n.
Type II: N is odd and [N — n] = h[n] for all n.
Type Ill: N is even and A[N — n] = —h[n] for all n.
Type IV: N is odd and [N — n] = —h[n] for all n.

“Some authors call H(w) the amplitude response of the filter.

[H(ei®)y | H(w)

#J/‘\A/. AN /i
- 0 T o —n\/

arg H(el®) o)

1 1 ] 1
- 0 T O -7 0 T o
-2n -2n

FIGURE 4-4 Relations between the magnitude response |H(e/*)| and the zero-phase fre-
quency response H(w), and between arg H(e’*) and ¢ (w) for an example linear-phase FIR
filter.
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In each of these four cases, the transfer function is expressible as

H(z) = F(G(2), (4.21a)
where
1 for Type 1
[1 +z7'1/2 for Type Il
F@) = /2 forTyp (4.21b)
[1 —z7%/2 for Type III
[1 —z7"1/2 for Type IV
and
M
G@ = 2 glnlz™ @.21c)
with
g[2M — n] = g[n] foralln (4.214d)
and
N/2 for Type I
N — 1)/2 for Type II
M= ( )/ Yp @210

(N = 2)/2 for Type 1II
(N — 1)/2 for Type IV.

Hence H(z) can be expressed as a cascade of a fixed term F(z) and a common
adjustable term G(z), which itself is a Type I transfer function. The relations be-
tween k[n] and g[n] are given in Table 4-1 for the four types. Figure 4-5 shows
example impulse responses. In each case, the center of the symmetry is K = N/2.
For Types I and I11, X is an integer and there is an impulse-response sample exactly
at this point, whereas for Types II and IV, K is not an integer and it lies between
two impulse-response samples. Note that for Type III, the symmetry forces k[N /2]
to be equal to zero.
Because of the symmetry property of Eq. (4.21d), G(z) can be expressed as

G =z "[gM] +gM -1z +z27")
+gIM - 21 +27H + - - - +gl01EM + 2™ @4.22)
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TABLE 4-1 Relations Between the Coefficients & [r] and g[n]

Coefficient Type I Type I Type III Type IV
h10] 810 gla] gl0] U
2 2 2
h(1] gll] gll] + gl0] gll] gl1] — g[0]
2 2 2
hin] gln] gln] + gln — 1] gln] — gln — 2] gln] — gln — 1]
2 2 2
hIN—-1] gIN-1] gIN—1]+¢gIN-2] —8[N — 3] gIN— 1] —gIN - 2]
2 2 2
h[N] gIN] gIN — 1] _gIN-12] _gIN-1]
2 2 2

By substituting z = e/ in the above equation, the frequency response of G(z)

becomes

G(e™) = eM[g[M] + g[M — 1](2 cos w)

+ g[M — 2](2 cos 2w) + - * + + g[0](2 cos Mw)]. (4.23)
Type | Type 1l
h[nl hin]
T I [ s, I I L,
0 1 2 3 4 0 1 ' 2 3
t
K K
Type Il Type IV
hLnl h[n]
o .
n
0 1

X->N@

KRS

FIGURE 4-5 Example impulse responses for the four different linear-phase types.
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Similarly, the frequency response of F(z) can be written, after some manipula-
tions, in the form

1 for Type I
_ e7%/% cos (w/2) for Type II
Fey =4 _ (4.24)
e 1@/ gin o for Type III

e—j(w/z —m/2) sin (0/2) for Type Iv.

By combining the above results, the zero-phase frequency response can be ex-
pressed as

H(w) = F(w)G(w), (4.25)
where
1 for Type I
cos (w/2) for Type II
Fe = sinci ” for TiEe 111 “20

sin (w/2) for Type IV,

M
G(w) = 2 aln] cos nw, (4.27a)

n=0

[g[M] forn =0
aln] = (4.27b)
2g[M — n] forn # 0,

and M is given by Eq. (4.21e). The phase term becomes

—Nw/2 for Types I and 11
d(w) = { (4.28)

—Nw/2 + /2 for Types III and IV.

In Section 4-3-3, some other useful representation forms of H(w) are given.
Figure 4-6 gives example zero-phase frequency responses for the four types. For
Type I, H(w) is even about w = 0 and w = 7 and the periodicity is 27. For Type
11, the fixed term F(w) = cos (w/2) generates a zero for H(w) at w = w, making
it odd about this point. The periodicity is 4x. Similarly, for Type IV, the fixed
term generates a zero at w = 0. The resulting H(w) is odd about w = 0 and the
periodicity is 4w. For Type III, the fixed term gives a zero at both w = 0 and w
= w, making H(w) odd about these points. The periodicity is 2.
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Type | H(w)

_
_)
1

1
a
(=]
A

Type I H(w)

e

Type Il H(®)

-

Type IV H(o)

( n 2r

FIGURE 4-6 Example zero-phase frequency responses for the four different linear-phase
types.
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This chapter concentrates mainly on Types I and II. These filter types are used
for conventional filtering applications because, in these cases, the delay caused for
sinusoidal signals, —¢ (w)/w = N/2, is independent of the frequency w. Filters
belonging to the remaining two cases have an additional 90° phase shift and they
are most suitable for realizing such filters as differentiators and Hilbert trans-
formers (see Chapter 13). In these two cases, the delay caused for sinusoidal sig-
nals depends on the frequency. However, the group delay, —d¢(w)/dw, is a con-
stant (equal to N/2 for all linear-phase types).

The above linear-phase filters are also characterized by the property that only
M + 1 multipliers are needed in the actual implementation because of the sym-
metry in the filter coefficients. Figure 4-7 gives such an implementation for a Type
I filter of order N = 2M.

4-3-2 Zero Locations of Linear-Phase FIR Filters

All the poles of an FIR filter lie at the origin. From Eq. (4.21b), it is seen that the
fixed term F(z) generates for Type II designs one zero at z = —1, for Type III
designs one zero at both z = 1 and z = —1, and for Type IV designs one zero at
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ni-11\/ h[-'}lz
Out
L

o

FIGURE 4-7 Implementation for a Type I filter exploiting the symmetry in the filter coef-
ficients.

z = 1. What remains is to examine where the zeros of the common adjustable
Type I part G(z) are located. From the symmetry condition of Eq. (4.21d), it
follows that

Gz = MG . (4.29)
This means that G(z) and G(z~') have identical zeros. The zeros of G(z) thus
occur in mirror-image pairs. For G(z) with real coefficients, the zeros are either
real or occur in complex conjugate pairs. These conditions imply that G(z) can be
factored in the form

G(2) = gl0]G, ()G, ()G (D), (4.302)

where

N
1
G =1I <1 - [2 <r,- + ;) cos 0,} '+ [r,z + lz + 4 cos® 0;] 272
i : ri

= i

- [2 <r,- + %) cos 0,-] 73+ z‘4>, (4.30b)

N2
G@ =1l (1 - 2cosble™" + 27, (4.30c)

and

N3
Gir) = II <1 - {E + _l} 4+ z‘2>. (4.30d)
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Here, 4N, + 2(N, + N;) = 2M and

1. G,(2) contains the zeros occurring in quadruplets, that is, in complex con-
jugate and mirror-image pairs off the unit circle at z = r;e*’%, (1/r;)e*/

fori=1,2,---,N,.
2. G,(2) contains the zeros occurring in complex conjugate pairs on the unit
circle at z = e*® fori = 1,2, + + + , N,.
3. Gi(2) contains the zeros occurring in reciprocal pairs on the real axis at z =
F,1/Fifori=1,2,- - -, N,
If G(2) possesses a zero at z = 1 or at z = —1, then it follows from the symmetry
of G(z) and the fact that G(2) is of even order that the number of zeros at this
point must be even. If G(z) happens to have k zero-pairs at z = 1 (at z = —1),
then these pairs can be included in G;(z) by using k terms with 7; = 1 (r;= —1).
For Types II, III, and IV, the locations of the zeros outside the points z = 1
and z = —1 are similar. The main difference between the four cases is in the
number of zeros at z = l and z = —1.

1. Type I designs have either an even number or no zeros atz = 1 and at z =

-1.

2. Type II designs have either an even number or no zeros at z = 1, and an
odd number of zeros at z = —1.

3. Type III designs have an odd number of zeros atz = 1 and at z = —1.

4. Type IV designs have an odd number of zeros at z = 1, and either an even
number or no zeros z = —1.

Figure 4-8 gives the amplitude response, the impulse response, and the zero lo-
cations of a typical Type I filter.

4-3-3 Different Representation Forms for Zero-Phase Frequency Responses

Equations (4.25)-(4.27) give one representation form for the zero-phase frequency
response in each of the four different linear-phase cases. This form is used in
designing filters in the minimax sense (Section 4-8). Another useful representation
form is obtained by expressing H(w) directly in terms of the impulse-response
coeflicients h[n] as follows [OP89; RA75a]:

( N/2

hIN/2] + né] h[N/2 — n][2 cos nw] for Type 1

N=1)/2
2 h[(N —1)/2 — n][2 cos [(n + 1/2)w]] for Type II

H() =4 /7" @.31)

> A[N/2 — 1 — n][2sin [(n + D)w]] for Type III

N2
EO R[N — 1)/2 — n] [2sin [(# + 1/2)w]] for Type IV.

\
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FIGURE 4-8 Amplitude response, impulse response, and zero locations for a typical Type
I filter of order N = 46.
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For later use, we rewrite the above equation in the form

M
H(w) = 20 b[n] trig (w, n), (4.32a)
where
1 for Type I; n = 0
2 cos nw for Type I, n > 0
trig (w, n) = § 2 cos [(n + 1/2)w] for Type II (4.32b)

2 sin [(n + Dw] for Type III
2sin [(n + 1/2)w] for Type IV,

h[N/2 — n] for Type 1
b[n] = { h[(N — 1)/2 — n] for Types II and IV 4.32¢)
h[N/2 — 1 —n] for Type III,

and M is related to N through Eq. (4.21e). This representation form is used in
Section 4-5 for designing filters in the least-mean-square sense and in Section 4-10
for designing filters based on linear programming.

A very useful representation form for the common adjustable response part G (w)
as given by Eq. (4.27) or for the overall response H(w) for Type I [H(w) = G(w)]
can be derived based on the identity

cos nw = T,(cos w), (4.33)

where T,(x) = cos (n cos™' x) is the nth degree Chebyshev polynomial. These
polynomials can be generated using the following recursion formulas:

i) =1, (4.34a)
Ty (x) = x, (4.34b)
T,(x) = 2T, _ (x) — T,_, (). (4.34c)

Using these equivalences, cos nw can be expressed as an nth degree polynomial
in cos w and G(w) as an Mth degree polynomial in cos w:

M
G(w) = ZO afn] cos” w. (4.35)

n=

This shows that the zero-phase frequency response of a Type I filter of order 2M
can be determined as an Mth degree polynomial in cos w. This fact is exploited in
several synthesis techniques.
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4-4 FIR FILTER DESIGN BY WINDOWING

The most straightforward approach to designing FIR filters is to determine the
infinite-duration impulse response by expanding the frequency response of an ideal
filter in a Fourier series and then to truncate and smooth this response using a
window function. The main advantage of this design technique is that the impulse-
response coefficients can be obtained in closed form and can be determined very
fast even using a calculator. The main drawback is that the passband and stopband
ripples of the resulting filter are restricted to be approximately equal.

4-4-1 Design Process

FIR filter design based on windowing generally begins by specifying the ideal
zero-phase frequency response Hj4(w). Ideal Type I responses in the lowpass,
highpass, bandpass, and bandstop cases are shown in Figure 4-9. Since H4(w) is
even about w = 0 and periodic in w with period 2, it can be expanded in a Fourier
series as follows:

o
Hy(w) = hQ[0] + 2 2 hQ[n] cos nw, (4.36a)
n=1
Hia ()
Lowpass 1
| 1 1 | 1 |
-2n -n -O¢ ] Oc n 2n o
Hig (@)
Highpass .
1 | | | | 1 ®
-2n -7 -@c 0 oc T 2n
Hig(@)
Bandpass 1
| | | | ®
-2n T -0c2 -0c1 0 @ct @2 T 2n
Hig (@)
Bandstop 1
l—l | 1 | 1 I-I ®
-2n - ~0c2 ~0c1 0 @ct @2 T on

FIGURE 4-9 Zero-phase frequency responses of ideal Type I filters.
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where
1 m
hQn) = o S Hy(w) cos (nw) dw, 0 <n < oo, (4.36b)
T J—-7

The corresponding impulse response is of infinite duration and even about n = 0;
that is, 1 [—n] = hQ[n] (see Figure 4-10). For instance, in the lowpass case

hPIn]

[111]
a??e ?I I? 2%, n
CE N 0 RS E R

wln]

(b)
rTTIII{ XIIITT? |
M ) M

h(°)[n]

(©)
ol
M L X 0 $1é* M

hn] =h<®[n-mj

o, T

0 b 3K M ¢4 4% om n

FIGURE 4-10 Impulse responses involved in designing an FIR filter by windowing. (a)
Infinite-duration impulse response for an ideal zero-phase filter. (b) Impulse response for a
window function. (c) Response obtained by truncating and smoothing the ideal responsc by
the window function. (d) Response for the corresponding causal filter.
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with cutoff edge w,, the coefficients are

(0) [n] = <M> {wc‘/ﬂ" n=20 @.37)

wcn sin (w.n) /(wn), |n] > 0.

The coefficients for highpass, bandpass, and bandstop filters are given in Table
4-2.

An approximating finite-duration impulse response is then generated by trun-
cating and smoothing the above response according to

KOln| = win)hQnl, 4.38)
where w[n] is a window function that is nonzero for —M < n < M and zero
otherwise (see Figure 4-10). Finally, the coefficients of the corresponding causal
realizable FIR filter of order 2M are obtained by shifting the location of the central
impulse-response coefficient from n = 0 to n = M, giving

hin]l = K% — M], O0=<n=<2M. (4.39)

TABLE 4-2 Coefficients of Ideal Zero-Phase Type I Filters

Type Coefficients
Lowpass filter with edge rQ[0] = Le
™
(0) sin (w.n)
angle w, dnl=———  |n >0
™
Highpass filter with edge rQ01 =1 - Le
™
(0, sin (w.n)
angle w, gl =—-—"7"—= |n>0
™
Bandpass filter with edge rQ[0] = (w‘z%”)
(0) 1 . .
angles w,, and w,, hQn] = p— [sin (w.,n) — sin (w,n)], |n| >0
(“"02 - wcl)

Bandstop filter with edge rQM00] =1 -
T

1
angles ., and w,, rQn] = - [sin (wc,n) — sin (we,n)],  |n| > 0
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For Type III filters, H,4(w) (e.g., the ideal response of a Hilbert transformer or
differentiator) is odd about w = 0 (cf. Figure 4-6) and the Fourier series contains
sine terms, instead of cosine terms, and 4 [0] is absent. In this case, hQ[—n]
= —hQ[n] and the terms in the series are 2AQ[—n] sin nw, where hQ[—n] can
be determined from Eq. (4.36b) by replacing cos (nw) by sin (nw).

For Type II, Hj4(w) is odd about w = 7 and the periodicity is 47 (see Figure
4-11(a)). The design of a Type II filter of odd-order N to approximate this response
can be performed by first applying the above process with M = N to the response
H4(2w), which is a Type I response [PA87] (see Figure 4-11(b)). This gives an
FIR filter of order 2N. Since Hiy(2w) is odd about & = 7/2, hQ[n] = 0 forn =
0, +£2, +4, - - - . Correspondingly, h[N + 2r] =0forr=0,1, - + - , (N —
1)/2. The Type II filter whose zero-phase frequency response approximates the
ideal response of Figure 4-11(a) is then obtained by discarding these zero-valued
impulse-response samples, resulting in a filter of order N. The design of Type IV
filters can be converted into the design of Type III filters in the same manner
[PA8T7].

4-4-2 Direct Truncation of an Ideal Impulse Response

The simplest window is the rectangular window for which

1, -M<n=<M
wn] = (4.40)
0, otherwise.

ij(@)
1
(@)
| | | 1 1 ! ®
-2n -n -0¢ 0 @c n 2n
-1
Hijg (20)
1
(b)
“T+0g/2 n-0c/2
L ] 1 ¢ il 1 —L
J -2n - -0c/2 |0 oc/2 n 2n L
4

FIGURE 4-11 (a) Ideal Type II lowpass response H;y(w). (b) Response H;4(2w), which
can be approximated by Type I filters.
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The use of this window corresponds to a direct truncation of the infinite-duration
impulse response and leads to a solution exhibiting large ripples before and after
the discontinuity of the ideal frequency response. This is the well-known Gibbs
phenomenon. As an example, Figure 4-12 gives the resulting responses H(w) for
Type I lowpass filters with w, = 0.47 for M = 10 and M = 30. The corresponding
filter orders (N = 2M) are 20 and 60, respectively. As seen from this figure, the
transition bandwidth of H(w) becomes narrower when M is increased, but the max-
imum ripples in the passband and stopband regions remain about the same. In both
cases, the first stopband extremum has the value of —0.09 (21-dB attenuation) and
the last passband extremum has the value of 1.09.

The Gibbs phenomenon can be explained by the fact that H(w) is related to the
ideal response H,q(w) and the frequency response of the window function

M M
¥(w) = ZMw[n]e"j"“’ = w[0] + 2 ;1 wn] cos nw 4.41)

n=—

through
Hw) = ﬁ S Hy(6) ¥(w — 0) db. (4.42)

For the rectangular window,

~ e Sin (QM + Dw/2)
Y = nEMe s /2 (443)

This response is depicted in Figure 4-13 for M = 10 and M = 30. As seen from
this figure, ¥ (w) appears as a gradually decaying sinusoid starting at a middle

“
O =
-3

o Hia (@)

H(w)
[=]
4]

PO NN N (NN VUM [N T JUURNR O N1

1
1
1 . \\,’ S
[\

1 1 1 1 1 1 i L

0.2n 0.4 0.6n 0.8n n
FREQUENCY

o
o
cT[l’]I[I]l[I\I

FIGURE 4-12 Responses of Type I lowpass filters designed by truncating the impulse
response of an ideal filter with w, = 0.4w. The solid and dashed lines give the responses
for M = 10 and M = 30, respectively.
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FIGURE 4-13 Frequency responses for the rectangular window for M = 10 (solid line)
and M = 30 (dashed line).

lobe, called the mainlobe, whose width is twice that of the sidelobes being situated
in the intervals between the zeros.

According to Eq. (4.42), the value of H(w) at any frequency point w is obtained
in the lowpass case with cutoff edge w. by integrating ¥ (w — 6) with respect to 6
over the interval [—w,, w]. This is illustrated in Figure 4-14. For w = , only
small ripples of ¥ (w — ) are inside this interval, resulting in a small value of

o Hia(®
¥(w-0) Y(w-8)
0=T We<O<T
RWAWND NN AN NR WAWN LA\ A, AN JANT-NIPN
Y AR Y I s v/ A
—ﬂ:v -0g ¢ v n Y - -0 a)cv V \ft 6
(a)
i}
Y(0-0) Y(0-9)
@=0¢ ] O<o<ag
N AN AP N AN AN PPN
[} YA\ V V \V4 () ) [} \"Anv, AVaR vl [ o )
- -0 o n - -0g (" n
(b)
e 41
- ~7 ~0¢ oS ~ n [}

FIGURE 4-14 Explanation of the Gibbs phenomenon. (a) Convolution process. (b) Re-
sponse for the resulting filter.
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H(w) at @ = 7. As w is made smaller, larger ripples of ¥ (w — 6) are entering
into the interval, resulting in larger values in H(w) for w < w. The ripples are due
to the fact that the area under every second sidelobe of ¥ (w) is of opposite sign.
For v = w,, half of the mainlobe is inside the interval [ —w,, w/]. Since the integral
of ¥ (w) over the interval [—=, w] is one and most of the energy is concentrated
in the mainlobe, the value of H(w) at w = w,. is approximately 3. When w is further
decreased, the whole mainlobe enters the interval and the area in this interval is
approximately one, resulting in the passband response of H(w). The ripples around
one are due to the fact that the sidelobes of ¥ (w — ), which are of different
heights, go inside the interval [ —w,, w.] and leave it as w varies.

As M is increased, the widths of the mainlobe and the sidelobes decrease. How-
ever, the area under each lobe remains the same since at the same time the heights
of the lobes increase (see Figure 4-13). This means that as M is increased, the
oscillations of the resulting filter response occur more rapidly but do not decrease
(see Figure 4-12).

4-4-3 Fixed Window Functions

The Gibbs phenomenon can be reduced by using a less abrupt truncation of the
Fourier series. This is achieved by using a window function that tapers smoothly
towards zero at both ends. Some of the well-known fixed window functions w [#]
[BL58; HA78; HA87; KA63, KA66;, RA75a] are summarized in Table 4-3 along
with their frequency responses ¥ (w).> For these fixed window functions, the only
adjustable parameter is M, half the filter order. The plots of the frequency re-
sponses are given in Figure 4-15 for the last four windows in Table 4-3 for M =
128. Also, the responses of the filters resulting when using these windows for w,
= 0.4x are shown in this figure.

Figure 4-16 depicts, in the lowpass case, a typical relation between H(w) and
¥ (w), which is given in terms of § — w, in order to center the response at the
cutoff edge. Note the close similarity to the case where ¥ (w), Hiy(w), and H(w)
correspond to the impulse response, the step excitation, and the response of a
continuous-time filter, respectively. As seen from the figure, H(w) satisfies ap-
proximately H(w, + w) + H(w, — w) = 1 in the vicinity of the cutoff edge w..
This means that H(w,.) = % Furthermore, the maximum passband deviation from
unity and the maximum stopband deviation from zero are about the same, and the
peak passband overshoot (1 + §) and the peak negative stopband undershoot (—4)
occur at the same distance from the discontinuity point w.. The distance between
these two overshoot points is for most windows approximately equal to the main-
lobe width A,,. The criteria met by H(w) can be given by \

l1-0=<Hw=1+46 forwel0, w)], (4.44a)
-0 <Hw) <?$é for w € [w,, ], (4.44b)

>The definitions of the window functions of Table 4-3 differ slightly in the literature.
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TABLE 4-3 Some Commonly Used Fixed Windows for FIR Filter Design

Window Function, w(n],

Window Type -M=n=M Frequency Response, ¥ (w)

Rectangular 1 Yr(w) = sin [CM + 1)w/2]/sin (w/2)

Bartlett 1 - _nl L [sin [(M + 1)w/2]/sin (w/2))
M+ 1 M+ 1

0.5\1/,,(«;)+0.25\1:R<w— 27 >

2M + 1
Hann %[l + cos[ 2mn H
2M + 1 2
+ 0.25¥ +
0.25 R<“’ M + 1>
2%
0.54¥p(w) + 0.23¥p( 0 — ———
. 27n 2M + 1
Hamming 0.54 + 0.46 cos [—]
2M + 1 2
+0.2 —
0 3‘I’R<w+2M+ 1>
0.42¥,(w) + 0.25¥ -
r(w) R < 2M >
042+0500${ 2an ] +0.25%
: : M + 1 R\ @ 2M +1
Blackman
+008cos[ Amn ] +0.04¥
) 2M + 1 TR 2M +1
+ 0.04¥
R (“’ 2M + 1>

where w,(w,) is defined to be the highest frequency where H(w) = 1 — 6 (the
lowest frequency where H(w) < 8). The width of the transition band, Aw = w,
— W, is thus less than the mainlobe width A,,. This means that for a good window
function, the mainlobe width has to be as narrow as possible. On the other hand,
for a small ripple value 6, it is required that the area under the sidelobes of ¥ (w)
be as small as possible. These two requirements contradict each other.

For the fixed window functions given in Table 4-3, H(w) is characterized by
the facts that é is approximately a constant, regardless of the values of M and w,,
and the transition bandwidth is inversely proportional to the filter order N = 2M;
that is,

Aw =w;, —w, = 'y/(2M), 4.45)

where v is also approximately a constant. Some properties of these window func-
tions are summarized in Table 4-4. It gives, for each window, the mainlobe width
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FIGURE 4-15 Frequency responses of the window functions and the resulting filters for
the last four windows in Table 4-3 for M = 128 and w. = 0.47. (a,b) Bartlett window.
(c,d) Hann window. (e,f) Hamming window. (g,h) Blackman window.



4-4 FIR FILTER DESIGN BY WINDOWING 183

/\r(e-mc)

PN I YA P
— 0 — ~— )

FIGURE 4-16 Typical relations between the frequency response of the window function
and the resulting filter response in the lowpass case with cutoff edge w,.

A, and the maximum sidelobe ripple in decibels in the case where ¥ (w) is scaled
to be unity at w = 0. Furthermore, the minimum stopband attenuation

A, = —20log,, (4.46)

and the dependence of the transition bandwidth on 2M are given.® The only ex-
ception is the Bartlett window for which the filter response has no zeros on the

“These values have been determined for the case w. =047 and M = 128.

TABLE 4-4 Properties of Some Commonly Used Fixed Windows

Mainlobe Sidelobe

Window Type Width Ay, Ripple A Aw = w; — w,

Rectangular 4T —-13.3dB 20.9dB 1.847/(2M)
2M + 1

Bartlett 4 —26.5dB See text See text
M+ 1

Hann 8w -31.5dB 43.9 dB 6.227/(2M)
2M + 1

Hamming 87 —-42.7 dB 54.5 dB 6.641/(2M)
2M + 1

Blackman 127 —58.1dB 75.3 dB 11.137 /(2M)

2M + 1
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unit circle (see Figure 4-15) and it is difficult to locate the stopband edge. The
above window functions suffer from the drawback that 4; cannot be varied. Only
w, and w, can be adjusted by properly selecting w, and M. Since w, is in the center
of the transition band, it is selected to be w. = (w, + ;) /2. Then M is determined
from Eq. (4.45), where the specific value of y can be found in Table 4-4 for each
window type.

4-4-4 Adjustable Window Functions

The above problem can be overcome by using window functions having an addi-
tional parameter with which A; can be varied. There exist three approaches to
obtaining good adjustable windows. The first alternative is to minimize the energy
in the sidelobes of the frequency response of the window function w[r], whereas
the second one is to minimize the peak sidelobe ripple. Both the Kaiser window
[KA66, KA74] and the Saramiki window [SA89a, SA91a] provide an approxi-
mately optimum solution to the first problem, whereas the Dolph~Chebyshev win-
dow [HEG68] is the solution to the second problem. The third alternative is to prop-
erly combine the first two approaches [SA91a].
The Kaiser window [KA66, KA74] is given by

. |
win] = { To {a 1 - <1%> }/Io(a), MM

0, otherwise,

where « is the adjustable parameter and (x) is the modified zeroth-order Bessel
function of the first kind, which has the simple power series expansion

<x/2>T

r!

Ix) =1+ 211 { (4.48)

For most practical applications, about 20 terms in the above summation are suffi-
cient to arrive at reasonably accurate values of w[n].

For the Saramiki window [SA89a], the frequency response of the unscaled win-
dow function (W[0] is not equal to unity) can be expressed in the forms

M M
ZM Wlnle ™ =1 + kZ 2T, [y cos w + (y — 1)]
=1

n=—

¥ (w)

M+
sin 5 cos {ycosw + (y — 1)}

= s (4.49a)
sin [1 cos ™' {y cos w + (y — 1}
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where T [x] is the kth degree Chebyshev polynomial and

_ 27 / 287
'y—<1 +cos2M+ 1) <1 +0032M+ 1). (4.49b)

Here,  is the adjustable parameter, which has been selected such that the mainlobe

width is 4 8w /(2M + 1). This is 3 times that of the rectangular window. In the

special case = 1, ¥ (w) is the frequency response of the rectangular window.
The desired normalized window function (w[0] = 1) is

w([n]/w[0], -M=n=M
0, otherwise
and the corresponding frequency response is ¥ (w) = ¥ (w) /wIO0].
The unscaled coefficients W [n] can be expressed as
M
Wlnl = voln] + 2 E. ve[nl, @.51)

where the v, [n]’s can be calculated using the following recursion formulas:

voln] = {1’ " =0 (4.52a)
0, otherwise
y—1, n=20

v,[n] =4 v/2, In] =1 (4.52b)
0, otherwise
2(y = Dog—y[n] = ve—sln]

nln]l = +y@Wi=1ln — 11 + vp_[n + 1]), —-k=n=<k (452
0, otherwise.

For the Dolph-Chebyshev window [HE68], the frequency response of the un-
scaled window function can be expressed as

¥ (w) = Tylycos w + (y — 1)], (4.53a)

where

_ T 287
vy = <1 + cos 2M>/<1 + cos Mt 1), (4.53b)
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and the unscaled coefficients are
wln] = vylnl, 4.54)

where vy, [r] can be determined using the recursion relations of Eq. (4.52). Here,
B has been selected as for the Saramiki window to make the mainlobe width 8
times that of the rectangular window.

The transitional windows introduced by Saraméki [SA91a] combine the prop-
erties of the Dolph-Chebyshev and Saramiki windows. For the mainlobe width
being (8 times that of the rectangular window, the unscaled frequency response of
this window is given by

M M
Y = 2 wne'™ = kII (cos w — cos wy), (4.55a)
n=-M =1
where
w = po’ + 1 - p)o? (4.55b)
with
M _ _, [cos [Bx/(@M + 1)] kw ﬂ 4.55¢
Wi = 2 cos [cos[w/(2M+1)] S \am + 1 (4.55¢)
and
o _ _, [cos [Br/@M + 1)] Ck — D7 } 455
k' =2 cos [ cos [/ (4M)] aM - 4359
Here, w{"” and w{?’ fork = 1,2, + + -, M are the zero locations of the Saramiki

and the Dolph-Chebyshev windows, respectively. For p = 1 and p = 0, ¥ (w) is
the unscaled response for the Saramiki and the Dolph-Chebyshev window, re-
spectively. For this transitional window, 0 < p < 1 is an adjustable parameter in
addition to 8. Accurate values for the unscaled window coefficients w[n] are ob-
tained from [PA87]

M
[E(O) +2 ,E, 57 < 2wk > cos < 2k ﬂ (4.56)

winl = M+ 1 M+ 1

2M + 1

Alternatively, the coefficients can be determined by evaluating ¥ () at 2/ (>2M
+ 1) equally spaced frequencies and using the inverse fast Fourier transform (see
Chapter 8). With a slightly increased amount of calculation, this window gives a
higher attenuation for the resulting filter than the other adjustable windows con-
sidered above.

The advantages of the above adjustable windows compared to the fixed win-
dows are their near optimality and flexibility. Given w,, w;, and the minimum
stopband attenuation 4; of the filter, the adjustable parameter (« for the Kaiser
window and (3 for the Saramiki, Dolph-Chebyshev, and transitional windows) can
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be determined to give the desired value for A;, whereas M can be determined to
give the desired value for the transition bandwidth Aw = w; — w, of the filter.
Experimentally obtained estimation formulas for the adjustable parameter and M
are given in Table 4-5 for each window type [KA66, KA74; SA89a, SA91a]. For
the transitional window, these equations are for

04, A, <50
p=405 50<4,=<75 4.57)
06, 75 < A,

which has turned out to be a good selection in most cases [SA91a]. Like for fixed
window functions, the cutoff edge of the ideal filter is selected to be w, = (w, +
w,)/2 to center the transition band of the resulting filter at this point.

Because of the characteristics of the Dolph—-Chebyshev and transitional win-
dows, the estimation formulas developed for these windows are not as accurate as
those for the Kaiser and Saramiki windows.

An informative way to compare the performances of adjustable windows is to
design several classes of filters with various values of the adjustable parameter for
fixed values of M and w.. Based on the resulting filter frequency responses, a plot
of the stopband attenuation as a function of the parameter D = 2M(w, — w,) can
be generated (D, instead of w; — w,, is used to make the plot almost independent
of M). Figure 4-17 gives such plots for the above-mentioned adjustable windows
for w, = 0.47 and M = 128. For the Kaiser window and the Saramiki window,
the difference in the plots is very small. For comparison purposes, a corresponding
plot is also included for filters for which the passband and stopband ripples 6, =
&, have been minimized in the minimax sense for the given value of D. This plot
thus gives an upper limit for the stopband attenuation attainable using window
functions. For the Kaiser window and the Saramiki window, the resulting atten-
uation is 5-7 dB less than this upper limit. The stopband attenuation obtained by
the Dolph-Chebyshev window is 1-4 dB worse than that of the Kaiser or Saraméki
window. For the transitional window, the improvement is typically 2-4 dB over
the Kaiser and Saramiki windows and the resulting attenuation approaches the
upper limit.

Example 4.1. It is desired to design with each adjustable window considered above
a filter with an 80-dB stopband attenuation for M = 128 and w. = 0.47. Using
the formulas given in Table 4-5, the values for the adjustable parameters for the
Kaiser, the Saramiki, the Dolph-Chebyshev, and the transitional windows become
o = 7.857,8 = 2.702, B = 2.770, and B = 2.587, respectively. The resulting
attenuations are 79.68, 80.17, 79.29, and 80.75 dB. Figure 4-18 gives the fre-
quency responses of both the window functions and the resulting filters in the case
of an exactly 80-dB attenuation.” The transition bandwidths for these filters are

"The value of the adjustable parameter giving exactly the desired attenuation A, can be obtained in two
steps. First, the actual filter attenuation, denoted by A,, is determined for the estimated value of the
adjustable parameter. Then this parameter is reestimated by using, instead of 4,, 4, — (4, — A4,) in
the estimation formula.
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FIGURE 4-17 Plots of the minimum stopband attenuation of the resulting filter versus D
= 2M(w, — w,) for adjustable windows. M = 128 and w, = 0.4w. For comparison pur-
poses, a corresponding plot for filters for which §, = 8; has been minimized in the minimax
sense is included.

0.03937, 0.03907, 0.04067, and 0.03737. From Figure 4-18, it is seen that the
responses for the Kaiser window and the Saramiki window as well as the responses
of the resulting filters are practically the same. It is interesting to observe from
this figure that the filter response for the Dolph-Chebyshev window is flatter than
the corresponding responses for the Kaiser and Saraméki windows, whereas the
filter response for the transitional window is between those of the Saramiki and
Dolph-Chebyshev windows. Also note that the ripples of the sidelobes are of the
same height for the Dolph-Chebyshev window. In Section 4-7, this property is
utilized in designing filters having an equiripple behavior in the stopband.

4-5 DESIGN OF FIR FILTERS IN THE LEAST-MEAN-SQUARE
SENSE

The second straightforward approach for designing FIR filters is based on the use

of the least-squared approximation [FA74; KA63, KA66; KE72; LI83c; PA87;
TU70; VAS8T]. In this case, the problem is to find the filter coefficients to minimize

E, = Sx W@ [H(w) — D@ do, (4.58)
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FIGURE 4-18 Frequency responses of the window functions and the resulting filters for
adjustable windows giving an 80-dB attenuation for the filter when M = 128 and w. =
0.47. (a,b) Kaiser window. (c,d) Saraméki window. (e,f) Dolph-Chebyshev window. (g,h)

Transitional window.
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where X contains the passband and stopband regions, D (w) is a desired response,
and W(w) is a positive weighting function. If D(w) and W(w) are sampled at a

very dense grid of frequencies w;, w,, * * * , wg on X, then minimization of the
above equation may be achieved by minimizing

K
E, = 2 W@)H(w) — D@)lF* 4.59)

As shown in Section 4-3-3, H(w) can be expressed in the four different linear-
phase cases in the form (see Eq. (4.32))

M
Hw) = ;0 b[n) trig (, n). (4.60)

By substituting this for H(w,) in Eq. (4.59) and transferring W(w,) inside the pa-
rentheses we obtain

K M 2
E, = /2:1 [W(wk) 20 b[n] trig (wg, n) — W(w)D (")k):l . (4.61)

This equation can be written in the following quadratic form

E, = e'e, (4.62a)
where
e=Xb-d (4.62b)
with
W(w)) trig (w;, 0)  W(w) trig (@, 1) ... W(w) tig (w;, M)
. W(wy) trig (02, 0)  W(wy) trig (@, 1) ... Wi(wy) trig (w2, M) ,
mMmmww@wnmww@wm
(4.62¢)
b = [b[0), b[1], . . ., b[MIY, (4.62d)
and

d = [W(@)D(@), W(@)D(@), - - . , WwpD(wpl". (4.62¢)
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Here, e is a K length vector with the kth element being W(w,) [H(wy) — D(wy)]-
The optimum solution of minimizing E, is given by [LI83c; PA87]

b= X™X)"'XTd (4.63)
and it satisfies the ‘‘normal equations’’ [PA87]
XXb = X'd. 4.64)

It should be noted that if K is much larger than M, then Eq. (4.63) should not
be solved directly because it becomes ill conditioned. In this case, the direct so-
lution will probably have large errors. Parks and Burrus [PA87] recommend the
use of the software package LINPACK [DO79], which has a special program for
solving the above problem.

In the case where both W(w) and D (w) are piecewise-constant functions, a sig-
nificantly simpler procedure for finding the optimum solution can be generated
[LI83c].

Example 4.2. Consider the design of a Type I lowpass filter of order N = 46 (M
= 23) for w, = 0.57 and w; = 0.67. D(w) = 1 on [0, w,] and D(w) = 0 on
[w,, 7]. Figure 4-19 shows the resulting responses in two cases. In both cases,
W(w) = 1 on [0, w,], whereas W(w) is unity on [w,, 7] in the first case and 10 in
the second case. The effect of the stopband weighting is clearly seen from the
figure. It is also seen that the maximum deviations between the actual and the
desired responses are much larger near the passband and stopband edges. This is
characteristic of the least-squared-error designs. If the maximum deviations are
desired to be minimized, then it is preferred to design the filter in the minimax
sense (see Section 4-8). Compare Figure 4-19 to Figure 4-8, which gives a re-

1.02
1.00
0.98
0.96
.80 |- o0.94

AMPLITUDE IN dB

Nyl
0 02r 04r 0.6rn  0.8n n
FREQUENCY

FIGURE 4-19 Amplitude responses for least-squared-error FIR filters of order 46. The
solid and dashed lines give the responses for the filters with stopband weighting of 1 and
10, respectively.
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sponse for an FIR filter optimized in the minimax sense. The filter orders in these
two figures are the same.

4-6 MAXIMALLY FLAT FIR FILTERS

The third straightforward approach for designing FIR filters is to use filters with
maximally flat response around w = 0 and w = 7 [HA77; HE71b; KA77b, KA79;
VA84]. The advantages of these filters are that the design is extremely simple and
they are useful in applications where the signal is desired to be preserved with very
small error near the zero frequency. If the maximum deviation from the desired
response is required to be minimized, then it is preferred to use filters designed in
the minimax sense. These minimax designs meet the given criteria with a signifi-
cantly reduced filter order.
Consider a Type I filter with transfer function

2M
H(z) = Z)Oh[n]z“", h[2M — n] = h[n]. (4.65)

For maximally flat designs, it is advantageous to express H(w) as an Mth degree
polynomial in cos w as follows (cf. Section 4-3-3):

M

H(w) = ;30 aln] cos” w. (4.66)

This H(w) is determined in such a way that it has 2K zeros at w = w and H(w) —
1 has 2L = 2(M — K + 1) zeros at w = 0., M is thus related to L and X through
M = K + L — 1. The above conditions are satisfied if H(w) can be written simul-
taneously in the forms

KL-1 n
Hw) = [1 +;os w} ngod[”] [1 —Zcos w]

L—-1
cos?® (w/2) 20 d[n] sin® (w/2) (4.67a)

1

and

H(w)

I
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|
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o
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b}
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K_
= sin™ (0/2) 2 dln] cos™ (/2). (4.67b)
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The coefficients d[n] and d[n] giving the desired solution are

_K-=1+mn) - _(@L-=1+n
M =" " m > M= T om

(4.68)
The resulting H(w) is characterized by the facts that it achieves the value one at w
= 0 and its first 2L — 1 derivatives are zero at this point, whereas it achieves the
value zero at w = 7 with its first 2K — 1 derivatives being zero at this point. The
primary unknowns of the above filters are K and L. Given the filter specifications,
the problem is thus to determine these integers such that the criteria are satisfied.

Kaiser [KA79] has stated the specifications for maximally flat filters as shown
in Figure 4-20. Here, {3 is the center of the transition band and v is the width of
the transition band, which is defined as the region where the response varies from
0.95 (passband edge angle) to 0.05 (stopband edge angle). For meaningful spec-
ifications, v has to satisfy 0 < 4 < min (28, 27 — 28). In the design procedure
proposed by Kaiser, the lower estimate for M = K + L — 1 (half the filter order)
is given by

Mlower = (7!'/‘)’)2. (469)
Then p is determined by
p=(1+ cosB)/2. 4.70)
1.2 T T T T T T T T T
1.0 | .
0.95 B=0.4x
08| Y=0.2n i
K=17

w L=
'?_3 06 - 2M=50 7
E 0.5
s 04| le—y —
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0.2 - .

0.05
(o Ko I o -
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0 0.2n 0.4n 0.6n 0.8n T
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FIGURE 4-20 Specifications for a maximally flat lowpass filter and response for a filter
of order 50 meeting the criteria 3 = 0.4w and v = 0.27.
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The next step is to determine
K, = (oM,), @.71)

where (x) stands for the nearest integer of x, for the values of M, in the range
Mygyer < M, < 2M.,. Finally, the values of the integers K, and M, for which
the ratio K, / M, is closest to p are selected. The corresponding values of X, L,
and M are then K = K,, L = M, — K,, and M = M, — 1, respectively. With
these selections of K and L, the given value of 8 can be achieved accurately.

Example 4.3. Consider the specifications 8 = 0.47 and ¥ = 0.2w. The above
procedure results in K = 17 and L = 9. The order of the filter is thus 2(K + L —
1) = 50. The amplitude response of this filter is depicted in Figure 4-20.

The transfer function having the zero-phase frequency response as given by Eq.
(4.67a) or (4.67b) can be implemented using the conventional direct-form structure
shown in Figure 4-7.% Alternatively, the transfer function can be written in the
forms

—I\2KL-1 | 2n
HQ) = <1 +22 > 20(—1)"d[n]z—“—‘""’ <1—ZZ—> 4.72a)

and

H@ =z - (-1 <__1 — Z_l>2L KZ_JI dlnjz~&-1-m <____1 + Z_l>2n.
2 n=0 2

(4.72b)

The advantage of realizing the transfer function in the above forms lies in the fact
that these implementation forms have significantly fewer multipliers than the di-
rect-form structure [VA84].

4-7 SOME SIMPLE FIR FILTER DESIGNS

There are two special cases where the optimum solution in the minimax sense can
be obtained analytically [HE73]. The first analytically solvable case is the one
where the zero-phase frequency response is monotonically decaying in the pass-
band region and exhibits an equiripple behavior in the stopband region [w,, 7]. An

*In this case, it is preferred to calculate the filter coefficients by evaluating H(w) at 2/ (>2M + 1)
cqually spaced frequencies and using the inverse discrete Fourier transform (see Chapter 8). This

puarantees that the resulting coefficient values are accurate enough. This is the procedure used by
Kaiser [KA79].



196 FINITE IMPULSE RESPONSE FILTER DESIGN

equiripple behavior on [w,, 7] can be achieved by mapping the Mth degree
Chebyshev polynomial Ty, (x) to the w-plane such that the region [—1, 1], where
Ty (x) oscillates within the limits +1, is mapped to the region [w;, 7] (see Figure
4-21). The desired transformation mappingx = ltow = w;andx = —1tow =
m is

2

x=+ycosw + (y — 1), 7=m,
§

4.73)

resulting in the following zero-phase frequency response of a Type I filter of order
2M:

ﬁ(m) = TylRcosw + 1 — cos w,) /(1 + cos w,)]. “4.74)

The response taking the value 1 + §, at w = O is then

Hw) = (1 + §,)H(w)/H(0). 4.75)
X
11 T T T ] LG 1 o T T T T T T T T
» : ) ] r : x=ycosa+(y-1) 1
- A o ¥=2/(1+C0S0s)]
C = C o 3
- ] " - - 1 -4
- 1 1 - ] -
- 1 J L 1 -
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FIGURE 4-21 Generation of a zero-phase frequency response oscillating within the limits
+1 in the stopband [w;, 7] based on mapping the Mth degree Chebyshev polynomial T, (x)
to the w-plane.
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This function oscillates on [w;, 7] within the limits +8,, where
8, = (1 + §,)/H(0). (4.76)

Based on the properties of Chebyshev polynomials, it can be shown that the
value of M (half the filter order) giving the specified stopband ripple §, is [HE73]

cosh™'[(1 + 8,)/5,]
~ cosh~ ' [(3 — cos wy) /(1 + cos wy)]’

@.77)

Example 4.4. Figure 4-22 gives responses with w; = 0.17 and 6, = 0.1 for
M = 15 and M = 30. The corresponding filter orders are 30 and 60, respectively.
The disadvantage of these designs is that all their zeros lie on the unit circle and
the passband region, where the response decays from 1 + §,to 1 — §,, is narrow
and cannot be controlled.

The response that is equiripple in the passband [0, w,] oscillating within the

limits 1 + §, and monotonically decaying in the region [w,, 7] can be derived in
the same manner. This solution is given by [HE73]

H(w) =1 - 8,Ty[(—2cos w + 1 + cos w,) /(1 — cos wp)]. (4.78)

If it is desired that H(m) = —4§;, then §, can be determined from

6, =1+ 8, /Ty [3 + cos wp)/(l — €0s w,)]. 4.79)

om
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FIGURE 4-22 Responses for filters having an equiripple stopband behavior and a mono-
tonically decaying passband response for M = 15 (solid line) and M = 30 (dashed line).
w; = 0.1m and 6, = 0.1.
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The minimum value of M required to meet the given ripple requirements can be
determined from Eq. (4.77) by interchanging 6, and §; and by replacing w; by

1r—<.op.

4-8 DESIGN OF FIR FILTERS IN THE MINIMAX SENSE

One of the main advantages of FIR filters over their IIR counterparts is that there
exists an efficient algorithm for optimizing in the minimax sense arbitrary-mag-
nitude FIR filters. For IIR filters, the design of arbitrary-magnitude filters is usu-
ally time-consuming and the convergence to the best solution is not always guar-
anteed. This section introduces this algorithm for designing linear-phase FIR filters
and shows its flexibility by means of several examples. The resulting filters are
optimal in the sense that they meet the given arbitrary specifications with the min-
imum filter order. This section considers also some properties of these optimum
linear-phase FIR filters.

4-8-1 Remez Multiple Exchange Algorithm

The most efficient algorithm for designing optimum magnitude FIR filters with
arbitrary specifications is the Remez multiple exchange algorithm [CH66; R164].
The most frequently used method for implementing this algorithm is the one orig-
inally advanced by Parks and McClellan [PA72a]. Further improvements to the
implementation of the Remez algorithm have been proposed by McClellan, Parks,
and Rabiner [MC73a, MC73b, MC79; PA72b; RA75b]. As a result of this work,
a program for designing arbitrary-magnitude FIR filters has been reported in
McClellan et al. [MC73b, MC79]. This program is directly applicable to obtaining
optimal designs for most types of FIR filters like lowpass, highpass, bandpass,
and bandstop filters, Hilbert transformers, and digital differentiators. Also, filters
having several passbands and stopbands can be designed directly. The amount of
computation required for designing optimum filters can be significantly reduced
by using techniques proposed by Antoniou [AN82, AN83] and Bonzanigo [BO82].
This section concentrates on the original FIR filter design program of McClellan,
Parks, and Rabiner [MC73b, MC79]. This method is referred to later as the MPR
algorithm.

4-8-1-1 Characterization of the Optimum Solution. The Remez multiple ex-
change algorithm is the most powerful algorithm for finding the coefficients a[n]
of the function

M
G(w) = ;0 a[n] cos nw (4.80)

to minimize on a closed subset X of [0, 7] the peak absolute value of the following
weighted error function: ’

E(w) = W(w)[G(w) — DW)], 4.81)
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that is, the quantity

e = max |E(w)|. (4.82)

weX

It is required that D (w) be continuous on X and W(w) > 0. This algorithm can be
used in all four linear-phase cases based on the fact that the zero-phase frequency
response H (w) of a filter of order N can be expressed, according to the discussion
of Section 4-3-1, in the form

H(w) = F(0)G(w), (4.83)

where G(w) is as given by Eq. (4.80) and

1 for Type I N/2 for Type 1
cos (w/2) for Type II (N — 1)/2 for Type II
Fw) = M=
sin w for Type III (N — 2)/2 for Type III
sin (w/2) for Type IV, (N — 1)/2 for Type IV.
(4.84)

If the desired function for H(w) on X is D (w) and the weighting function is W(w),
then the error function can be written in the form of Eq. (4.81) as follows:

E@) = W(H(@ ~ D@] = WW[F@GC(w — D] (4.85a)
W(w)F()[G(w) — Dw)/F(w)] = W(@[G(w) - D),

where
P_V(w) = F(w) W(w), D(w) = D(w)/F(w). (4.85b)

The Remez multiple exchange algorithm can be constructed on the basis of the
following characterization theorem [CH66; RI64].

Characterization Theorem. Let G(w) be of the form of Eq. (4.80). Then G(w)
is the best unique solution minimizing € as given by Eq. (4.82) if and only if there

exist at least M + 2 points w,, w,, . . . , Wy 4, in X such that
W < wp < 0t <y < Wygo
E(wi+) = —E(@), i=12,...,M+1
|E(w)| = ¢, i=1,2,...,M+ 2.

In other words, the optimuim solution is characterized by the fact that the weighted
error function F(w) alternatingly achieves the values +e, with e being the peak
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absolute value of the weighted error, at least at M + 2 consecutive points in X.
Figure 4-23 gives the response of a typical optimum Type I lowpass filter of order
N = 12 and the corresponding error function. In this case, H(w) = G(w), X =
[0, w,] U [w,, 7], D(w) = D(w) = 1 and W(w) = W(w) = 1 for w € [0, w,],
whereas D(w) = 0 and W(w) = 2 for w € [w,, 7]. Note that the above weighting
function makes the stopband ripple of the optimum filter to be half of that of the
passband ripple. In this case, M = N /2 = 6 so that G (w) contains seven unknowns
al0], a[1], . . ., a[6]. The number of extremal points is M + 2 = 8 so that there
is one more extremal frequency than there are unknowns, as required by the char-
acterization theorem. According to the theorem, it is thus easy to check whether
a given solution is the optimum one. If the relative weighting between the stopband
and passband errors is k and there exists a solution H(w) that alternatingly goes
through the values 1 + ¢ in the passband and through the values +e/k in the
stopband, and the overall number of these extrema is at least M + 2, then this
solution is, according to the characterization theorem, the best unique solution. In
the lowpass case, both w, and w; are always extremal points, and H(w,) = 1 — ¢
and H(w,) = €/k so that E(w,) = —e and E(w,) = €.

4-8-1-2 The McClellan-Parks-Rabiner (MPR) Algorithm. Given a set of M +
2 points on X, denoted by @ = {w,, ws, . . . , Wy 12}, the unknown coefficients
al0], a[1], . . ., a[M] and e can be determined such that E (w) satisfies

E(w) = Ww)[Gwy) — D] = (=Dke, k=1,2,..., M+ 2.
(4.86)

H(@)=G(w)

-€

FIGURE 4-23 Zero-phase frequency response and error function for an optimum Type I
linear-phase lowpass filter of order 2M = 12. The stopband weighting is two times that of
the passband.
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This can be achieved by solving for the unknowns the following system of M +
2 linear equations:

M
;0 aln) cos nw, — (—%e/W(w) = D(wy), k=1,2,..., M+ 2.
(4.87)

The resulting E(w) goes alternatingly through the values + ¢ at the points w,. If
X consists of the above set of M + 2 points, that is, X = ©, then |e| is the peak
absolute value of E(w) on X and the conditions of the above characterization theo-
rem are satisfied.® The Remez exchange algorithm makes use of this fact. The
problem is simply to find a set @ on X in such a way that the optimum solution on
Q is simultaneously the optimum solution on the overall set X. This is achieved if
the value of |e| is simultaneously the peak absolute value of E(w) on the overall
set X. The Remez algorithm iteratively finds the desired set of M + 2 extremal
points using the following steps:

1. Select an initial set of M + 2 extremal points @ = {w;, w,, . . . , Wpr42}
in X.

2. Solve the system of M + 2 linear equations given by Eq. (4. 87) for the
unknowns a[0], a[l], . . . , a[M] and €.

3. Find on X, M + 2 extremal points of the resulting E(w), where |E(w)| =
|e]. If there are more than M + 2 extremal points, retain M + 2 extrema
such that the largest absolute values are included with the condition that the
sign of the error function E(w) alternates at the selected points. Store the
abscissas of the extrema into @ = {@,, @5, . . . , Wyr42}-

4. If g — @] <= afork=1,2,..., M+ 2 (« is a small number), then
go to the next step. Otherwise, set @ = @ and go to Step 2.

5. Calculate the filter coefficients and plot the frequency response.

The above algorithm starts by selecting M + 2 initial extremal points w,. These
points can be selected, for example, to lie equidistantly on X. Then the coefficients
of G(w) and e are solved for at Step 2 such that E(w) satisfies

Ew)=(-D k=12,...,M+2 (4.88)

that is, it alternately achieves the values +e at the points w;, wy, . . . , Wy 42, aS
required by the characterization theorem. However, all the points w; are not the
true external points of the resulting E(w). This is illustrated in Figure 4-24, which
gives E(w) after performing Step 2 for the first time. As seen from this figure,
most of the initial extremal points are not the true extremal points and the maxi-
mum absolute value of E(w) is higher than |e| around these points. Thus the M +
2 new extremal points w, of E (w) are located next and these extremal points replace
the w,’s. After that, the coefficients of G(w) and e are redetermined such that Eq.

*When solving Eq. (4.87) for the unknowns, the resulting e is either positive or negative.
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FIGURE 4-24 Error function obtained by forcing it to alternatingly go through the values
+e at the selected extremal points w;, k = 1,2,. .. ,M+2. M =6and X = [0, w,] U
[ws, . The w,’s are the true extremal points of the error function.

(4.88) is satisfied at the new extremal points. The process is repeated until the w,’s
become the true extremal points of E(w). In the above process, the absolute value
of e increases in each iteration loop.

The set of linear equations at Step 2 can be solved conveniently by first calcu-
lating € analytically as

M+2 .
2 ka(OJk)
€ = k=1 , (4.89a)

M+2

2 b W

where
M+2
1

b, = I — (4.89b)
i=1 (COS wy — cOS w;)
itk

After calculating e, it is known that G(w) achieves the value
C, = D(wp) + (—=De/W(wy) (4.90)

at the kth extremal point. To get around the numerical sensitivity problems, the
Lagrange interpolation formula in the barycentric form is used to express G(w) as

M+1

> Br
—— |

k=1 \COS @ — COS wy

G(w) M+ 3
| < —k >
k=1 \COS w COS wy

) (4.91a)
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where

M+1
1

i=1 (cos wy — cOs w;)
i*k

B = (4.91b)

Note that after solving €, M + 1 points, instead of M + 2 points, are required to
uniquely determine G(w). In the MPR algorithm [MC73b, MC79] G(w) is ex-
pressed in the above form. This is because the actual coefficient values a[n] are
not needed in intermediate calculations. After the convergence of the algorithm,
the a[n]’s are determined by evaluating G(w) at 2M + 1 equally spaced frequency
points and then applying the inverse discrete Fourier transform (see Chapter 8).
From the a[n]’s, the filter coefficients & [n] can then be determined according to
the discussion of Section 4-3-1.

In the practical implementation of the MPR algorithm, the extrema of E(w) at
Step 3 are located by evaluating E (w) over a dense set of frequencies spanning the
approximation region X. As a rule of thumb, a good selection of the number of
grid points is 16M. Typically, four to eight iterations of the above algorithm are
required to arrive at the optimum solution in lowpass cases. In designing filters
having several passband and stopband regions, the number of iterations is typically
two or three times that required for designing lowpass filters.

4-8-2 Properties of the Optimum Filters

Before illustrating the use of the above algorithm in practical filter design prob-
lems, some properties of optimum filters are reviewed. In the lowpass case, the
filter design parameters are the passband edge w,, the stopband edge w;, the pass-
band ripple 4, and the stopband ripple §;. The remaining parameter to be deter-
mined is the minimum filter order N required to meet the given criteria. If N is
prescribed, then the ripple ratio

k=26,/8, 4.92)
instead of &, and &;, is usually specified. In the latter case, the optimum solution

is obtained by using the following desired response and weighting function in the
MPR algorithm:

1 forw € [0, w,)]
D) = (4.93a)
0 forw € [w;, 7],

{1 for w € [0, w,]
W) = (4.93b)
k for w € [w;, 7].

In this case, X = [0, w,] U [w, ].
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FIGURE 4-25 Amplitude response for an optimum Type I filter of order N = 2M = 108.

Example 4.5. Figure 4-25 gives the optimized response of a Type I filter of order
N = 108 (M = 54) for w, = 0.057, w, = 0.1, and k = 10. The resulting ripples
are given by §, = 0.00955 and §; = 0.000955. In this case, N = 108 is the
minimum filter order to meet the ripple requirements 6, < 0.01 and §; < 0.001.

Except for the case of the Chebyshev solutions considered in Section 4-7, there
exist no analytic relations between the lowpass filter parameters N, w,, w;, J,, and
6;,. However, rather accurate estimates, based on empirical data, have been re-
ported by Herrmann et al. [HE73], Kaiser [KA74], and Rabiner [RA73c] for the
minimum filter order N. Kaiser has proposed the particularly simple formula

[KA74]

_ —20 logo(v8,8,) — 13
T 14.6[(w, — w,)/(2m)]

(4.94)

for predicting the filter order N. A somewhat more accurate formula due to Herr-
mann et al. [HE73] is

N ~ Den(apy 6:) - F(6p7 as) [(ws - wp)/(z”r)]z

@ — @) J@n , (4.95a)
where
D (5,, ;) = [a,(logjo cS‘,)2 + a, logyg 8, + as] logq &,
— [as(logo 8,)* + as log,o 8, + a4 (4.95b)
and

F (5, 6;) = by + b,[logo 8, — logq 6] (4.95¢)
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with
a; = 0.005309, a, = 0.07114, a; = —0.4761, (4.95d)
a, = 0.00266, as = 0.5941, ag = 0.4278, (4.95¢)
b, = 11.01217, b, = 0.51244. (4.95f)

This formula has been developed for §; < §,. If §; > §,, then the estimate is
obtained by interchanging §, and J; in the formula.

If the ripples of the filter are rather small, then both formulas give approxi-
mately the same result. However, when the ripple values are large, the latter for-
mula gives a better estimate. For this formula, the estimation error is typically less
than 2 %. From the above formulas, it is seen that the required filter order is roughly
inversely proportional to the transition bandwidth.

In the case of the specifications of Example 4.5, both of the above formulas
give N = 101. For the optimized filter of order 101, the ripples are given by 6, =
0.0157 and §; = 0.00157, showing that the filter order has to be increased. When
determining the actual minimum filter order, it must be taken into consideration
that sometimes a filter of order N — 1 has lower ripple values than a filter of order
N. For instance, for the case w, = 0.68567, w; = 0.83246, and k = 1, the Type
I filter of order N = 10 achieves §, = 6, = 0.1282, whereas the Type II filter of
order N = 9 achieves 6, = §, = 0.1 [RA73b]. Based on this, it is advantageous
to determine separately the minimum orders for both Type I filters (N is even) and
Type 1I filters (N is odd), and then to select the lower order. For the specifications
of Example 4.5, the minimum orders of Type I and Type II filters to meet the
ripple requirements of 3, = 0.01 and 6, = 0.001 are 108 and 109, respectively,
so that N = 108 is the minimum order.

An informative way to study the various types of optimum lowpass filter solu-
tions is to plot the transition bandwidth

Aw = w; — W, (4.96)

of the filter versus w, for fixed values of N, §,, and 6, [PA73; RA73a, RA73b].
Figure 4-26 gives such plots for Type I optimum filters with N = 14 (M = 7), N
=16 (M = 8),and N = 18 (M = 9) for §, = §, = 0.1.'" As seen from this figure,
all three curves alternate between sharp minima and flat-topped maxima. We con-
sider in greater detail the filters corresponding to the six points, denoted by the
letters A, B, C, D, E, and F, in the curve for N = 16 (M = 8). The responses of
these filters are given in Figure 4-27. Filters C and F correspond to the points
where the local minimum of Aw occurs with respect to w,. These are special ex-
traripple or maximal ripple solutions whose error function exhibits M + 3 = 11

"In constructing these curves, k = 1 has been used in the MPR algorithm. For each value of ,, the
minimum transition bandwidth to meet the given ripple requirements has been determined by decreas-
ing the stopband edge w; until the filter just meets the ripple requirements.
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FIGURE 5-26 Transition bandwidth (w; — w,) as a function of the passband edge w, for
6, = 8, = 0.1 for filters with N = 14 (M = 7), N = 16 (M = 8), and N = 18 (M = 9).

extrema with equal amplitude. This is one more than that required by the charac-
terization theorem. Furthermore, it follows from this theorem that these extraripple
solutions are also the optimum solutions for M = M + 1, or equivalently for N-=
18. This is because the number of extrema is M + 2 for these filters. The expla-
nation to this is that the first and last impulse-response coefficients /4 [n] of the filter
with higher order become exactly zero when the filter with lower order has the
extraripple solution. This gives a[M] = a[9] = O for the filter with N = 18 so
that the responses of the two filters coincide. )

When «, is made smaller, the resulting filter has M + 2 equal amplitude ex-
trema, as well as one smaller amplitude extremum at w = 0 (Filter B). When w,
is further decreased, the extra extremum disappears (Filter A). On the other hand,
if w, is made larger, the resulting filter (Filter D) has one smaller ripple at w = .
Also, this ripple disappears when w, is further increased. Filter E in Figure 4-27
corresponds to the case where the filter with N = 14 has the same solution (ex-
traripple solution for the filter with N = 14). '

Hence for Type I filters, there are three kinds of optimum solutions: solutions
having M + 2 equal amplitude extrema, special solutions having M + 3 equal
amplitude extrema, and solutions having, in addition to M + 2 equal amplitude
extrema, one smaller extremum. For Type II filters, the properties are quite similar
[RA73b]. The basic difference is that the Type II filters have an odd order (N =
2M + 1) and they have a fixed zero at z = —1 (w = 7).

4-8-3 Some Useful Properties of Optimum Type I Filters

Consider a Type I transfer function of the form

2M
H(z) = 220 h[nlz™", h[2M — n] = h[n]. 4.97)
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FIGURE 4-27 Responses for six of the filters of Figure 4-26.

The corresponding zero-phase frequency response is given by

M

H(w) = h[M] + 21 2h[M — n] cos nw. (4.98)

On the basis of H(z), we can construct three Type I filters having the following

transfer functions:

G(2) =

7™ -~ H(@)
(-D"H(-2)
M

for Case A
for Case B 4.99)

— (=1)™H(-z) for Case C.
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The zero-phase frequency responses of these three filters can be written as

1 - H(w) for Case A
G(w) ={ H(m — w) for Case B (4.100)
1 — H(m — w) for Case C.

In Case A, the impulse-response coefficients of G(z) are related to the coeffi-
cients of H(z) via g[M] = 1 — h[M] and g[n] = —h[nlforn=0,1,... , M
— 1. By substituting these values into

M
G(w) = g[M] + ;} 2g[M — n] cos nw, (4.101)

we end up with G(w) shown in Eq. (4.100). In Case B, the coefficients g[n] are
related to the h[n]’s via g[M — n] = h[M — n] fornevenand g[M — n] = —h[M
— n] for n odd. Using the facts that for n even cos nw = cos n(r — w) and for n
odd —cos nw = cos n(r — w), we can write G(w) in the above form. The fact
that G(w) is expressible in Case C as shown in Eq. (4.100) follows directly from
the properties of the Case A and Case B filters.

In Case A, the filter pair H(z) and G(z) is called a complementary filter pair
since the sum of their zero-phase frequency responses is unity; that is,

Hw) + G(w) = 1. (4.102)

This means that if H(z) is a lowpass design with H (w) oscillating within the limits
1 + 6, on [0, w,] and within the limits +4; on [w,, 7], then G(z) is a highpass
filter with G(w) oscillating within +6, on [0, w,] and within 1 + & on [w;, 7]
(see Figures 4-28(a) and 4-28(b)). An implementation of G(z) is shown in Figure
4-29. The delay term z™* can be shared with H(z) in this implementation. Hence
at the expense of one additional adder, a complementary filter pair can be imple-
mented.

If H(w) is as shown in Figure 4-28(a), then the Case B filter is a highpass design
with G(w) oscillating within +6, on [0, 7 — w,] and within 1 £ §, on [T — w,,
w] (see Figure 4-28(c)). G(w) for the Case C filter, in turn, varies within 1 + §;
on [0, 7 — w,] and within +6, on [* — w,, 7] (see Figure 4-28(d)). An imple-
mentation of the Case C filter is depicted in Figure 4-29. This implementation is
very important in many cases as it allows us to implement a wideband filter G(z)
using a delay term and a transfer function that is obtained from a narrowband filter
H(z) by simply changing the sign of every second coefficient value. This is because
there are computationally efficient implementations for narrowband filters, as will
be seen in Section 4-11.

4-8-4 The Use of the MPR Algorithm

The MPR algorithm is very flexible for solving many kinds of approximation prob-
lems in the minimax sense. The user specifies first the filter type and the order of
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FIGURE 4-28 Responses for the prototype filter and three filters developed on the basis
of this prototype filter. (a) Prototype lowpass filter. (b) Case A. (c) Case B. (d) Case C.

the filter. The different filter types are conventional frequency-selective filters hav-
ing multiple passbands and stopbands, differentiators, and Hilbert transformers.
The conventional filters are Type I and Type II filters, whereas in the last two
cases, the filters are Type III and Type IV filters considered in greater detail in
Chapter 13. A FORTRAN program implementing the MPR algorithm can be found
in McClellan et al. [MC73b, MC79]. In this program, instead of the filter order
N, the length of the impulse response, N + 1, is used. After giving the filter type
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and the length, the program automatically checks whether the filter is a Type I,
I, ITI, or IV design. It also changes the desired function and the weighting function
correspondingly and concentrates on determining the common adjustable filter part.

The user also supplies an integer and the program selects the number of grid
points to be M + 1 times this integer. A good selection for this integer is 16. When
designing multiband filters, the user specifies the edges of the bands as well as the
desired value and the weighting for each band. If other than piecewise-constant
desired functions and weighting functions are desired to be used, the program has
subroutines EFF and WATE, which can be used in these cases. It should be noted
that the basic frequency variable f of the program is related to the angular fre-
quency w via

f=w/Qm). (4.103)

For instance, if a desired edge angle is 0.4, then the edge for the program is 0.2.
Some examples are now given to illustrate the flexibility of the MPR algorithm.

Example 4.6. It is desired to design a lowpass filter with passband and stopband
regions [0, 0.37] and [0.47, 7], respectively. The passband ripple , is restricted
to be at most 0.002 on [0, 0.157] and at most 0.01 in the remaining region [0.15,
0.37]. The stopband ripple &, is at most 0.0001 (80-dB attenuation) on [0.4w,
0.67] and at most 0.001 (60-dB attenuation) on [0.67, w]. Furthermore, the over-
all filter is implemented in the form

Hove (Z) = Hﬁx (Z)H(Z)a (4 104)

where the fixed term Hpg, (z) has zero pairs on the unit circle at the angular fre-
quencies w = +0.47, +£0.457, +£0.57, +£0.557, +0.67, +0.65x. The desired
overall filter can be obtained by designing H(z) using the following desired and
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weighting functions:'!

1/|Hgx @), €0, 0.37]

D(w) = (4.105a)
09 wE [0.47l', 7|'],
5|Hgy ()], w € [0, 0.157]
Hg, ()], 0.157, 0.3
W(w) = Hex () @€ 1015 .37 (4.105b)

100|Hg, (w)|, w € [0.4m, 0.67]
10|Hy @), e [0.6, .

The given criteria are met when the peak absolute value of the corresponding error
function becomes smaller than or equal to 0.01. The minimum order of H(z) to
meet the criteria is 54. The amplitude response of the resulting overall design is
depicted in Figure 4-30.

Example 4.7. This example illustrates the use of the MPR algorithm for designing
FIR filters with a very flat passband and equiripple stopband. These filters have
been proposed by Vaidyanathan [VA85] and their transfer function is of the form

H@ =z —(=DH( - 271 /21%H(2), (4.106)

"In general, if the overall filter is of the form H,,.(z) = Hg,(z) H(z) and the desired and weighting
functions for H,,.(z) are D(w) and W(w), respectively, then the given criteria are met by designing
H(z) using the desired function D(w)/Hg,(w) and the weighting function Hy, (w)W (w). This follows
from the fact that the weighted error function can be written as E(w) = W(w)[Hy(w) — D(w)] =
W (w)Hgy (w) [H(w) — D (w)/Hgy (w)]. If Hg,(w) is zero at some points in the approximation interval,
then the new weighting function becomes zero at these points. This problem can be avoided by dis-
regarding these grid points when using the MPR algorithm. The absolute values of Hg,(w) are used in
Eq. (4.105) to make the weighting function positive.
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FIGURE 4-30 Amplitude response for a filter having some fixed zero pairs on the unit
circle and unequal passband and stopband weightings.
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where M = L + K with K being half the order of H(z). Here, H(z) of even order
2K is designed using the following desired and weighting functions:

D()—{’ el ol (4.107a)
v 1/[sin (w/21*, € [w, 7, e
. 2 2L, 0’
W(w) = {[S"‘ (@p/2)] @ €0, 4l (4.107b)
(6,/8) [sin (w/2)1,  w € [w,, 7],

where [sin (w/2)]** is the zero-phase frequency response of (—1)*[(1 — z") /2]*.
Figure 4-31 gives the resulting overall response

H(w) = 1 — [sin (0/2)]** H(w) (4.108)

for the case w, = 0.67, w, = 0.77, §, < 0.016, § /8; = 5,and 2L = 16 [VA85].
The minimum even order of H(z) to meet the criteria is 2K = 46. In the above,
the desired and weighting functions have been selected such that [sin (w/ )L H(w)
achieves the peak absolute value of the corresponding error function (¢ = 0.0144)
at w = w, and oscillates within the limits 1 + €/5 on [w,, 7]. Correspondingly,
H(w) achieves the value 1 — € at @ = w, and oscillates within the limits +e /5 in
the stopband. On [0, w,], [sin (w, / 2)]2"H_(w) varies within the limits +e. Because
of the term [sin (w/ 2T, [sin (0 / )1*H (w) approximates very accurately zero
and H(w) approximates very accurately unity in the beginning of the interval
[0, w,]. Note that the fixed term has 2L zeros at z = 1 (at w = 0).

Example 4.8. Let the bandpass filter specifications be w,; = 0.27, w,,; = 0.25m,
wpy = 0.6m, w;, = 0.7, §;; = 0.001, and 8, = &, = 0.01. In this case, the
desired function is unity in the passband and zero in the stopbands, whereas the
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FIGURE 4-31 Amplitude response for a filter with a very flat passband and equiripple
stopband.
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weighting function is 10 in the first stopband and 1 in both the passband and the
second stopband. The minimum order to meet the above specifications is 102.
Figure 4-32(a) gives the response of the optimum filter. This response is optimal
according to the characterization theorem even though it has an unacceptable tran-
sition band peak of 15 dB. This is possible because the approximation is restricted
to the passband and stopband regions only and the transition bands are considered
as don’t-care bands. For designs with a single transition band there are no unac-
ceptable transition band ripples. However, for filters having more than one tran-
sition band, this phenomenon of large transition band peaks occurs when the widths
of the transition bands are different [RA74]; the larger the difference, the greater
the problem.

The transition band peak can easily be attenuated by including the transition
bands in the overall approximation interval and requiring that the response stays
within the limits —d;, and 1 + &, in the first transition band and within the limits
—0,5 and 1 + 4, in the second transition band. This can be done by selecting the
desired function to be (1 + 6, — &) and 1a + 8, — &;,) in the first and second

LIN. AMP. (a)

AMPLITUDE IN dB
A
)

0.2t 04n 06x  0.8r T
FREQUENCY

(b)

AMPLITUDE IN dB

0.2n 0.4n 0.6n 0.8n T
FREQUENCY

FIGURE 4-32 Amplitude responses for bandpass filters. (a) Filter designed without tran-
sition band constraints. (b) Filter designed with transition band constraints.
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transition bands, respectively. If the weighting in the passband is unity, then the
weighting functions in the transition bands are selected to be 8,/ B + 8, + 8]
and 6,/ Ba + 8, + 0,7)], respectively. These selections guarantee that if the
passband ripple of the resulting filter is less than or equal to the specified §,, then
the response stays within the desired limits in the transition bands.'? When includ-
ing the transition bands in the approximation problem, the filter order has to be
increased only by one (to 103) to meet the resulting specifications. Figure 4-32(b)
gives the response of this filter. For other techniques for attenuating undesired
transition band ripples, see Rabiner et al. [RA74].

4-9 DESIGN OF MINIMUM-PHASE FIR FILTERS

The attractive property of Type I and Type II linear-phase FIR filters is that their
delay is a constant and thus they cause no phase distortion to the signal. The delay
is equal to half the filter order. This means that the delay becomes very long for
high-order filters required in cases demanding a narrow transition band. In some
applications, such a long delay is not tolerable. In those cases, a smaller group
delay can be achieved in the passband region by using minimum-phase FIR filters.
There exist also applications where linear phase is not required and the symmetry
in the coefficients of linear-phase FIR filters cannot be exploited. In those cases,
nonlinear-phase filters meet the same amplitude criteria with a reduced number of
multipliers and delay elements. If the passband of the filter is very wide, then a
saving by almost a factor of 2 can be achieved in the filter order [GO81; LE75].
This section outlines the design of nonlinear-phase filters based on the design
scheme of Herrmann and Schiissler [HE70], which can be used for synthesizing
filters with unweighted stopband response. For more general techniques, see Boite
and Leich [BO81], Kamp and Wellekens [KA83b], and Grenez [GR83].
Consider a nonlinear-phase FIR filter with transfer function

M
HE) = 2 hlnlz™". (4.109)
n=0
The zeros of the transfer function
M .
HGz) =z MHZ™") = Zo hIM — nlz™" (4.110)
are reciprocal to those of H(z). This implies that the function

G(@) = HoH® = 2 MH@H(E™) @.111)

"2The lower and upper edges for the first transition band are selected as w,, + o and W, — a, Te-
spectively, where « is a small number. Similarly, for the second transition band, the edges are w,, +
o and w;, — a. These selections prevent the desired function from becoming discontinuous at the
edges.
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is the transfer function of a Type I linear-phase filter of order 2M. Since G(z) must
be factorizable into the terms H(z) and H(z), its zeros on the unit circle have to
be double. From the above equation, it follows also that the magnitude-squared
function of H(z) can be expressed as

|H(e’)|* = G(w). 4.112)

Since G(2) possesses double zeros on the unit circle, G(w) has double zeros on
[0, 7], making it nonnegative on [0, 7]. These facts show that the design of a
nonlinear-phase FIR filter of order M can be accomplished in terms of a Type I
linear-phase filter of order 2M having double zeros on the unit circle.

Based on this, Herrmann and Schiissler [HE70] have proposed the following
simple design procedure:

1. Design a Type I linear-phase FIR filter transfer function G(z) of order 2M
using the MPR algorithm such that G(w) oscillates within the limits 1 + 6
in the passband [0, w,] and within the limits +6 in the stopband [w,, 7r]
(see Figure 4-33(a)). ThlS G (2) has single zeros on the unit circle.

2. Form G(z) = 6,2 + G(z). The resulting G(w) = 8, + G(w) is non-
negative on [w,, 7], oscillating within zero and 25 ; (see Figure 4-33(b)). On
[0, w,], G(w) oscillates within the limits 1 + 6 6 G (w) has double zeros
at those frequency points where G (w) takes the stopband minimum value of
—6 Correspondingly, G(z) has double zeros on the unit circle at those
frequencies.

3. Perform the factorization of G(z) = H(z)z ™ H(z™") such that H(z) contains
the zeros inside the unit circle and one each of the double zeros on the unit
circle. Scale H(z) such that the passband average of the resulting filter AH (z)
is equal to unity (see Figure 4-33(c)).

The desired ééaling constant at Step 3 is

A= 2 . (4.113)

Vi+s, +5,+V1 -85 +5,

If it is required that the magnitude response of the scaled filter AH (z) approximates
unity in the passband with tolerance 6, and zero in the stopband with tolerance &;,
then the passband and stopband ripples of the linear-phase filter at Step 1 must
satisfy

Y < 26!’ Y < (5:)2/2
P46 =6 /2 T L+ @) - (82

4.114)

The most difficult part in the above procedure is the factorization of G(z) into
the terms H(z) and z ™ H(z™'). The direct approach is simply to pick up the zeros
of G(z). However, if the order of G(z) is high, conventional root-finding proce-
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FIGURE 4-33 Steps for designing an equiripple minimum-phase FIR filter of order 10
with the aid of a linear-phase FIR filter of order 20.

dures cannot be used for locating the zeros. Another approach is to perform the
factorization without finding the roots of G(z). Such techniques have been pro-
posed independently by Boite and Leich [BO81] and Mian and Naider [MI82a]
(see also Boite and Leich [BO84]). For a review of different techniques for per-
forming the factorization, see Schiissler and Steffen [SC88].

The filter obtained by selecting the zeros to lie on or inside the unit circle is
called a minimum-phase filter. If the zeros outside the unit circle are selected, then
the resulting filter is called a maximum-phase design.

Example 4.9. Let the specifications be w, = 0.57, w; = 0.67, §, = 0.01, and §;
= 0.00316 (50-dB attenuation). Using Eq (4.114), the ripples of G(z) at Step 1
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become Sp ~ 0.02 and 6, = 5 X 107°. The minimum even order to meet these
criteria is 74 so that the order of the corresponding minimum-phase filter is 37.
The common amplitude response of the minimum-phase and maximum-phase fil-
ters as well as their group delay responses, zero locations, and impulse responses
are given in Figure 4-34. The minimum order of a linear-phase filter to meet the
same criteria is 46 (see Figure 4-8) so that the saving in the filter order provided

by the minimum-phase filter is 20%
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FIGURE 4-34 Group delay responses, amplitude response, zero locations, and impulse
responses for minimum- and maximum-phase FIR filters having the same amplitude re-

sponse.
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ters, the phase and the group delay responses have the smallest and largest values,
respectively, among the filters having the same amplitude response. It is also in-.
teresting to observe from Figure 4-34 that most of the energy of the impulse re-
sponse of the minimum-phase (maximum-phase) term is concentrated in the be-
ginning (end) of the response.

4-10 DESIGN OF FIR FILTERS WITH CONSTRAINTS IN THE
TIME OR FREQUENCY DOMAIN

The previous sections concentrated only on designing FIR filters to meet the given
amplitude criteria in some sense. However, there exist applications where there
are constraints in the time domain or in the frequency domain. For example, in
some applications the transient part of the step response must be constrained to
vary within given limits [LI83b; RA72a, RA72b]. Another example is the design
of Nyquist filters or Lth band filters with every Lth impulse-response value being
zero except for the central value [LI8S; MI82b; SA87b, SA88c; VA87]. Further-
more, in some cases, there are flatness constraints in the passband response of the
filter [KA83a; ST79].

This section considers techniques for solving the above-mentioned approxima-
tion problems. In some cases, the desired solution can be obtained by properly
modifying the design methods proposed in the previous sections. In the remaining
cases, new techniques are required. Perhaps the most flexible design method for
finding the optimum solution to various constrained approximation problems is
linear programming [HE71a; KA83a; LI83b; RA72a, RA72b; ST79]. The advan-
tage of this technique is that the convergence to the optimum solution is guaran-
teed. With linear programming, it is also possible to find the optimum solution to
the unconstrained minimax approximation problems considered previously. The
disadvantage, however, is that the required computation to arrive at the optimum
solution is rather large. Therefore it is preferred to use linear programming only
in those cases that cannot be handled with other faster design techniques.

4-10-1 Linear Programming Approach for FIR Filter Design

Linear programming is a very flexible approach for solving many constrained ap-
proximation problems in the minimax sense. Mathematically, the linear program-
ming problem [DA63; HA63; LA73] can be stated in the form of the following
primal problem: find the unknowns x;, k = 1,2, . . . , N, subject to the constraints

x =0, k=1,2,...,N, (4.1152)

N .
Zonse=B, 1=12... . MM<N), (4.115b)
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such that

N
o= El Xy (4.115¢)

is minimized. In this problem, vy, oy, and 3, are constants. The above problem is
mathematically equivalent to the following dual problem: find the unknowns y,,

1=1,2,..., M, subject to the constraints
M
IZ Yay < o, k=1,2,...,N, (4.116a)
=1 R
such that
M
o= 2 By (4.116b)

is maximized.

For digital filter design problems, the dual problem is the most natural form.
There exist several well-defined procedures [DA63; HA63; LA73] for arriving at
the desired solution within M + N iterations. Lim has introduced an efficient spe-
cial purpose algorithm for designing FIR filters [LI83b]. This is faster than general
purpose algorithms.

Linear programming can be applied in a straightforward manner to those prob-

lems where the approximating function is linear; that is, it can be expressed in the
form

R
H(w) = §0 b[n]® (w, n), @4.117)

where the b[n]’s are unknowns. According to the discussion of Section 4-3-3, the
zero-phase frequency response of a linear-phase FIR filter can be expressed in all
four cases in the above form (see Eq. (4.32)). Also, in many other cases, the
approximating function can be written in this form. For instance, in the conven-
tional frequency-sampling methods, the filter response is expressible in the above
form [RA72a, RA72b].

A general constrained frequency-domain approximation problem, which can be
solved using linear programming, can be stated in the following form: find the
unknowns b [n] to minimize

6, = max |E(w)|, (4.118a)

weXy
where

E(w) = W(w)[H(w) — D(w)] (4.118b)
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subject to

max |E(w)| =< §,. (4.118¢c)

weXz

Here, X, contains a part of the passband and stopband regions and X, contains the
remaining part. For instance, by selecting X, and X, to be the stopband and pass-
band regions of the filter, respectively, the stopband variation can be minimized
for the given maximum allowable passband variation. Problems of this kind cannot
be solved directly using the MPR algorithm considered in Section 4-8.
By sampling W(w) and D (w) along a dense grid of frequencies w{", w$", . . .,

w$) on X;, and along a grid of frequencies w?, 0%, . . . , w@ on X, the problem
can be stated in the form of the dual problem as follows: find »[0], b[1], . . .,
b[R], and 4, subject to the constraints
R
2 bmd @[’ m) — 8/Ww) < D), k=12 K,
(4.119a)
R .
- 2 blne@, m = 8/Ww") = ~D@), k=12, K,
(4.119b)
R
Eob[n]cb(ufh n) < D®) + &/Wwd), k=12 ,K,
(4.119¢)
R
- glob[nyb(w;}), n) = —D@P) + &/WwP), k=12, "",K,
(4.119d)
such that
p = —6 (4.119¢)

is maximized.

Note that in the dual problem the constraints are formed in such a way that a
linear combination of the unknowns is less than or equal to a constant. In the above
problem, &, is a constant and 6, is an unknown. This explains the difference be-
tween Eqgs. (4.119a) and (4.119b) and Egs. (4.119c) and (4.119d). The above
equations have been constructed such that, after finding the optimum solution, —§,
< E@{") < 6, and -8, = E(w{®) < §, at the selected grid points. Note also
that in the dual problem a linear combination of unknowns is maximized and max-
imizing —é, implies minimizing §,.

It is easy to include in the dual problem various constraints that are expressible
in the form of Eq. (4.116a). For instance, it is straightforward to add constraints
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of the form
d'H d'e
dC)] 2 bl — 2 (“’ B < (4.120a)
d w = Wk w = Wk
or
!
4 Hw) Z bim L2 Q(“’ Bl s, (4.120b)
d w w = wk = Wk

where [ is an integer and w, is a grid point. Here, the constraint expressed by Eq.
(4.120a) is directly in the desired form. The constraint of Eq. (4.120b) can be
written in the form of Eq. (4.116a) by multiplying the left-hand side by —1 and
replacing = by <. By adding a constraint of the form of Eq. (4.120a) with [ =
1 at each grid point in the passband region, the passband response of the filter can
be forced to be monotonically decreasing. Steiglitz has presented a FORTRAN
code for designing filters of this kind [ST79]. Furthermore, the first L derivatives
of H(w) can be forced to be zero at w = w; by simultaneously using the constraints
of Egs. (4.120a) and (4.120b) for/ = 1,2, ..., L.

In addition, if it is desired that H(w) achieve exactly the value A at w = wy,
this condition can be included by using the following two constraints:

R R
g)ob[n]q»(wk, n <A, - Z;Ob[n]‘b(wk, n) = —A. 4.121)

Example 4.10. Consider the design of a Type I linear-phase filter of order 70
having [0, 0.37] and [0.4, 7] as the passband and stopband regions, respectively.
To illustrate the flexibility of linear programming, several constraints are included.
First, the filter has fixed zero pairs at the angular frequencies +0.4w, +0.457,
+0.57, +0.55«, +0.67, and +0.657, and H(w) achieves the value of unity at
w = 0 with its first four derivatives being zero at this point. Second, the maximum
deviation from unity on [0, 0.15#] is 0.002 and the maximum deviation from zero
on [0.47, 0.67] is 0.0001, whereas the response is desired to be optimized in the
remaining regions with weighting of unity on [0.157, 0.37] and 10 on [0.67, 7].
The last part of this problem can be expressed in the form of Eq. (4.119) using X,
= [0.157, 0.37] U [0.67, 7] and X, = [0, 0.157] U [0.47, 0.67]. D(w) is 1 on
[0, 0.37] and O on [0.47, 7]. W(w) is 1 on [0, 0.37], 20 on [0.47, 0.67], and 10
on [0.6w, 7], whereas 6, = 0.002. To include the first part, Eq. (4.121) is used
with 4 = 0 at the frequency points where the filter has fixed zeros and with 4 =
1 at the zero frequency. Equations (4.120a) and (4.120b) are used with [ = 1, 2,
3, 4 at the zero frequency. The optimized filter response is shown in Figure 4-35.
The resulting ripple values on [0.157, 0.37] and [0.67, =] are 0.00637 and
0.000637, respectively.
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FIGURE 4-35 Amplitude response for an optimized filter of order 70 having several con-
straints in the frequency domain.

It is also straightforward to include time-domain constraints in the approxima-
tion problem. For instance, some of the unknowns b[r], n € S can be fixed and
the remaining ones can be optimized. In this case, the desired solution can be
found by using the following approximating function,

R
Hw) = 210 b[n]® (v, n), 4.122)

ngsS

and by including the effect of the fixed terms in the desired function by changing
it to be

D(w) = D(w) — Z‘sb[n]@(w, n). (4.123)

Example 4.11. This example shows how linear programming can be used for
designing filters with constraints on the step response, which is related to the im-
pulse-response coefficients ki [n] through

glnl = 2 him). (4.124)

As an example, Figures 4-36(a) and 4-36(b) give the amplitude and step responses
for a filter of order 46 optimized without any constraints in the time domain. For
this filter, the passband and stopband ripples are related via 8, = \/ﬁ&s, w, =
0.57, and w; = 0.6w. The maximum undershoot of the step response occurring at
n =211is —0.0921 and g[n] = 0.9903 for n = 46. It is desired that g[n] = 1 for
n = 46 and

—byep = g[n] < by, for0 = n < K, (4.125)
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where K = 21 and 8, = 0.05. The first condition can be satisfied by requiring
that H(0) = 1. The second constraint is linear in the #[n]’s and can thus easily be
included in the dual problem. Because of this condition, it is advantageous to
express H(w) directly in terms of the h[n]’s as (M = N /2 for Type I designs)

M
H(w) = h[M] + 2} h[M — n]2 cos nw), 4.126)

so that ® (w, M) = 1 and ®(w, M — n) = 2 cos nw for n > 0. The amplitude and
step responses for the filter optimized with the above constraints are shown in
Figures 4-36(c) and 4-36(d), respectively. It is seen that these time-domain con-
ditions increase significantly the ripples of the amplitude response. For other ex-

amples for designing filters having constraints on the step response, see Lim
[LI83b].

4-10-2 Design of Lth Band (Nyquist) Filters
Consider again a Type I linear-phase FIR filter with transfer function

M
H(z) = th[n]z_”, h[2M — n] = h[n]. (4.127)

This filter is defined to be an Lth band filter if its coefficients satisfy'® (see Figure
4-37)

h[M) = 1/L, (4.128a)
AIM +rL] =0 forr=+1, £2, - -, + [M/L]. (4.128b)

These filters, also called Nyquist filters, play an important role in designing digital
transmission systems [LI85; MI82b; SA87b, SA88c; VAS87] and filter banks
[VA89]. They can also be used as efficient decimators and interpolators since every
Lth impulse-response coefficient is zero except for the central coefficient. An im-
portant subclass of these filters are half-band filters, which are considered in greater
detail in Section 4-10-3.

It can be shown [MI82b] that the time-domain conditions of Eq. (4.128) imply
some limitations on the frequency response of the filter. First, the passband edge
(in the lowpass case) is restricted to be less than 7 /L and the stopband edge to be
larger than 7 /L. Usually, the edges are given in terms of an excess bandwidth
factor p as follows (see Figure 4-37):

w, = (1 - o) /L, w, = (1 + p)w/L. 4.129)

Second, if the maximum deviation of H(w) from zero on [w,, =] is ,, then the
maximum deviation of H(w) from unity on [0, w,] is in the worst case §, =

| x] stands for integer part of x.
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FIGURE 4-37 Typical impulse response and zero-phase frequency response for an FIR
Nyquist filter.

(L = 1)d;. Usually, 6, is much smaller than this upper limit. Since §, is guaranteed
to be relatively small for a small value of §;, the filter synthesis can concentrate
on shaping the stopband response.

The stopband response can be optimized either in the minimax sense or in the
least-mean-square sense. In the case of the minimax criterion, the problem is to
find the coefficients of H(z) such that the time-domain conditions of Eq. (4.128)
are satisfied and

8, = max |W(w)H(w)| (4.130)

we [ws, 7]

is minimized, where W (w) is a positive weighting function. In the case of the least-
mean-square criterion, the quantity to be minimized is

E, = S [W(w)H (w)]? dw. 4.131)

In some applications, it is desired to factorize H(z) into the minimum-phase and
maximum-phase terms. In this case, an additional constraint that H(w) be non-
negative is required. This subsection concentrates on minimax designs. For least-
squared-error filters, see Vaidyanathan and Nguyen [VA87] and Nguyen et al.
[NG88].

In order to find H(z) minimizing §; as given by Eq. (4.130) and simultaneously
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meeting the time-domain conditions of Eq. (4.128), it is split into two parts
[SA87b] as follows:

2K 2(M—K)
H@ = H,(9H,) = §0 hy[nlz ™" §0 hy[n)z ™", (4.132a)

where
K= |M/L|. (4.132b)

Here, both H,(z) and H,(z) are Type I linear-phase filters. H,(z) has its zeros off
the unit circle and is determined such that the time-domain conditions of Eq.
(4.128) are satisfied, whereas H,(z) has its zeros on the unit circle and is used for
providing the desired stopband response. For any H;(z), H,(z) can be determined
such that the overall filter H(z) = H,(z)H,(2) satisfies the time-domain conditions.
This leads to a system of 2 |[M/L| + 1 linear equations in the 2 |[M/L| + 1
coefficients 4, [n] of H,(z). Utilizing the fact that the coefficients of H,(z) as well
as the time-domain conditions are symmetric, a system of | M/L| + 1 equations
needs to be solved. The remaining problem is to find H,(z) to give the minimum
value of §;. The algorithm for iteratively determining the desired H; (z) consists of
the following steps [SA87b]:

1. Set Hy(w) = 1and @ = {w, wp, . . ., wy_g4+1} = {0,0,...,0}

2. Find H;(w) such that H;(0) = 1 and W (w)H, (w)H,(w) alternatingly achieves
at least at M — K + 1 consecutive points on [w,, 7] the extremum values
+4,. Store the extremal points into Q= {@1, @y -« -, Bpr_k 41}

3. Determine H,(z) such that the time-domain conditions of Eq. (4.128) are
satisfied.

4. If loy — @l = afork=1,2,...,M— K + 1 («is a small number),
then stop. Otherwise set @ = Q and go to Step 2.

The desired H, (w) at Step 2 can be found using the MPR algorithm. The desired
function is zero on [w,, 7] and the weighting function is W(w)H, (w). H,(w) can
be forced to take the value unity at w = O by selecting a very narrow passband
region [0, €], setting D(w) = 1, and by using a large weighting function in this
region. If a very narrow passband region is used, then the MPR algorithm selects
automatically only one grid point (w = 0) in this region. Typically, three to five
iterations of the above algorithm are needed to arrive at the desired solution. An-
other approach for designing Lth band filters is to use linear programming [LI8S;
SA88c]. However, linear programming requires significantly more computation
time than the above algorithm.

Example 4.12. The specifications are L = 4 and p = 0.2 (w, = 0.27 and w, =
0.37), and 6; = 0.01 (40-dB attenuation). The amplitude and impulse responses
for an optimized filter of order 38 are shown in Figures 4-38(a) and
4-38(b), respectively.
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FIGURE 4-38  Fourth-band filters with p = 0.2 (w, = 0.27 and w, = 0.37). (a, b)
Amplitude and impulse responses for a minimax linear-phase design of order 38. (c) Am-
phitude responses for the overall factorizable minimax design (solid line) of order 102 and
fon the minimum-phase term (dashed line) of order 51.
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If it is desired that H (z) be factorizable into the minimum- and maximum-phase
terms, then the subfilter H,(z) is rewritten in the form

M-

K
H, (2 = [H,@F, H@ = ) h,[njz". (4.133)

n=

Here, H, (7) is either a Type I linear-phase filter (M — K is even) or a Type II filter
(M — K is odd). The resulting overall zero-phase frequency response is given by

H(w) = H,(w)[H, ()] 4.134)

Since the zeros of H,(z) are off the unit circle, H(w) is nonnegative, as is desired.
In this case, the minimization of the stopband ripple can be performed by slightly
modifying the above algorithm. The basic difference is that now H,(w) is deter-
mined at Step 2 such that ES(O) = 1 and (WW(w)H, (w))FI, (w) oscillates within
the limits 48, on [w,, 7] | with | (M — K)/2] + 1 extremal frequencies. Corre-
spondingly, W(w)H, (w)[H, (»)]? oscillates within the limits 0 and &, = (§,)* on
[w;, 7]. The advantage of this approach is that both the minimum- and maximum-
phase terms of H(z) contain H,(2) and only H, () must be factored in order to get
the overall minimum-phase and maximum-phase designs.

Example 4.13. The specifications for the minimum-phase and maximum-phase
filters are those of Example 4.12. The required stopband ripple for H(w) is (5,)*
= 0.0001. Figure 4-38(c) gives the amplitude responses for an optimized overall
filter of order 102 (solid line) and for the minimum-phase (or maximum-phase)
term of order 51 (dashed line).

4-10-3 Design of Half-Band Filters

A very important subclass of Lth band filters in many applications are half-band
filters (L = 2). For these filters,

hM] = L, (4.135a)
hIM +2r] =0 forr= 41, +2,..., + |[M/2|.  (4.135b)

A filter satisfying these conditions can be generated in two steps by starting with
a Type II (M is odd) transfer function

M
GQ) = Eo glnlz™",  gIM — n] = glnl. (4.136)

In the first step, zero-valued impulse-response samples are inserted between the
g[n]’s (see Figures 4-39(a) and 4-39(b)), giving the following Type I transfer func-
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FIGURE 4-39 Generation of the impulse response of a half-band filter of order 2M with
M odd. (a) Impulse response g[n] of a Type II filter of order M. (b) Impulse response f [n]
resulting when inserting zero-valued samples between the g[n]’s. (c) Desired impulse re-
sponse k4 [n] of a half-band filter obtained by replacing f[M] = 0 by h[M] = 1.

tion of order 2M:

2M M
FQ) = §=30f ™" = G@? = §0 glnz™. 4.137)

The second step is then to replace the zero-valued impulse-response sample at n
= M by 1 (see Figure 4-39(c)), resulting in the desired transfer function

M M
Hi) = @0 hlnz™ =™ + F@) = 1™ + 20 glnlz™. (4.138)

This gives h[M] = 3, h[n] = g[n/2] for n even, and h[n] = O for n odd and n
# M, as is desired.
The zero-phase frequency responses of H(z), F(z), and G(z) are related through

Hw) =} + F(w) = 1 + GQuw). (4.139)
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Based on these relations, the design of a lowpass half-band filter with passband
edge at w, and passband npple of 6 can be accomplished by determining G(z) such
that G(w) oscillates within £ + & on [0, 2w »] (see Figure 4-40(a)). Since G(z) is
a Type II transfer function, it has one fixed zero at z = —1 (w = 7). G(z) can be
designed directly with the aid of the MPR algorithm using only one band [0, 2w,],
D(w) = 3, and W(w) = 1. Since G(z) has a single zero at z = —1, G(w) is odd
about w = w. Hence G271 — w) = —G(w) and G(w) oscillates within —1 + &
on 27 — 2w,, 27). The corresponding F(w) = G(2w) stays within 1+ 6on
[0, w,] and within L+ 6on[r — w,, 7] (see Figure 4-40(b)). Finally, H(w)
approximates unity on [0, w,] with tolerance 6 and zero on [7 — w,, 7] with the
same tolerance & (see Figure 4-40(c)).

For the resulting H(w), the passband and stopband ripples are thus the same
and the passband and stopband edges are related through w; = 7 — w,. In general,

G(w)
28 b g
-] > a— S— 20N
1 R (a)
1
1
1248 _ : h . e
_1;;{2 I L 1N ~— ] @
2«)‘, k] 21:—2«)9 2n
F(0)=G(2w)
R S~ pan
1/2-8 F==- >
0 (b)
1
Ry N
_l;éfg INZ O N ] ")
Gp T Ty =
2
HC®) = 1/2+F (@)
B " o i <
N > — DN —
172 - (c)
e—— e
- R S TR A S __J )
“’p " n-tp

FIGURE 4-40 Design of a half-band lowpass filter.
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FIGURE 4-41 Implementation of a
12 S~ highpass complementary lowpass-highpass half-
EI D + ouput  band filter pair.

H(w) satisfies

Hw) + H(m — w) = 1. (4.140)

This makes H(w) symmetric about the point w = = /2 such that the sum of the
values of H(w) atw = @ < w/2andatw = 7 — @ > 7 /2 is equal to unity (see
Figure 4-40(c)).

Figure 4-41 gives an implementation for the half-band filter as a parallel con-
nection of G(z?) and 3z™™. This implementation is very attractive because in this
case the complementary highpass output having the zero-phase frequency response
1 — H(w) is obtained directly by subtracting G(z2) from 1z=. Note that the delay
term z ™ can be shared with G(z?). The number of nonzero coefficient values in
G(z% is M + 1. By exploiting the symmetry in these coefficients, only (M + 1) /2
multipliers (M is odd) are needed to implement a lowpass-highpass filter pair of
order 2M. Figure 4-42 gives responses for a complementary half-band filter pair.

4-11 DESIGN OF FIR FILTERS USING PERIODIC SUBFILTERS AS
BASIC BUILDING BLOCKS

One approach to reduce the cost of implementation of an FIR filter is to construct
the overall filter using subfilters whose transfer function is of the form F(z%). There
exist several design techniques [FA81; JI84; LI86; NE84, NE87; RA88; SA88a,
SA88b, SA90], some of which are reviewed in this section.

AMPLITUDE IN dB

0 0.2n 0.4n 0.6n 0.8n n
FREQUENCY

FIGURE 4-42 Responses for a complementary half-band filter pair of order 34 for «, =
0.47. The implementation of this filter pair requires only nine multipliers.
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4-11-1 Periodic Filters

Consider a linear-phase transfer function of the form
Nr
A@ = F@Y = 2 flnle™,  fiNp—nl = flnl.  (4.14D)
This transfer function is obtainable from a conventional transfer function
NF
F@) = Eof[n]z—n (4.142)

by replacing z~! by z 7%, that is, by substituting for each unit delay L unit delays.
Figure 4-43 gives for A(z) an implementation that exploits the coefficient sym-
metry. Note that there is a multiplier only after every Lth delay term. The order
of A(z) is LN and its zero-phase frequency response is

A(w) = F(Lw). (4.143)

A(w) is thus a frequency-axis compressed version of F(w) such that the interval
[0, Lx] is shrunk onto [0, w]. Figure 4-44 gives the resulting A(w) in the case
where F(w) is a lowpass design with passband and stopband edges at § and ¢.
Since the periodicity of F(w) is 2, the periodicity of A(w) is 27 /L and it contains
several passband and stopband regions in the interval [0, «]. It should be noted
that this applies when N is even.'

"“If Nr is odd, then A (w) changes sign at w = w/L, 3w /L, 57 /L, . . . so that 4(w) approximates
alternatingly unity and minus unity in the consecutive passband regions. This is because F(z) is in this
case a Type II design and F(w) is odd about the points w = =, 3w, 5=, . . . (see Figure 4-6).

FIGURE 4-43 An implementation for a linear-phase transfer function F(z%) when N is
even.
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FIGURE 4-44 Periodic responses A(w) = F(Lw) and B(w) = 1 — F(Lw) when F(w) is
a lowpass design. (a) Responses F(w) and 1 — F(w). (b) Responses F(Lw) and 1 — F(Lw)
for L = 5. (c) Responses F(Lw) and 1 — F(Lw) for L = 6.

When Np is even, the complementary transfer function of A(z) is (cf. Section
4-8-3)

B@ = 7™/ — AG) = 2™ — F(). (4.144)
The zero-phase frequency response of the corresponding filter is
Bw)=1-A(w) =1 - F(lw) (4.145)

and its passband regions are the stopband regions of 4(w) and vice versa (see
Figure 4-44).

As seen from Figure 4-44, the periodic transfer functions F(z%) and z72V/2 —
Fizh provide several transition bands of width (¢ — 6) /L, which can be used as
a transition band for a lowpass filter. The attractive property of these filters is that
the number of nonzero impulse-response values to provide one of these transition
bands is only (1/L)th of that of a conventional nonperiodic filter. This follows
from the facts that the required FIR filter order is roughly inversely proportional
to the transition bandwidth (cf. Section 4-8-2) and the transition bandwidth of the
prototype filter F(z), which determines the number of nonzero impulse-response
coefficients, is ¢ — 6. This is L times wider. Note that the orders of the periodic
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filters and that of the nonperiodic filter are approximately the same, but the non-
periodic filter has no zero-valued impulse-response samples.

Because of periodic responses, F(z%) or z7X¥*/2 — F(z%) cannot be used alone
for synthesizing a lowpass filter. The desired result can be achieved by properly
combining these filters with conventional nonperiodic filters.

4-11-2 Frequency-Response Masking Approach

A very elegant approach to exploiting the attractive properties of A(z) and B(2)
has been proposed by Lim [LI86]. In this approach, the overall transfer function
is constructed as

H@) = FEHG,@) + [27H/? — FEYH1G, (). (4.146)

An implementation'® of this transfer function is shown in Figure 4-45. The zero-
phase frequency response of this filter can be written as

H(w) = F(Lw)G,(w) + [1 — F(Lw)]G,(w) (4.147)
provided that the delays of G, (z) and G, (z) are equal.'®
For a lowpass design, the transition band of H(w) can be selected to be one of
the transition bands provided by F(z%) or z7X¥//2 — F(z1). In the first case, re-
ferred to as Case A, the edges of H(w) are selected to be (see Figure 4-46)

w, = Qlr + 6)/L, o, = Qlr + ¢)/L, (4.148)
where [ is a fixed integer, and in the second case, referred to as Case B,

w, = Qr — ¢)/L, @, = Qlx — 6)/L. (4.149)

"*Note that the delay term z~“¥*/2 can be shared with F(z%). Also, G, (z) and G, (z) can share the same
delay elements if they are implemented using the transposed direct-form structure (exploiting the coef-
ficient symmetry).

"*This means that the orders of both G, (z) and G, (z), denoted by Ng, and Ng,, must be either even
or odd and if Ng, and Ng, are not equal, then, in order to equalize the delays, the delay term
7 Wor ~Na)/2 (z=(Ne =Nen/2) must be added to G, (2) (G, 2)) if N, — Ng; is positive (negative).

Fh Gy(2)

I ¥ out

el 2@ e

FIGURE 4-45 The structure of a filter synthesized using the frequency-response masking
technique.
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FIGURE 4-46 Design of lowpass filters using the frequency-response masking technique.

For Case A designs, H(w) approximates unity on [0, w,] and zero on [w,, 7] if
the two masking filters G,(z) and G,(z) are lowpass filters with the following
passband and stopband edges (see Figures 4-46(c) and 4-46(d)):

0 =@, = {2t + 0} /L, ) = {20 + Dr — ¢}/L, (4.150a)
0@ = {2Ir — 6} /L, w® = = 2lr + ¢}/L. (4.150b)

On [0, pra)] G,(w) = 1 and G,(w) = 1 so that H(w) = F(Lw) + [1 — F(Lw)]
= 1, as is desired. On [0\®, w,], Gi(w) = 1, F(Lw) = 1,and 1 — F(Lw) =
giving H(w) = F(Lw)G,(w) = 1 regardless of the behavior of G, (w) in this re-
gion. On [w{°?, 7], G,(w) = 0 and G,(w) = 0 so that H(w) = 0. Since F(Lw)
=~ 0 on [w,, w{®"], the stopband region of G, (z) can start at w = w{", instead of
w = ws.

For Case B designs, the required edges of the two masking filters G, (z) and
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G, (2) are (see Figures 4-46(e) and 4-46(f))

W = {20 - Dr + ¢} /L, o =, = {2r ~ 0}/L, (4.151a)
W =, = 2r - $}/L, & = {2r + 6} /L. (4.151b)

In Lim [LI86], the effects of the ripples of the subresponses G, (w), G, (w), and
F(Lw) on the ripples of the overall response H(w) have been studied carefully.
Based on these observations, the design of the overall filter with passband and
stopband ripples of &, and §; can be accomplished for both Case A and Case B in
the following two steps:

1. Design Gi(z) for k = 1, 2 using the MPR algorithm such that G, (w) ap-
proximates unity on [0, wf,G")] with tolerance 0.856, . . . 0.99, and zero on
[w,%, 7] with tolerance 0.858; . . . 0.95,."

2. Design F(Lw) such that the overall response H(w) as given by Eq. (4.147)

' approximates unity on

[P, w,] = [{2lr — 6} /L, {2Ix + 6} /L]

for Case A
Qi(,n - . (4.152a)
[, w,] = [{2( = Dr + ¢}/L, {2ir — ¢} /L]
for Case B

with tolerance 6, and zero on

[ws, @1 = [{2i7 + ¢} /L, {20 + D7 — ¢} /L)

for Case A
QP = (4.152b)
[w,, @] = [{2lx — 6} /L, {2Ilx + 6} /L]

for Case B

with tolerance ;.

The design of F(Lw) can be performed using linear programming [LI86]. An-
other, computationally more efficient, alternative is to use the MPR algorithm. It
can be shown that F(Lw) meets the given criteria if the maximum absolute value
of the error function given in Table 4-6 is on [0, 6] U [¢, 7] less than or equal to
unity. Even though this error function looks very complicated, it is straightforward
to use the subroutines EFF and WATE in the MPR algorithm for optimally de-
signing F(2).

'"To reduce the order of G, (z), a smaller weighting can be used in the MPR algorithm on those regions
of G, (z) where F(Lw) has one of its stopbands. As a rule of thumb, for the regions in the passband
(stopband) of G,(z), the weighting can be selected to be one-tenth of the original passband (stopband)
weighting. Similarly, the order of G, (z) can be reduced by using a smaller weighting on those regions
where F(Lw) has one of its passbands.
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TABLE 4-6 Error Function for Designing F(z) in the Frequency-Response Masking Approach
E(w) = Wp(w)[F(w) = Dp(w)]

where

Dp(w) = [u(w) + [(@)]/2, Wp(w) =2/[uw) — ()]

with
_ [ D@ - Glw)] D) — Gylh(@)]
(o) = min (T * 1) G —nton * )
D(w) — Gyl ()] D(w) = Gylhy(@)] >
Hw) = — , —
) = o e e~ G~ it ~
e = o) exw) = o)
TG - Gl T [Gil@)] — Golhw)]|
and
1 s ) , 0
D(w)={ for w € [0, ] 8@):{, for w € [0, ]
0 forw € [¢, 7], &, forw € [¢, 7]

Qlr — w)/L for w € [0, 6]

h (@) = @1 ) =
1@ =@+ oL k) {(2(1+ D1 — w)/L forw e [¢, 7]

for Case A and
0 forw e [0, 0] §, forw e [0, 0]
D(w) = w) =
1 forw € [¢, 7], 8, forw e [o, 7]

Qlr + w) /L for w € [0, 6]

hi(@) = @t — @)/L,  hy(w) =
1) = @ =~ w)/ 2 {(2(1—1)7r+w)/L for w € [¢, 7]

for Case B

In practice, w, and w;, are given and /, L, 6, and ¢ must be determined. To
ensure that Eq. (4.148) yields a desired solution with 0 < 6 < ¢ < m, it is
required that (see Figures 4-44 and 4-46)

2w QL+ D7
TS e ST

3 (4.153)

for some positive integer /. In this case,

l= |Lo,/@m], 8=Lw, -2 ¢=Lo, -2 (4.154)
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Similarly, to ensure that Eq. (4.149) yields a desired solution with0 < § < ¢ <
w, it is required that

20 —
%I < wp, wy < ZITW 4.155)

for some positive integer /. In this case,'®

l= [Lo,/@m)], 6=2r Lo, ¢=2r—Ls, (4.156)

For any set of w,, w;, and L, either Eq. (4.154) or (4.156) (not both) will yield
the desired 0 and ¢, provided that L is not too large. If § = 0 or ¢ = , then the
resulting specifications for F(w) are meaningless and the corresponding value of L
cannot be used.

The remaining problem is to determine L to minimize the filter complexity. The
following example illustrates how this problem can be solved.

Example 4.14. The filter specifications are [JI84; SA88b] w, = 0.47, w; =
0.4027, 6, = 0.01, and §, = 0.0001. The minimum order of an optimum con-
ventional direct-form design to meet the given criteria, estimated by Eq. (4.95),
is 3138, requiring 1570 multipliers. Table 4-7 gives, for the admissible values of
Linthe range 3 < L < 30, [, 0, and ¢ as well as whether the overall filter is a
Case A or Case B design. It shows also estimated orders for F(z), G,(z), and
G,(2), denoted by Np, Ng;, and Ng,, as well as the overall number of multi-
pliers," Np/2 + 1 + [ (Ng, + 2)/2] + | (Ng; + 2)/2] . These orders have
been estimated using Eq. (4.95) with the passband and stopband ripples being the
specified ones.?® N is approximately only (1 /L)th of the order of an equivalent
direct-form design and decreases with increasing L. The widths of the transition
bands of G, (w) and G, (w) are [27 — 8 — ¢]/L and [0 + ¢]/L, respectively, so
that their sum is 27 /L and decreases with increasing L. The overall number of
multipliers is usually the smallest at those values of L for which these widths and,
correspondingly, Ng, and N, are of the same order. This happens when § + ¢
is approximately equal to . If this is true for several values of L, then the best
result is obtained by increasing L until the decrease in the number of multipliers
in F(2) is less than the increase in the overall number of multipliers in G, (z) and
G, (2). The estimated filter orders are usually so close to the actual minimum orders

"8 [x7] stands for the smallest integer which is larger than or equal to x.

'®When the symmetry in the filter coefficients is exploited, a Type I linear-phase filter of order N (even)
requires N/2 + 1 multipliers, whereas a Type II filter (N odd) requires (N + 1) /2 multipliers. N is
forced, according to the discussion of Section 4-11-1, to be even in order to get the desired solution.
*For Np, the nearest even value greater than or equal to the estimated value has been used. For Case
A designs, the ripples in the passband [0, 6] and in the stopband [¢, ] are §, and §,, respectively,
whereas for Case B designs they are interchanged. Note that for the estimation formula of Eq. (4.95),
8, and §, are the larger and smaller ripple values, respectively. If the estimated value of Ng, is even
(odd), then Ng, has also been selected to be even (odd).
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that they can be used for determining the value of L minimizing the filter com-
plexity.

With the estimated filter orders, L = 16 gives the best result. The actual filter
orders are Nr = 198, Ng, = 83, and Ng, = 123. The responses of the subfilters
as well as that of the overall design are given in Figure 4-47. The overall number
of multipliers and adders for this design are 204 and 406, respectively, which are
13% of those required by an equivalent conventional direct-form design (1570 and
3138). The overall filter order is 3291, which is only 5% higher than that of the
direct-form design (3138).

The complexity of the filter can be reduced further by using a two-level fre-
quency-response masking. For examples, see Lim [LI86] and Saramiki and Fam
[SA88Db].

(a)

0 0.2n 0.4rn 0.6xn 0.8xn

a

(b)

s & I E B |

AMPLITUDE IN dB
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T T T T T T T T °

LI L L LA L B

-120 Il Il 1 1
0 0.2n 0.4n 0.6n 0.8n T
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FIGURE 4-47 Amplitude responses for a lowpass filter synthesized using the frequency-
response masking approach. (a) Periodic response F(Lw). (b) Subresponses G (w) (solid
line and G, (w) (dashed line) (c) Overall filter.




4-11 DESIGN OF FIR FILTERS USING PERIODIC SUBFILTERS 241

4-11-3 Design of Narrowband Lowpass Filters

When w is less than 7 /2, then the overall filter can be synthesized in the following
simplified form [JI84; NE84; SA88a]:

H@) = FEHG®. (4.157)
The zero-phase frequency response of this filter is given by
H(w) = F(Lw)G(w). (4.158)

If the passband and stopband edges of F(z) are 6 and ¢, then the edges of the first
transition band of F(Lw) are (see Figure 4-48)

w,=0/L, w =¢]/L. 4.159)

F(Lw) does not provide the desired attenuation in the regions where it has extra
unwanted passbands and transition bands, that is, in the region

LL/2] 2 2
AL o) = U {k% ~ ,, min <k-L—’r + w, 1r>:l (4.160)

k=1

1
F(w) \
1 |
00 0 ¢ T ®
1|
N ! | / 1
o 6 ¢ 2n 4n n ©
=L O~ T T
i}
) x
ol 11 | ™\l ! "\ |
0 Op Qs 2{—@, Z—C‘ﬂns 4—L-"—ws 4T"+o), GT":—A)S r ©
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H(w) \
0 ] |

0 0 O n 0]

FIGURE 4-48 Design of a narrowband lowpass filter using a cascade of a periodic and a
nonperiodic filter.
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Therefore the role of the nonperiodic filter G(2) is to provide enough attenuation
in this region.

The simplest way to determine F(z) and G(z) such that H(z) is a lowpass design
with edges at w, and w; and ripples of 8, and §; is to design these subfilters using
the MPR algorithm to satisfy

1 -8 < Fw) =1+ forwe [0, Lw,), (4.161a)
-8, < F(w) < §, for w € [La, 7, (4.161b)
1 -89 <G =1+8 forwel0, w), (4.161c)
-8 < G(w) < &, for w € Q(L, w,), (4.161d)
where
89 + 8 =8, (4.161e)

The ripples 6" and 8{° can be selected, for example, to be half the overall ripple
d,. In the above specifications, both F (zY and G(z) have [0, w,] as a passband
region.

Another alternative, resulting in a considerably reduced order of G(z), is to
design simultaneously F(w) to meet

1 -4, = F@G(w/L) =1+ 8, forwe (0, Lw,), (4.162a)
-8, < Fw)G(w/L) < 8, forw € [Lw, ],  (4.162b)
and G(w) to meet
G©O0) =1, (4.163¢c)
=6, < F(Lw)G(w) < &, forw e Q(L, w;). (4.163d)

In this case, G(2) has all its zeros on the unit circle and concentrates on providing
for the overall filter the desired attenuation on Q,(L, w,) (see Figure 4-49). F(Lw)
equalizes the passband distortion caused by G(w) and provides the required atten-
uation in its stopband regions.

The desired overall response can be found by designing iteratively F'(z) to meet
Eq. (4.162) and G(z) to meet Eq. (4.163) until the difference between successive
overall solutions is within the given tolerance limits. The algorithm consists of the
following steps [SA88a]:

1. Set F(w) = 1.

2. Determine G(w) using the MPR algorithm to minimize on [0, €] U Q(L,
w;) the peak absolute value of Eg(w) = Wg(w)[G(w) — Dg(w)], where

1 for w € [0, €] o for w € [0, €]
Dg(w) = We(w) =
0 for w e Q (L, wy), F(Lw) forw e Q (L, w,).

(4.164)
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FIGURE 4-49 Amplitude responses for an optimized filter of the form H(z) = F @HG )
with L = 6. The specifications are w, = 0.057, w; = 0.17, 6, = 0.01, and §, = 0.001.
(1) F(z%) of order 17 in z*. (b) G(z) of order 17. (c) Overall filter.

By selecting € to be a very small number and « to be a very large number,
the MPR algorithm uses only one grid point (w = 0) on [0, €] and forces
G(w) to take the value of unity at w = 0.

3. Determine F(w) using the MPR algorithm to minimize on [0, Lw,] U [Lw;,
«] the peak absolute value of Ep(w) = We(w)[F(w) — Dp(w)], where

gl/G(w/L) for w € [0, L]
Dp(w) = (4.165a)
0 for w € [Lw,, ],
L fi 0, Lw
Wo(w) = {G(w/ ) or @ € [0, L] (4.165b)
8,G(w/L)/8, for w € [Lu,, .
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4. Repeat Steps 2 and 3 until the difference between successive solutions is
within the given tolerance limits.

Typically, three to five iterations of the above algorithm are required to arrive at
the desired solution.

Given the filter specifications, the remaining problem is to optimize L and the
orders of G(z) and F(z") to minimize the overall number of multipliers. For the
order of F(z*) in z*, a good estimate is

Np = N/L, (4.166)
where N is the minimum order of a conventional nonperiodic FIR filter to meet

the given overall criteria. For the order of G(z), a good estimate has been found
to be

Ng = cosh™ <61> !
s B 2w, + 20
cosh™' X <wp, T3
+ L/2 s (4.167a)
Lo, L(w, + 2wy)
cosh™' X T’ T — f

where
X(wy, @) = (2 cos w; — cos w, + 1)/(1 + cos w,). (4.167b)

L has to be selected such that the stopband edge of F(z), ¢ = Luw, is less than
«. This means that L must be less than 7 /w,. After estimating the required orders
for G(z) and F(z), the remaining problem is to decrease or increase the orders to
find the actual minimum orders. Since the frequency-response-shaping responsi-
bilities are very well shared with the subfilters, the minimum orders can be found
rather independently. First, the minimum order of F(z) can be determined for the
estimated order of G(z), and then the minimum order of G(z) is determined. Again,
an example is used to illustrate how the best value of L can be found.

Example 4.15. The specifications are wp, = 0.057, w; = 0.1m, §, = 0.01, and §;
= 0.001. Table 4-8 gives for the admissible values of L (2 < L < 9) both the
estimated and actual minimum orders of F(z) and G(z) as well as the edges of
F(2). As seen from the table, the estimated orders are very close to the actual ones,

showing that the best value of L can easily be determined based on the above
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TABLE 4-8 Estimated and Actual Minimum Filter Orders for 2 < L < 9 for a
Narrowband Filter Synthesized as a Cascade of a Periodic and Nonperiodic Filter

Estimated Actual Number of
L 0 ) Ng Ng Ng Ng Multipliers
2 0.17 0.27 54 3 54 3 30
3 0.157 0.37 36 6 35 6 22
4 0.27 0.4m 27 9 26 9 19
5 0.257 0.57 22 13 21 14 19
6 0.37 0.6 18 17 17 17 18
7 0.357 0.7% 15 22 14 22 20
8 047 0.8 13 27 12 28 22
9 0.457 0.97 12 34 10 36 25

estimation formulas. The minimum of the total number of multipliers is obtained
by increasing L until the decrease in the number of multipliers of F(z*) becomes
smaller than the increase in the number of multipliers of G(z). The amplitude
responses for the subfilters and the overall design are shown in Figure 4-49 for the
best value of L, L = 6. The orders of both F(z%)(in z%) and G(z) are 17. This
design requires 18 multipliers and 34 adders. The minimum order of a conven-
tional direct-form design is 108, requiring 55 multipliers and 108 adders. The price
paid for these reductions in the number of arithmetic operations is a slight increase
in the overall filter order (from 108 to 119).

Example 4.16. Further savings in the number of arithmetic operations can be
achieved by implementing G(z) using special structures [KI88; SA88a, SA89b].
A particularly efficient implementation is provided by a transfer function of the
form [SA89b]

M
G@) = I_Il T,(2), (4.168a)

where

K—1 | — gk
T, =277 EO h=27" T (4.168b)

and 27", with P, integer-valued, is a scaling constant. An efficient implementation
of T,(z) is depicted in Figure 4-50.%' The implementation of the above G(z) re-

*'If modulo arithmetic (e.g., 1's or 2’s complement arithmetic) and the worst-case scaling (corresponds
to peak scaling in this case) are used, the output of 7,(z) implemented as shown in Figure 4-50 is
correct even though internal overflows may occur. For details, see Saramiki et al. [SA88a]. This
implementation is very attractive because, in this case, the system does not need initial resetting and
the effect of temporary miscalculations vanishes automatically from the output in a finite time.
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FIGURE 4-50 Efficient implementation for T,(z) = 277 (1 — z7¥) /(1 — z7").

quires no general multipliers. The zero-phase frequency response of 7,(z) is
T, (w) = 277 sin (K,w/2)/sin (w/2) (4.169)

and it provides K, — 1 zeros on the unit circle, located at v = +k2w /K, for k =
1,2,..., | (K., — 1)/2] and at w = 7 for K, even. The design of G(z) involves
determining M, the number of T,(z)’s, and the K,’s in such a way that the resulting
G (w) provides enough attenuation on (L, w,) as given by Eq. (4.160). The cri-
teria of the previous example are met by L = 8, F(z*) of order 9 in z%, and G(z)
consisting of four T,(z)’s with K; = 18, K, = 16, K3 = 12, and K, = 11. This
filter requires only 5 general multipliers, 17 adders, and 129 delay elements. The
amplitude responses of the subfilters G(z) and F (%) are given in Figure 4-51(a),
whereas Figure 4-51(b) gives the overall response.?

4-11-4 Design of Wideband Lowpass Filters

The design of a wideband filter can be accomplished based on the fact (see Section
4-8-3) that if H(z) of even order 2M is a lowpass design with the following edges
and ripples,

<
N
>
1
<3
2
(=
B
I

)

oy (4.170)

W, = T — Wy, Wy = T — W

then
H@) =z - (-)"H(-2) 4.171)

is a lowpass filter having the passband and stopband edges of w, and w; and the
passband and stopband ripples of §, and ;. Hence, if w, and w, of the desired filter
are larger than 7 /2, then @, and &, of H(z) are less than 7 /2. This enables us to
design H(z) in the form

H(z) = FZHGQR) @.172)

“The K,’s are larger than necessary to meet the criteria for G(z) and they provide some zeros on [w,,
27/L — w] = [0.1x, 0.157], making the requirements of F(z") less stringent in this region (see
Figure 4-51). It can be shown that in order to guarantee that the overall filter meets the given criteria
in this case, F(z) has to be designed such that G(w/L) is replaced by max [|G(w/L)|, |G(27m —
w)/L)|] in Eq. (4.162b) [SA89b].
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FIGURE 4-51 Amplitude responses for an optimized filter of the form H(z) = F(z1)G (z),
where G(z) is a cascade of four T,(z)’s and L = 8. The filter specifications are those of
Figure 4-49. (a) F(z%) (solid line) and G(z) (dashed line). (b) Overall filter.

using the techniques of the previous subsection. The resulting overall transfer func-
tion is then

H@ =z - (-DMF((-2HG(~2), 4.173)

where M is half the order of F(zX)G(z). An implementation of this transfer function
is shown in Figure 4-52.% To avoid half-sample delays, the order has to be even.

Example 4.17. Let the wideband filter specifications be w, = 0.97, w; = 0.957,

6 = 0.001, and é; = 0.01. From Eq. (4.170), the specifications of H(z) become
w, = 0.057, w, = 0.1, 6 = 0.01, and 6 = 0.001. These are the narrowband

2The delay term z~* can be shared with F(z").

Fizh G(2)

by

-M

FIGURE 4-52 Implemetation for a wideband filter of the form H(z) = z™* —
(—=DMF(-2")G(=2). F@z") = (-DMF((~2)") and G(2) = G(~2).
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specifications of Example 4.15. Hence the desired wideband design is obtained by
using the subfilters F(z") and G(z) of Figure 4-49. However, the overall order of
the filter of Figure 4-49 is odd (119) and the resulting delay contains a half-sample
delay. Therefore, in order to achieve the desired solution with even order, the order
of G(z) has to be increased by one. Figure 4-53 gives the amplitude response of
the resulting filter. This design requires 19 multipliers, 36 adders, and 120 delay
elements, whereas the corresponding numbers for a conventional direct-form
equivalent of order 108 are 55, 108, and 108, respectively.

4-11-5 Generalized Designs

The Jing-Fam approach [JI84] is based on iteratively using the facts that a nar-
rowband filter can be implemented effectively as H(z) = F(zX)G(z) and a wide-
band filter in the form of Eq. (4.173). If w; < w/2, then the overall transfer
function is first expressed as

H@ = H@) = G@F ") (4.174)
and the simultaneous criteria for G,(z) and F,(z) are stated according to Eq.
(4.161). By denoting by 6,(,” the passband ripple of G, (z), the passband and stop-
band ripples of F (z) are 8, — 8. and &, respectively. If L, is selected such that

the passband and stopband edges of F)(z), L,w, and L,w,, become larger than
w /2, then F,(z) can be implemented in terms of a narrowband filter

H,(2) = G,(9)F, (") 4.175)
in the form

Fi(@ =z — (-1)MH,(~2). (4.176)
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FIGURE 4-53 Amplitude response for a wideband filter implemented as shown in Figure
4-52.
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The required passband and stopband ripples of H, (z) are 8, and &, — 8", respec-
tively, whereas the passband and stopband edges are less than 7 /2 and given by

WP =1-Lw, 0®=1-La, @.177)

The specifications for —ﬁz (2) are thus similar to those of H, (z) and the process can
be repeated. Continuing in this manner and designing the last stage in the form
Hg(2) = Gg(2) results in the following overall transfer function [JI84; SA88b]:

H@) = H (@) = G,@F, "), (4.178a)

where
Fi =™ = ()" H, (-2, H@ = GEFE, (4.178b)
F@) =z - (=1)™H,(-2), Hs@) = G@QF:E"»), (4.178¢)

Froo@ = 27M2 — (=)M?Hy_,(—2), Hp_1(@) = Gr_1(@Fp_,&"*"),
_ (4.178d)
Fro1(@) = 27" — (=1)"*~'Hp(-2),  Hp(d) = Gg(2), (4.178¢)

with M, forr = 1,2, ..., R — 1 being half the order ofFI,H(z).

The above equations give H(z) in an implicit form. The corresponding explicit
form is given later. Here, the G,(z)’s forr = 1, 2, . . . , R are the filters to be
designed. The overall criteria are met if the G,(z)’s satisfy (cf. Eq. (4.161))

1 -8 < G(w) =1 +8) forwel0, wl, (4.179a)
-8 < G,(w) < & for w € OO, (4.179b)
where
LLr/2] 2 2
U [k—"r — », min <k—I + o, w)] forr < R
go = | =t L L 4.179¢)
[ng), ﬂ.] forr = R.
The w(”’s and w{”’s forr = 1,2, . . . , R are the edges of the H,(z)’s and can be

determined iteratively as
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n - m - )
where w{" = w, and w{" = w,, and the 8’s as

r—1
8, — 2 6% for reven
k=1

80 = kodd (4.179%)
r—1
8 — 21 8% for rodd.
k=2
keven

In order for the overall filter to meet the given ripple requirements, 8% and the
8¢”’s have to satisfy for R even

R R-1

2z o0 =0, o0+ El 80 =5, (4.1802)
keven k odd
or for R odd
R R-1
El 80 =35, 8P+ k§2 80 =5, (4.180b)
k odd k even

If27 /L, — 0 < w/2forr < Rorw® < /2, then the number of multipliers
in G,(2) can be reduced by designing it, using the techniques of Section 4-11-3,
in the form

G, = GG (). (4.181)

After some manipulations, H(z) as given by Eqs. (4.178) and (4.181) can be
rewritten in the explicit form shown in Table 4-9. If G, (z) is a single-stage design,
then GV (z%) = 1 and H"(z) = 1. It can be shown that in order to obtain the
desired overall solution, the order of G, (z) for r = 2, denoted by N, in Table 4-9,
has to be even. The realization of H(z) is given Figure 4-54,>* where

d, =M, ~M,., r=23...,R—1, dg =M. (4.182)

If the edges w, and w, of H(z) are larger than = /2, then we set H(z) = F,(2).
In this case, 8" = 0, L, = 1, and G, (2), »", and «" are absent. Furthermore,
o =7 —w;and 0 = T — w,, and H,(2) is absent in Figure 4-54 and in Table
4-9.

The remaining problem is to select R, the L,’s, the K,’s, and the ripple values
such that the filter complexity is minimized. The following example illustrates this.

2*The use of the extra delay terms can be avoided by using the transposed structure. In this case, the
delay terms can be shared with H (Z*%) or, if this filter stage is not present, with H® (z-%). This is
because the overall order of this filter stage is usually larger than the sum of the d,’s.
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TABLE 4-9 Explicit Form for the Transfer Function in the Jing-Fam Approach
H@) = Hi@ha ™ + Hy@?) L™ + BEP)[- - -

U1z ™' + Hp_ 2 [z ™ + He™1] - - - T,

where
H,@") = HO G H? F)
H'@ = G ), HP@ = S,GPU0)

Si=1, S=-(D"t  r=2,3--- R
JP=1, JP=-1, JP=-UR), r=34---,R
J&I) = [J('Z)]Kr
_ _ r—1
L=1 L=11L r=23, R
My = %_RNR’ Mg_, = Mg_ s, + %ZR—rNR—n r=1,2,-+-+,R-2

L=t r=3,4,--- R
N, = KN" + N®

N® and N? are the orders of G% (z) and G (z), respectively.

Example 4.18. Consider the specifications of Example 4.14, that is, w, = 0.4,

w; = 0.4027, 8, = 0.01, and §; = 0.0001. In this case, the only alternative is to
select L, = 2. The resulting passband and stopband regions for G, (z) are

Q,(,” = [0, 0.47], QP = [0.5987, 7].

Hy(z o) (=] Hz L2) ] Hoz )

I2

Out

HP(eh)

H{z ek

FIGURE 4-54 The structure of a filter synthesized using the Jing-Fam approach.
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For H, (2), the edges become v = 7 — Lyw, = 0.1967 and v = 7 — L, w,
= 0.27. For L,, there are two alternatives to make the edges of Hy(2), o =
- Lw® and o = 7 — L,w®, less than 7 /2. These are L, = 3 and LZ =4,
We select L, = 4, giving for G,(z) the following passband and stopband regions:

Q@ =10, 0.1967], 9P = [0.3, 0.77] U [0.8, =].

The edges of H;(z) take the values shown in Table 4-10. By selecting R = 5, L
= 3, and L, = 2, the edges of H,(z) and Hs(z) = Gs(z) become as shown in
Table 4-10. The passband and stopband regions for G;(z), G4(2), Gs(2) are

o =10,027], QF =[0.4507x, 0.8827x],
2% = [0, 0.3527], Q¥ = [0.6m, 7],
9» =10, 0271, 9° = [0.296~, =].

For R = 5, it is required that (see Eq. (4.180)) 8{" + &5 + 65 = §, and 87 +

5‘(,4) + 8 = §,. The simplest way is to select the npple values in these summations
to be equal. In this case, the required ripples for the G,(z)’s become as shown in
Table 4-10. Since the stopband edges of the first and fourth subfilter are larger
than 7 /2, they are single-stage filters and can be designed using the MPR algo-
rithm. The remaining subfilters can be synthesized, using the techniques of Section
4-11-3, to be two-stage filters. Table 4-10 gives the parameters describing the

overall filter, whereas Figure 4-55 gives the resulting overall response. This design

TABLE 4-10 Data for a Filter Designed Using the Jing-Fam Approach

r=1 r=2 r=3 r=4 r=
w? 0.47 0.1967 027 0.3527 0.27
w? 0.4027 0.27 0.2167 0.47 0.2967
% 1x 1072 Ix 107 1x107? Ix10™* ix 10"
80 1074 2 x 1072 2x 107 1x 1072 1x10°
L, 2 4 3 2 —
K, — 3 2 — 3
NO — 26 13 — 25
N® 38 10 10 32 19
N, 38 88 36 32 94
L, 1 2 8 24 48
g0 - -1 1 — -1
J® 1 -1 -1 1 -1
M, — 2872 2784 2640 2256

-1 -1 -1 1
- 88 144 384 2256

b~
-

<
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FIGURE 4-55 Amplitude response for a filter synthesized using the Jing-Fam approach.

requires only 93 multipliers and 177 adders, which are less than 6% of those re-
quired by an optimum conventional filter (1570 and 3138). The price paid for these
reductions is an increased overall filter order (from 3138 to 5782). The overall
filter order as well as the number of multipliers can be decreased by selecting the
ripple values in a more optimum manner [JI84; SA88b]. Also, in order to arrive
at the best solution, different choices of R as well as all alternatives to select the
L,’s such that the w{”’s become smaller than 7 /2 are worth going through.

The above Jing-Fam synthesis technique can be used directly for almost all
lowpass filter specifications. The only exceptions are filters with w, < 7 /2 and
w; > m/2. One alternative to design these filters is to shift the passband and
stopband edges of the filter by a factor of 3 using a decimation by a factor of 3 at
the input of the filter and an interpolation by the same factor at the output of the
filter [J184].

When comparing the Jing-Fam approach and the frequency-response masking
approach of Lim with each other, the Jing-Fam approach normally gives filters
with fewer multipliers at the expense of a larger overall filter order [SA88b]. One
attractive feature of the Jing—Fam approach is that it can be combined with mul-
tirate filtering to reduce the filter complexity even further [RA90] (see Chapter
14).

4-11-6 Design of Other Types of Filters

This section has concentrated on designing lowpass filters. However, the reviewed
synthesis techniques can also be applied in a straightforward manner to designing
other types of filters.

The design of a highpass filter H(z) with edges at w; and w, and ripples of §;
and §, can be performed, according to the discussion of Section 4-8-3, by first
demgmng a lowpass filter H(z) with edges at w, =T — w,and 0, = T — w, and
ripples of 8 = §, and 5, = b,. The desired h1ghpass filter is then H(z) =
(- l)M H(- z) w1th M being half the filter order.
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Figure 4-56 illustrates how a narrowband bandpass filter can be designed in the
form H(z) = F(z*)G(2). In this case, L = 5, the passband and stopband edges
are w,y, wpy = 0.77 £ 0.047 and wyy, wy = 0.77 + 0.067, respectively, and 6,
= 6, = 0.001. F(w) has been determined to be a bandpass design in such a way
that F(Lw) takes care of the overall response in the interval [0.6, 0.87], whereas
G (w) provides the desired attenuation on the extra passbands and transition bands
of F(Lw). The details for designing bandpass filters of this type can be found in
Saramiki et al. [SA88a]. F(z1) is of order 68 in z* and G(2) is of order 32. The
overall design thus requires 52 multipliers and 100 adders, whereas the minimum
order of an equivalent conventional direct-form design is 336, requiring 169 mul-
tipliers and 336 adders. The complementary bandstop filter can be implemented

(a)
m
©
Z
w
a (b)
=]
=
-
'R
=
<
120 1 1 1 | 1 | 1 1 1
0 0.2n 0.4n 0.6n 0.8n 1
T T T T T L T
of N
20 | -
-40 |- .
B 1 C
-60 - — (@
-80 .
-100
-120 L
0.2n 0.4n 0.6n 0.8n k]
FREQUENCY

FIGURE 4-56 Amplitude responses for an optimized bandpass filter of the form H(z) =
F(z")G(2) with L = 5. (a) F(z") of order 68 in z%. (b) G(z) of order 32. (c) Overall filter.
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directly in the form z™™ — H(z) = z7™ — F(z")G(z), where the delay z™ can
be shared with F(z%).

Another straightforward technique for designing bandpass filters has been pro-
posed by Neuvo, Rajan, and Mitra [NE87; RA88]. This technique is based on the

fact that if H(z) is a Type I or Type II linear-phase transfer function of order N,
then

H(2) = e/N/*H(ze’™) + ¢ /2H(ze™/*0) (4.183)
is also a linear-phase transfer function of the same type and the same order. The
impulse responses of these two filters are related via h[n] = 2h([n] cos [(n —
N/2)wy] and the zero-phase frequency responses via (see Figure 4-57)

H(w) = Hw + wp) + H(w — wy). (4.184)
Therefore, if H(z) is a lowpass design with edges at w, and w;, then H(z) is a

bandpass design (see Figure 4-57) with passband edges at wo + w, and stopband
edges at wy + ;. The ripples of H(z) are in the worst case 6, = 26 and 6, = §,

-

]
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FIGURE 4-57 Design of a linear-phase bandpass filter from a lowpass prototype by mod-
ulation. (a) Response H(w) of the prototype with transfer function H(z). (b) Responses
H(w — wg) and H(w + wp). (c) Response of H(z) = e N2 (790) 4 @TINO/2H (77w,

(a)

(b)

(©)
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+ &, where 8, and d; are the ripples of H(z). In Neuvo et al. [NE87], an efficient
structure has been derived for the overall filter in the case where the prototype
lowpass filter is of the form H(z) = F(z*)G(z), whereas in Rajan et al. [RA88] a
corresponding structure has been given for the case where H(z) is designed using
the frequency-response masking approach described in Section 4-11-2.

The third approach to exploit the techniques of this section is to design the
bandpass filter as a cascade of a lowpass filter H, (z) and a highpass filter Hyp(2),
that is, in the form

H(z) = Hp()Hyp(2). (4.185)

Here, H;p(2) is designed to provide the second transition band [w,,, w;,] and Hyp(2)
to provide the first transition band [w;,, w,;]. The resulting ripple in the first (sec-
ond) stopband is approximately equal to the stopband ripple of the highpass (low-
pass) filter, whereas the passband ripple is in the worst case equal to the sum of
the passband ripples of the subfilters.

4-12 DESIGN OF FIR FILTERS USING IDENTICAL SUBFILTERS
AS BASIC BUILDING BLOCKS

Another approach to reduce the cost of implementation of an FIR filter is to design
it by interconnecting a number of identical subfilters with the aid of a few addi-
tional adders and multipliers. Such an approach has been suggested originally by
Kaiser and Hamming [KA77a] and improved by Nakamura and Mitra [NA82].
This section concentrates on the most general approach proposed by Saramiki
[SA87a]. The main advantage of using identical copies of the same filter lies in
the fact that with this approach it is relatively easy to synthesize selective FIR
filters without general multipliers [SA91b].

4-12-1 Filter Structures and Conditions for the Subfilter and Tap
Coefficients

Figure 4-58 gives two general structures for implementing a linear-phase FIR filter
as a tapped cascaded interconnection of N identical subfilters (for other alterna-
tives, see Saramaki [SA87a]). The subfilter has a Type I linear-phase transfer func-
tion

M
Fu@ = % flne™, f2M = n] = fln]. (4.186)

The subscript M is used to emphasize that the delay of the subfilter is M. The
frequency response of the structure of Figure 4-58(a) is [SA87a]

H(e™) = e H(w), (4.187a)
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FIGURE 4-58 Two general structures for implementing a linear-phase FIR filter as a
tapped cascaded interconnection of N identical subfilters of even order 2M.

where
N
Hw) = ;0 a[n] [Fy (w)]” (4.187b)
with

M
Fy(w) = fIM] + 2 El fIM — n] cos ne. (4.187¢)

The additional tap coefficients a[n] and the subfilter F),(z) can be determined
such that H(w) meets

1 -3,

A

Hw) =1+4, forwelkX, (4.188a)

IA

— 6 < H(w) < §, forwe X, (4.188b)

where the passband and stopband regions, X, and X, respectively, may consist of
several bands. Based on the fact that H(w) can be obtained from the polynomial

N

P(x) = 2 a[n]x" (4.189)

using the substitution (see Eq. (4.187b))

x = Fy(w), (4.190)
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the general simultaneous conditions for the a[n]’s and F),(z) can be stated as

1 -6, =<Px)=1+3§, forx,

=6, < P(x) < §

xp|

Xs1

Figures 4-59, 4-60,

region x,,

IA

IA

Fu(@) < x,

FM(‘*’) = Xs2

<

X < Xy,

forx;, < x < x,,
forwe X,

for w € X,.

(4.191a)
(4.191b)
(4.192a)
(4.192b)

and 4-61 exemplify these relations in three different cases
to be considered in more details in this section. As seen from these figures, the
substitution x = F,(w) can be regarded as a transformation that maps the passband

=< x = x,, of P(x) (the stopband region x,;; < x < x,) onto the pass-

band region X, (stopband region X;) of H(w). Hence the amplitude values are
preserved and only the argument axis is changed. Alternatively, P(x) can be in-
terpreted as an amplitude change function [KA77a], which tells that if the subfilter
response Fy,(w) achieves the value x,, then the overall response H(w) achieves the
value P(x,) without regard of the frequency. The passband and stopband regions

— LIN. AMP .|

o
o
3
o
©
©

TT T T TT T T

0

IP(x)| in dB

-40

|H(w)| in dB

1.0488
0.9706

-80
-100

x=Fy(0)

TT T T T T 77T

0

0.2r 047 0.6 0.8t = O

FIGURE 4-59 Design of a composite filter using four prescribed subfilters to meet the
lowpass criteria: w, = 0.057, w; = 0.17, §, = 0.01, and &; = 0.001. In this case, x,; =
0, x, = 0.1549, x,; = 0.9706, and x,, = 1.0488 are determined by the subfilter response

Fy(w).
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LN L L L 1.0000

L
S 1 0.4493

T T T
-
2 LN, AMP,
S
VA
©
©

-1.0000
4] -40 -80 0 02r 04n 06 0.8n = @
[P(x)] in dB
T ] T j T [ T T T
1 LIN. AMP.
o 0.90 RN
g or 3
— -20 |- -1
= 20¢r .
S 4or 3
I 6ol .
-80
-100
-120

0 0.2rn 04n 0.6n 0.Br = O

FIGURE 4-60 Design of a composite filter using eight subfilters to meet the bandpass
criteria: w,y, Wy, = 0.57 + 0.27, wyy, wy = 0.57 £ 0.217, §, = 0.01, and §; = 0.0001.
Case A simultaneous specifications are used for Fy,(w) and P(x) withx;; = —1,x, = 1,
X = —0.6318, and x,, = 0.4493.

of F),(w) and H(w) are thus the same and all that happens is that the multiple use
of the same subfilter reduces the large passband and stopband variations in Fj,(w)
to small variations in H(w).

The following two problems® can be solved in a straightforward manner:

Problem I Given N, the number of subfilters, optimize the a[n]’s (or, equiv-
alently, P(x)) and F(z) to meet the given criteria with the minimum subfilter
order 2M.

Problem Il Given Fy,(z), optimize the a[n]’s to meet the given criteria with
the minimum value of N.

For Problem II, the parameters x,;, x5, Xy, and x,, are fixed and determined by
Fy;(2) (see Figure 4-59). For Problem I, these parameters are adjustable and their

“*In addition to these problems, F,(z) and P (x) can be optimized to minimize N, the number of subfil-
ters, for the given subfilters order 2M. Also, the subfilter order can be minimized for the given N and
the given values of the a[n]’s, like in the Kaiser-Hamming approach [KA77a].
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FIGURE 4-61 Design of a composite filter using eight subfilters to meet the lowpass
criteria: w, = 0.47, w, = 0.4027, §, = 0.01, and &, = 0.0001. Case B simultaneous
specifications are used for Fj(w) and P(x) with x,;, x, = 1 £ 0.1787 and x,;, x, =
+0.1195.

number can be reduced, without loss of generality, from four to two in the follow-
ing two useful ways:

Case A: x;; = —1, x; = 1; x;, and x,,, are adjustable.
Case B: x,;, = —0,, x, = 0, X =1-— Sp, Xp =1+ SP; Sp and 5_‘ are
adjustable.

Case A is beneficial when the subfilter is a conventional direct-form design, as in
this case the subfilter is automatically peak scaled with the maximum and minimum
values of Fj,(w) being +1 and —1, respectively (see Figure 4-60). In Case B, the
subfilter criteria are conventional with the maximum passband deviation from unity
(maximum stopband deviation from zero) being Sp (8,) (see Figure 4-61).

The additional tap coefficients in the structure of Figure 4-58(b) can be obtained

by factoring P(x) as given by Eq. (4.189) into the second-order and first-order
terms as

Ni N2 .
P(x) = CkI:I1 [be[2]1x7 + b[11x + b [0]] kI_I‘ [cc[1]1x + ¢ [01], (4.193)
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where 2N, + N, = N. The advantages of this structure compared to that of Figure
4-58(a) are that the extra delays 2™ can be shared with the subfilters F, w(2) and
its sensitivity to variations in the tap coefficients is lower [SA87a].

4-12-2 Filter Optimization

For the above problems, the design of P (x) can be accomplished conveniently with
the aid of an FIR filter using the substitution

x=acosQ+ 8 4.194)
in P(x), yielding
N
GQ) = P(acos @ + B) = 210 gln] cos" Q, (4.1952)
where
N r
glnl = 2 a[r] < > "B (4.195b)
r=n n

Being expressible as an Nth degree polynomial in cos 2, G(Q) is the zero-phase
frequency response of a Type I linear-phase FIR filter of order 2N (see Section
4-3-3 for details) and can be designed using standard FIR filter design algo-
rithms.?S By selecting

% a=n —x)/2, B=@x2+x1)/2, (4.196)

the x-plane regions [x,;, x,,] and [x,;, x,,] are mapped, respectively, onto the
Q-plane regions [0, 2,] and [{;, 7], where (see Figure 4-62)

-1 2'xpl — Xp2 T X1 -1 2-xs2 — Xp2 T
Q, = cos —_—, Q, = cos
s1

Xs1
}, (4.197)
Xp2 — X Xp2 — Xs1

and the conditions for P (x) can be expressed in terms of G() as

1 -5,
_6:

IA

G@ =<1+, for0<Q=Q, (4.198a)
GQ) = & forQ, = Q < =

IA

(4.198b)

*These algorithms give the impulse-response coefficients g [n] of the corresponding filter. G(2) can
be expressed as G(R) = g[N] + 2E)_, g[N — n] cos nQ, which can be rewritten in the form of Eq.
(4.195a) using the identity cos nQ = T, (cos 2), where T, (x) is the nth degree Chebyshev polynomial.
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FIGURE 4-62 Design of the polynomial P (x) with the aid of an FIR filter response G(Q)
for the given x,, X, X,1, and x,, and the given §, and é;.

G () meeting these conventional lowpass specifications can then be converted back
into the polynomial P (x) using the substitution

cos @ =[x — B]/a. 4.199)

The resulting tap coefficients a [r] can be determined from the g[n]’s according to
Eq. (4.195b).

Example 4.19. This example illustrates how multiplier-free filters can be de-
signed by first determining a computationally efficient subfilter with higher ripple
values than the required ones and then using the additional tap coefficients to re-
duce these ripples to the desired level (Problem II). Consider again the specifica-
tions: w, = 0.057, w; = 0.17, 8, = 0.01, and §; = 0.001. For narrowband cases
of this kmd a particularly efﬁ01ent subfilter transfer function is of the form [SA87a]

Fu@) = [2“’ 11_—1} ez 2 +d1 + z75)], (4.200)

where 277, with P integer-valued, is a scaling multiplier and M = 3K/2 — 1. An
efficient implementation of this transfer function is depicted in Figure 4-63. By
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FIGURE 4-63 An implementation of the proposed subfilter.

selecting K = 16, P = 4, ¢ = 2, and d = —2~', the resulting subfilter requires
no general multipliers and F,(w) varies within x,; = 0.9706 and Xy, = 1.0488 on
[0, w,] and within x;; = 0 and x;;, = 0.1549 on [w,, 7] (see Figure 4-59). Using
Eq. (4.197), the edges of G(Q2) become @, = 0.17617 and Q, = 0.74897 (see
Figure 4-62). The minimum even order 2N to meet the resulting criteria is 8 so
that the required number of subfilters is N = 4. When the corresponding polyno-
mial P (x) is factored in the form of Eq. (4.193), only first-order sections are pres-
ent. By fixing ¢,[1] = 1 for k = 1, 2, 3, 4, the remaining coefficients take the
infinite-precision values shown in Table 4-11. The given criteria are still met when
these coefficient values are quantized to the easily implementable values shown
also in Table 4-11. The resulting composite filter requires no general multiplica-
tions, making it very useful for hardware or VLSI implementation. The responses
of Figure 4-59 are for this overall design.

Problem I can be solved by finding 2, and {; for G({2) of the given even order
2N in such a way that it meets the criteria of Eq. (4.198) and the corresponding
subfilter criteria become as mild as possible so that they can be met by the mini-
mum even order 2M. For any G(f2), the corresponding polynomial P (x) is obtained
using the substitution of Eq. (4.199), where

o =1, =0 (4.201)

TABLE 4-11 Tap Coefficients for the Filter of Example 4.19

Infinite-Precision Coeflicients
all] =1 ¢, [0] = —0.009995
olll=1 c,[0] = —0.075844
all] =1 c;[0] = —0.144123
all] =1 c,[0] = —1.323373

C = —3.967595
Quantized Coefficients
alll =1 0] =0
el =1 0] = —27*
alll =1 6l0] = —273 —27¢
alll =1 0] = =2 — 272 — 274

c=-2
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for Case A and

_ 2 g = 1 — cos Q
2 + cos @, — cos Q’ 2 + cos ©, — cos

o (4.202)

for Case B. In Case A, the resulting passband and stopband regions of P(x) are
[xp1, 1] and [—1, x,], where

X,

o1 = cos ), X, = cos (4.203)

whereas, in Case B, the corresponding regions are [1 — Sp, 1+ 3,,] and [—35;, 8],
where

3 1 —cos @, 3 - 1 + cos Q,
_2+cos(2p—cosﬂ:’ S—2+cost—cosQS'

5, (4.204)
Figure 4-64 exemplifies these relations. Note that P (x) for Case B can be obtained

from the Case A polynomial by simply replacing x by [x — 8] /c, where « and 3
are given by Eq. (4.202).

Q
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FIGURE 4-64 Relations of the Case A and Case B polynomials P(x) to the best extra-
ripple solution G(Q) for the given values of 8, and ;. N = 8, §, = 0.009, and §; = 0.00009.
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It has turned out that the mildest subfilter criteria are typically obtained at those
values of Q, and Q, for which G(Q) has an extraripple solution for the specified
values of 6, and J; (see Section 4-8-2). The best extraripple solution is the one for
which 2, and # — {; are the most equal. As an example, Figure 4-64 gives the
best extraripple solution for N = 8, §, = 0.009, and 6, = 0.00009 along with the
corresponding polynomials P(x) in Cases A and B. Note that the allowable pass-
band and stopband variations for the subfilter are in both cases huge compared to
those of the overall design. In Section 4-12-3, the solutions of Figure 4-64 are
used as a starting point for synthesizing multiplier-free filters for 8, = 0.01 and &,
= 0.0001.

The desired extraripple solutions can be found directly using the algorithm of
Hofstetter et al. [HO71]. This algorithm can also be implemented by slightly mod-
ifying the MPR algorithm.?’

Example 4.20. Let the specifications be w, = 0.47, w, = 0.4027, §, = 0.01,
and &; = 0.0001. Table 4-12 gives the minimum subfilter orders 2M for various
values of N, the number of subfilters, along with the subfilter specifications in

?’The modified program is available by writing to the author of this chapter.

TABLE 4-12 Data for Filters Synthesized Using Identical Subfilters

_ Number of Overall

Number of Subfilter cos Q, 9, Distinct Filter

Subfilters Order cos & Coefficients Order

N=1 3138 1570 3138

N=2 2056 0.98038 0.005000 1032 4112
—0.94450 0.014142

N=4 1046 0.79100 0.057687 529 4184
—0.83208 0.046348

N=6 692 0.58445 0.125781 354 4152
—0.71930 0.084963

N=38 514 0.43774 0.183502 267 4112
—0.62629 0.121968

N=10 408 0.33818 0.228955 216 4080
—0.55241 0.154843

N=15 268 0.29826 0.266590 151 4020
—0.33403 0.252999

N=20 200 0.28324 0.288587 122 4000
—0.20044 0.321925

N =130 132 0.17262 0.355611 98 3960
—0.15404 0.363594

N =40 98 0.11975 0.391903 91 3920
—0.12635 0.388965

N =50 78 0.08953 0.414360 91 3900

—0.10775 0.406070
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Cases A and B. Also, the number of distinct coefficients,”® N + M + 2, and the
overall filter order, 2MN, are given in the table. The case N = 1 corresponds to
the conventional direct-form design. It is interesting to observe that the overall
filter order for all the cases is approximately 1.3 times (within 1.24-1.33) that of
the direct-form design. If all the identical subfilters are implemented separately,
then the overall multiplication rate per sample, N(M + 1) + N + 1, is higher than
that of the direct-form equivalent. However, the structures of Figure 4-58 become
advantageous if all the subfilters are implemented using a single subfilter by ap-
plying multiplexing. Since the subfilter order can be reduced to any value by in-
creasing the number of subfilters, it has the potential of being realized by a fast
short convolution algorithm (see Chapter 8) or implemented using an integrated
FIR filter chip.

4-12-3 Design of FIR Filters Without General Multipliers

Using the structure of Figure 4-58(b), it is relatively easy to design high-order
filters without general multipliers. Filters of this kind are very attractive in VLSI
implementation where a general multiplier is very costly. These filters can be de-
signed in two steps [SA91b]. In the first step, the additional tap coefficients in the
structure of Figure 4-58(b) are quantized to values that are simple combinations
of powers-of-two. The second step then involves designing the subfilter in such a
way that there are no general multipliers. It is relatively easy to get such a subfilter
without time-consuming optimization since the ripple values of the subfilter are
very large (cf. Table 4-12) and, consequently, large coefficient quantization errors
are allowed.”

To allow some quantization error for the tap coefficients in the structure of
Figure 4-58(b), G(Q) of the given order 2N is first designed to be the best extra-
ripple solution for the passband and stopband ripples of 0.8, + - - 0.95, and 0.84;
+ -+ 0.96,. This G(Q) is then converted to the Case A or Case B polynomial P (x)
according to the discussion of Section 4-12-2 and the passband and stopband re-
gions of P(x), [x,,, x,,] and [x,;, x,], are located. In both Case A and Case B,
the resulting P (x) can be factored in the form

Ny N2
P(x) =D kI_Il &% + ogx + By kI_Il * + 7). (4.205)

2For the structure of Figure 4-58(b), the number of distinct coefficients is N + M + 2 if the blocks
in the structure are scaled in such a way that the coefficients b, [2] in the second-order blocks and the
coefficients ¢, [1] in the first-order blocks become unity. This can be done without loss of generality.
*The rule of thumb for direct rounding of FIR filter coefficients is that if the allowed quantization
error is made double, one bit is saved. Also, the order of the subfilter is significantly reduced compared
to the order of the overall filter. Another rule of thumb for direct rounding is that if there are two filters
with the same allowable quantization error and the order of the first filter is one-fourth that of the
second filter, then the first filter requires one bit less.
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A very straightforward technique to arrive at simple tap coefficients is based on
expressing the coefficients of the second- and first-order terms as

o = b[11/b2], B = bk[0]/bk[2_], (4.206)

c[01/c[1]. (4.207)

I

Yk

The resulting P (x) can be written in the following form corresponding to the struc-
ture of Figure 4-58(b):

N N2

P = ckI=Il (b [2]1x2 + b [1]x + b,[0]) kI_Il (c[11x + ¢ [0]). (4.208)

If the coefficients of a second-order term are desired to be quantized to two powers-
of-two values, that is, values of the form +2~ 7' +27P2 then a simple technique
is to first set b, [2] to take all possible two powers-of-two values within 3 and 1.
Then, for each value of b, [2], the remaining coefficient values b,[1] and b, [0] are
determined from Eq. (4.206) and quantized to the closest two powers-of-two val-
ues. Finally, those values that provide the closest approximations to ¢ and 3, are
selected. Quantized values for the c¢,[1]’s and ¢, [0]’s can be found in the same
manner. The next step is to select C such that the average of P(x) in the passband
region [x,, x,,] is unity and it is checked whether P(x) is within the limits 1 +
0, is the passband region [x,,, x,,] and within the limits +J; in the stopband region
[x51, x5]. If not, some of the coefficients require three powers-of-two representa-
tions.*®

What remains is to design a multiplier-free subfilter such that its zero-phase
frequency response F),(w) stays within the limits x,, and x,,, in the passband region
and within the limits x,; and x;, in the stopband region.

Example 4.21. Consider the ripples 6, = 0.01 and &, = 0.0001 and the case
where eight subfilters (N = 8) are used. Figure 4-64 gives the best extraripple
solution of G(Q) for the ripple values 0.95, and 0.9, as well as the corresponding
polynomial P (x) in both Case A and Case B together with its passband and stop-
band regions. In both cases, P (x) still meets the given criteria when the additional
tap coefficients are quantized, using the above procedure, to the values shown in
Table 4-13. In Case A, it is required that Fj,(w) stays within the limits 0.4493 and
1 in the passband(s) and within the limits —1 and —0.6318 in the stopband(s). In
Case B, the required passband and stopband ripples are 6, = 0.1787 and §, =
0.1195, respectively. In both cases, the allowable passband and stopband varia-
tions are thus huge, making the quantization of the subfilter coefficients rather

%It has turned out that the second-order terms of P (x) and those first-order terms of P (x) that do not
possess zeros in the stopband interval [x;,, x,;] are the most sensitive and require sometimes a higher
accuracy.
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TABLE 4-13 Quantized Tap Coefficients for the Structure of Figure 4-58(b)

Case A
b21=2"+2"¢ b1] = =20+ 273 - 277 b[0] =27 —27% - 277
il =27"+272 qlo} = =20 +27% + 273
1] =2° c,[0] =2° — 277
ol =2°-27* c[0] =2° — 273
all=2""4+27? 0] =27 + 276
cs[l] =20 - 273 cs[0] =27" +273
c[l] =20 — 273 cgl0] =27' +27¢
C=-22-2'-27"-27°
Case B
bR]=20-2"%+2"¢ b1l =-2"+27*+278 b[0] =2° +273 ~ 278
gl =27""+27%+277 0] = —27' =272
ol =271 +27¢ 0] =274 - 278
Gl =27"+273 0] =275 +27¢
o] =2° 0] =277
cs[1] =20 =273 cs[0] = =274
1] =20 - 273 cg0] = =273 +27°¢

C=-28+20+22-2°

trivial. To illustrate this, the design of a bandpass filter for the passband edges of
Wp1, Wpy = 0.5 + 0.27 and stopband edges of w,, w, = 0.57 + 0.217 is
considered. The minimum even subfilter order to meet the Case A criteria is 112.
If the subfilter order is increased to 120, then the given criteria are still met when
direct rounding is used to quantize the coefficient values to the closest two powers-
of-two values in 8-bit representations. These values are shown in Table 4-14.%'
Note that because of the symmetry of the filter specifications, every second im-
pulse-response value is equal to zero. The responses of Figure 4-60 are for the
resulting composite design. The overall filter order is 960, whereas the minimum
order of an equivalent conventional direct-form design is 636. The price paid for
getting a multiplier-free design is thus a 50% increase in the filter order. If the
subfilter order is increased to 136, then with direct rounding we end up with the
very simple 6-bit coefficient values of Table 4-15.32

Using the frequency-response masking approach described in Section 4-11-2,
the lowpass filter criteria for Case B with w, = 0.47 and w,; = 0.4027 are met by
a subfilter of the form Fy(z) = FzY)G,(2) + [27V/? — F(z")1G, (), where L

3!The infinite-precision filter has been designed such that the desired function is 0.7247 in the passband
and —0.8159 in the stopbands and the weighting function is 1 in the passband and 1.55 in the stop-
bands. With this weighting, the allowable quantization errors in the passband and in the stopbands are
about the same.

2The infinite-precision filter has been designed using a stopband weighting of 1.7.
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= 16, the order of F(z) is 40, and the orders of G, (z) and G, (z) are 22 and 30,
respectively. This filter has been slightly overdesigned*” such that direct rounding
can be used to quantize the filter coefficients to the 6-bit values shown in Table
4-16. Only one coefficient (g,[14] = 19 X 27%) requires a three powers-of-two
representation. Note that no optimization has been used in finding these coefficient
values. The overall order is 70% higher than that of a direct-form equivalent (5360
compared to 3138). The responses of Figure 4-61 are for the resulting overall
design.

In the above, direct rounding has been used for quantizing the subfilter coeffi-
cients. Another technique, leading to better results, is to use mixed integer linear
programming [LI83a, LI90].

4-13 SUMMARY

Several techniques have been reviewed for synthesizing linear-phase FIR filters
along with efficient realization methods. This chapter started with very fast design
methods: designs based on windowing (Section 4-4), least-squared-error designs
(Section 4-5), maximally flat designs (Section 4-6), and simple analytic designs
(Section 4-7). All these techniques suffer from some drawbacks. For filters de-
signed using windowing, the passband and stopband ripples are approximately
equal. Maximally flat filters are useful in applications where the signal should be
preserved very accurately near the zero frequency, and least-squared-error filters
in applications where white Gaussian noise in the filter stopband is desired to be
attenuated as much as possible. However, if the maximum deviation from the
given response is of main interest, then filters designed in the minimax sense meet
the criteria with a significantly reduced filter order. These filters have been de-
signed in Section 4-8 using the Remez multiple exchange algorithm. This algo-
rithm is the most powerful method for designing arbitrary-magnitude FIR filters
in the minimax sense. It can also be used in a straightforward manner for synthe-
sizing nonlinear-phase FIR filters (Section 4-9).

In some applications there are additional constraints in the time domain or in
the frequency domain, such as in the case of Nyquist filters or in the case where
the transient part of the step response is restricted to vary within the given limits.
Filters meeting these additional constraints can be designed in some cases by prop-
erly using the Remez algorithm as a subroutine (Section 4-10). However, the most
flexible design method for constrained approximation problems of various kinds is
linear programming, which has been considered in detail in Section 4-10.

The last two sections of this chapter have been devoted to the design of com-
putationally efficient linear-phase FIR filters. Section 4-11 concentrated on syn-

¥When designing G, (z) and G, (z), a uniform weighting has been used both in the passband and in the
stopband. It has turned out that for filters with large passband and stopband ripple values, it is not
worth reducing weightings in some parts of the passband and stopband like for filters with small ripple
values (see Section 4-11-2). The stopband weighting of 1.6 has been used.
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thesizing filters that use as basic building blocks the transfer functions obtained by
replacing each unit delay element in a conventional transfer function by multiple
delays. By properly combining these transfer functions together, filters with sig-
nificantly fewer multipliers and adders can be designed. Section 4-12 introduced
another approach to reduce the cost of implementation of FIR filters, based on the
use of identical subfilters. With this approach, multiplier-free highly selective fil-
ters can be designed in a systematic manner. In addition to these design methods,
filters with a reduced number of arithmetic operations can be synthesized using
structures that generate piecewise-polynomial impulse responses [CH84a, CH84b]
or FIR filters that mimic the performance of IIR filters [FA81; SA90]. In these
two approaches, very effective implementations are achieved by using feedback
loops. Furthermore, multirate filtering (see Chapter 14) and fast convolution al-
gorithms (see Chapter 8) provide efficient implementations for FIR filters.
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