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Building Blocks
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Introduction

For many digital signal processing applications, FIR filters are preferred over their IIR
counterparts as the former can be designed with exactly linear phase and they are free of
stability problems and limit cycle oscillations. The major drawback of FIR filters is that
they require, especially in applications demanding narrow transition bands, considerably
more arithmetic operations and hardware components than do comparable IIR filters. Ig-
noring the correction term for very low-order filters, the minimum order of an optimum
linear-phase lowpass FIR filter can be approximated by [Herrmann, Rabiner, and Chan,
1973]

N ≈ Φ(δp, δs)/(ωs − ωp), (1a)

where

Φ(δp, δs) =2π[0.005309(log10 δp)
2 + 0.07114 log10 δp − 0.4761] log10 δs

− 2π[0.00266(log10 δp)
2 + 0.5941 log10 δp + 0.4278].

(1b)

Here, ωp and ωs are the passband and stopband edge angles, whereas δp and δs are the
passband and stopband ripple magnitudes. From the above estimate, it is seen that as the
transition bandwidth ωs − ωp is made smaller, the required filter order increases inversely
proportinally to it. Since the direct-form implementation exploiting the coefficient sym-
metry requires approximately N/2 multipliers, this kind of implementation becomes very
costly if the transition bandwidth is small.

The cost of implementation of a narrow transition-band FIR filter can be significantly
reduced by using multiplier-efficient realizations, fast convolution algorithms, or multirate
filtering. This section considers those multiplier-efficient realizations that use as basic build-
ing blocks the transfer functions obtained by replacing each unit delay in a conventional
transfer function by multiple delays. We concentrate on the synthesis techniques described
in [Jing and Fam, 1984], [Neuvo, Dong, and Mitra, 1984], [Lim, 1986], [Saramäki, Neuvo,
and Mitra 1988], [Saramäki and Fam, 1988], [Lim and Lian, 1993], and [Saramäki, 1993].

Frequency-Response Masking Approach

A very elegant approach to significantly reducing the implementation cost of an FIR filter
has been proposed by Lim [Lim, 1986]. In this approach, the overall transfer function is
constructed as

H(z) = F (zL)G1(z) + [z−LNF /2 − F (zL)]G2(z), (2a)

where

F (zL) =

NF∑

n=0

f(n)z−nL, f(NF − n) = f(n), (2b)

G1(z) = z−M1

N1∑

n=0

g1(n)z−n, g1(N1 − n) = g1(n), (2c)
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Figure 1 An efficient implementation for a filter synthesized using the frequency-response masking

approach.

and

G2(z) = z−M2

N2∑

n=0

g2(n)z−n, g2(N2 − n) = g2(n). (2d)

Here, NF is even, whereas both N1 and N2 are either even or odd. For N1 ≥ N2, M1 = 0
and M2 = (N1 − N2)/2, whereas for N1 < N2, M1 = (N2 − N1)/2 and M2 = 0. These
selections guarantee that the delays of both of the terms of H(z) are equal. An efficient

implementation for the overall filter is depicted in Fig. 1, where the delay term z−LNF /2 is
shared with F (zL). Also, G1(z) and G2(z) can share their delays if a transposed direct-form
implementation (exploiting the coefficient symmetry) is used.

The frequency response of the overall filter can be written as

H(ejω) = H(ω)e−j(LNF +max{N1,N2})ω/2, (3)

where H(ω) denotes the zero-phase frequency response of H(z) and can be expressed as

H(ω) = H1(ω) +H2(ω), (4a)

where
H1(ω) = F (Lω)G1(ω) (4b)

and
H2(ω) = [1 − F (Lω)]G2(ω) (4c)

with

F (ω) = f(NF/2) + 2

NF /2∑

n=1

f(NF/2 − n) cosnω (4d)
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Figure 2 Generation of a complementary periodic filter pair by starting with a lowpass-highpass

complementary pair. (a) Prototype filter responses F (ω) and 1 − F (ω). (b) Periodic responses

F (Lω) and 1 − F (Lω) for L = 6.

and

Gk(ω) =






gk(Nk/2) + 2

Nk/2∑

n=1

gk(Nk/2 − n) cosnω, Nk even

2

(Nk−1)/2∑

n=0

gk((Nk − 1)/2 − n) cos[(n+ 1)ω/2], Nk odd

(4e)

for k = 1, 2.

The efficiency as well as the synthesis of H(z) are based on the properties of the pair

of transfer functions F (zL) and z−LNF /2 −F (zL), which can be generated from the pair of
prototype transfer functions

F (z) =

NF∑

n=0

f(n)z−n (5)

and z−NF /2 − F (z) by replacing z−1 by z−L, that is, by substituting for each unit delay L
unit delays. The order of the resulting filters is increased to LNF , but since only every Lth
impulse response value is nonzero, the filter complexity (number of adders and multipliers)
remains the same. The above prototype pair forms a complementary filter pair since their
zero-phase frequency responses, F (ω) and 1 − F (ω) with F (ω) given by Eq. (4d), add up
to unity. Figure 2(a) illustrates the relations between these responses in the case where

F (z) and z−NF /2 − F (z) is a lowpass-highpass filter pair with edges at θ and φ.

The substitution z−L 7→ z−1 preserves the complementary property resulting in the
periodic responses F (Lω) and 1− F (Lω), which are frequency-axis compressed versions of
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Figure 3 Case A design of a lowpass filter using the frequency-response masking technique.

the prototype responses such that the interval [0, Lπ] is shrunk onto [0, π] [see Fig. 2(b)].
Since the periodicity of the prototype responses is 2π, the periodicity of the resulting
responses is 2π/L and they contain several passband and stopband regions in the interval
[0, π].

For a lowpass filter H(z), one of the transition bands provided by F (zL) or z−LNF /2 −
F (zL) is used as that of the overall filter. In the first case, denoted by Case A, the edges
are given by (see Fig. 3)

ωp = (2lπ + θ)/L, ωs = (2lπ + φ)/L, (6)

where l is a fixed integer, and in the second case, referred to as Case B, by (see Fig. 4)

ωp = (2lπ − φ)/L, ωs = (2lπ − θ)/L. (7)

The widths of these transition bands are (φ − θ)/L, which is only 1/L-th of that of the
prototype filters. Since the filter order is roughly inversely proportional to the transition
band width, this means that the arithmetic complexity of the periodic transfer functions
to provide one of the transition bands is only 1/L-th of that of a conventional nonperiodic
filter. Note that the orders of both the periodic filters and the corresponding nonperiodic
filters are approximately the same, but the conventional filter does not contain zero-valued
impulse response samples.

In order to exploit the attractive properties of the periodic transfer functions, the
two low-order masking filters G1(z) and G2(z) are designed such that the subresponses
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Figure 4 Case B design of a lowpass filter using the frequency-response masking technique.

H1(ω) and H2(ω) as given by Eqs. (4b) and (4c) approximate in the passband F (Lω) and
1 − F (Lω), respectively, so that their sum approximates unity, as is desired. In the filter
stopband, the role of the masking filters is to attenuate the extra unwanted passbands and
transition bands of the periodic responses. In Case A, this is achieved by selecting the
edges of G1(z) and G2(z) as (see Fig. 3)

ω
(G1)
p = ωp = [2lπ + θ]/L, ω

(G1)
s = [2(l + 1)π − φ]/L (8a)

ω
(G2)
p = [2lπ − θ]/L, ω

(G2)
s = ωs = [2lπ + φ]/L. (8b)

Since F (Lω) ≈ 0 on [ωs, ω
(G1)
s ], the stopband region of G1(z) can start at ω = ω

(G1)
s ,

instead of ω = ωs. Similarly, since H1(ω) ≈ F (Lω) ≈ 1 and [1−F (Lω)] ≈ 0 on [ω
(G2)
p , ωp],

the passband region of G2(ω) can start at ω = ω
(G2)
p , instead of ω = ωp.

For Case B designs, the required edges of the two masking filters G1(z) and G2(z) are
(see Fig. 4)

ω
(G1)
p = [2(l − 1)π + φ]/L, ω

(G1)
s = ωs = [2lπ − θ]/L (9a)

ω
(G2)
p = ωp = [2lπ − φ]/L, ω

(G2)
s = [2lπ + θ]/L. (9b)

The effects of the ripples of the subresponses on the ripples of the overall response H(ω)
have been studied carefully in [Lim, 1986]. Based on these observations, the design of H(z)



– 6 –

with passband and stopband ripples of δp and δs can be accomplished for both Case A and
Case B in the following two steps:

1. Design Gk(z) for k = 1, 2 using either the Remez algorithm or linear programming such

that Gk(ω) approximates unity on [0, ω
(Gk)
p ] with tolerance 0.85δp · · · 0.9δp and zero on

[ω
(Gk)
s , π] with tolerance 0.85δs · · · 0.9δs.

2. Design F (Lω) such that the overall response H(ω) approximates unity on

Ω
(F )
p =





[
ω

(G2)
p , ωp

]
=

[
[2lπ − θ]/L, [2lπ + θ]/L

]
for Case A

[
ω

(G1)
p , ωp

]
=

[
[2(l − 1)π + φ]/L, [2lπ − φ]/L

]
for Case B

(10a)

with tolerance δp and approximates zero on

Ω
(F )
s =





[
ωs, ω

(G1)
s

]
=

[
[2lπ + φ]/L, [2(l + 1)π − φ]/L

]
for Case A

[
ωs, ω

(G2)
s

]
=

[
[2lπ − θ]/L, [2lπ + θ]/L

]
for Case B

(10b)

with tolerance δs.

The design of F (Lω) can be performed conveniently using linear programming [Lim,
1986]. Another, computationally more efficient, alternative is to use the Remez algorithm
[Saramäki, 1993]. Its use is based on the fact that

|EH(ω)| ≤ 1 for ω ∈ Ω
(F )
p ∪ Ω

(F )
s , (11a)

where
EH(ω) = WH(ω)[H(ω)−D(ω)] (11b)

is satisfied when F (ω) is designed such that the maximum absolute value of the error
function given in Table 1 becomes less than or equal to unity on [0, θ] ∪ [φ, π].

For Step 2 of the above algorithm, DH(ω) = 1 and WH(ω) = 1/δp on Ω
(F )
p , whereas

DH(ω) = 0 and WH(ω) = 1/δs on Ω
(F )
s , giving for k = 1, 2

DH [hk(ω)] =

{
1 for ω ∈ [0, θ]
0 for ω ∈ [φ, π],

WH [hk(ω)] =

{
1/δp for ω ∈ [0, θ]
1/δs for ω ∈ [φ, π]

(12a)

for Case A and

DH [hk(ω)] =

{
1 for ω ∈ [0, θ]
0 for ω ∈ [φ, π],

WH [hk(ω)] =

{
1/δs for ω ∈ [0, θ]
1/δp for ω ∈ [φ, π]

(12b)

for Case B. Even though the resulting error function looks very complicated, it is straight-
forward to use the subroutines EFF and WATE in the Remez algorithm described in
[McClellan, Parks, Rabiner, 1973] for optimally designing F (z).

The order of G1(z) can be considerably reduced by allowing larger ripples on the those
regions of G1(z) where F (Lω) has one of its stopbands. As a rule of thumb, the ripples
on these regions can be selected to be ten times larger [Lim, 1986]. Similarly, the order
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Table 1 Error Function for Designing F (ω) Using the Remez Algorithm

EF (ω) = WF (ω)[F (ω)−DF (ω)],

where

DF (ω) = [u(ω) + l(ω)]/2, WF (ω) = 2/[u(ω) − l(ω)]

with

u(ω) = min

(
Ψ1(ω) + ψ1(ω),Ψ2(ω) + ψ2(ω)

)

l(ω) = max

(
Ψ1(ω) − ψ1(ω),Ψ2(ω) − ψ2(ω)

)

Ψk(ω) =
DH [hk(ω)] −G2[hk(ω)]
G1[hk(ω)] −G2[hk(ω)]

, k = 1, 2

ψk(ω) =
1/WH [hk(ω)]

|G1[hk(ω)] −G2[hk(ω)]|
, k = 1, 2

and

h1(ω) = (2lπ + ω)/L, h2(ω) =

{
(2lπ − ω)/L for ω ∈ [0, θ]
[2(l + 1)π − ω]/L for ω ∈ [φ, π]

for Case A and

h1(ω) = (2lπ − ω)/L, h2(ω) =

{
(2lπ + ω)/L for ω ∈ [0, θ]
[2(l − 1)π + ω]/L for ω ∈ [φ, π]

for Case B.

of G2(z) can be decreased by allowing (ten times) larger ripples on those regions where
F (Lω) has one of its passbands.

In practical filter synthesis problems, ωp and ωs are given and l, L, θ, and φ must be
determined. To ensure that Eq. (6) yields a desired solution with 0 ≤ θ < φ ≤ π, it is
required that (see Fig. 3)

2lπ

L
≤ ωp, ωs ≤

(2l + 1)π

L
(13a)

for some positive integer l, giving

l = ⌊Lωp/(2π)⌋, θ = Lωp − 2lπ, φ = Lωs − 2lπ, (13b)

where ⌊x⌋ stands for the largest integer which is smaller than or equal to x. Similarly, to
ensure that Eq. (7) yields a desired solution with 0 ≤ θ < φ ≤ π, it is required that (see
Fig. 4)

(2l − 1)π

L
≤ ωp, ωs ≤

2lπ

L
(14a)

for some positive integer l, giving

l = ⌈Lωs/(2π)⌉, θ = 2lπ − Lωs, φ = 2lπ − Lωp, (14b)
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where ⌈x⌉ stands for the smallest integer which is larger than or equal to x. For any set
of ωp, ωs, and L, either Eq. (13b) or Eq. (14b) (not both) will yield the desired θ and φ,
provided that L is not too large. If θ = 0 or φ = π, then the resulting specifications for
F (ω) are meaningless and the corresponding value of L cannot be used.

The remaining problem is to determine L to minimize the number of multipliers, which
is NF /2 + 1 + ⌊(N1 + 2)/2⌋ + ⌊(N2 + 2)/2⌋ or NF + N1 + N2 + 3 depending on whether
the symmetries in the filter coefficients are exploited or not. Hence, in both cases, a good
measure of the filter complexity is the sum of the orders of the subfilters. Instead of
determining the actual minimum filter orders for various values of L, the computational
workload can be significantly reduced based on the use of the estimation formula given
by Eq. (1). Since the widths of transition bands of F (z), G1(z), and G2(z) are φ − θ,
(2π − φ − θ)/L, and (φ + θ)/L, respectively, good estimates for the corresponding filter
orders are

NF ≈
Φ(δp, δs)

φ− θ
, N1 ≈

LΦ(δp, δs)

2π − φ− θ
, N2 ≈

LΦ(δp, δs)

φ+ θ
. (15)

For the optimum nonperiodic direct-form design, the transition bandwidth is ωs−ωp =
(φ− θ)/L, giving

Nopt ≈
LΦ(δp, δs)

φ− θ
. (16)

The sum of the subfilter orders can be expressed in terms of Nopt as follows

Nove = Nopt

[
1

L
+

φ− θ

2π − φ− θ
+
φ− θ

φ+ θ

]
. (17)

The smallest values of Nove are typically obtained at those values of L for which θ+ φ ≈ π
and, correspondingly, 2π − θ − φ ≈ π. In this case, N1 ≈ N2 and Eq. (17) reduces, after
substituting φ− θ = L(ωs − ωp), to

Nove = Nopt

[
1

L
+ 2L(ωs − ωp)/π

]
. (18)

At these values of L, NF decreases and N1 ≈ N2 increases inversely proportionally to L
with the minimum of Nove,

Nove = 2Nopt

√
2(ωs − ωp)

π
, (19)

taking place at

Lopt = 1

/√
2(ωs − ωp)

π
. (20)

If for L = Lopt, θ + φ is not approximately equal to π, then L minimizing the filter
complexity can be found in the near vicinity of Lopt. The following example illustrates the
use of the above estimation formulas.

Example 1: Consider the specifications: ωp = 0.4π, ωs = 0.402π, δp = 0.01, and
δs = 0.001. For the optimum conventional direct-form design, Nopt = 2541, requiring 1271
multipliers when the coefficient symmetry is exploited. Eq. (20) gives Lopt = 16. Table
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Table 2 Estimated Filter Orders for the Admissible Values of L in the Vicinity

of Lopt = 16

L Case l θ φ NF N1 N2 NF +N1 +N2

8 B 2 0.784π 0.8π 318 98 26 442

9 B 2 0.382π 0.4π 282 38 58 378

11 A 2 0.4π 0.422π 232 47 69 348

12 A 2 0.8π 0.824π 212 162 38 412

13 B 3 0.774π 0.8π 196 155 43 394

14 B 3 0.372π 0.4π 182 58 92 332

16 A 3 0.4π 0.432π 160 70 98 328

17 A 3 0.8π 0.834π 150 236 54 440

18 B 4 0.764π 0.8π 142 210 58 410

19 B 4 0.362π 0.4π 134 78 128 340

21 A 4 0.4π 0.442π 122 92 128 342

22 A 4 0.8π 0.844π 116 314 68 498

2 shows, for the admissible values of L in the vicinity of this value, l, θ, φ, the estimated
orders for the subfilter, and the sum of the subfilter orders as well as whether the overall
filter is a Case A or Case B design. For NF , the minimum even order larger than or equal
to the estimated order is used, whereas N2 is forced even (odd) if N1 is even (odd).

Also with the estimated filter orders of Table 2, L = 16 gives the best result. The
actual filter orders are NF = 162, N1 = 70, and N2 = 98. The responses of the subfilters as
well as that of the overall design are depicted in Fig. 5. The overall number of multipliers
and adders for this design are 168 and 330, respectively, which are 13 % of those required
by an equivalent conventional direct-form design (1271 and 2541). The overall filter order
is 2690, which is only 6 % higher than that of the direct-form design (2541).

Multistage Frequency-Response Masking Approach

If the order of F (z) is too high, its complexity can be reduced by implementing it using
the frequency-response masking technique. Extending this to an arbitrary number of stages
results in the multistage frequency-response masking approach [Lim, 1986], [Lim and Lian,
1993], where H(z) is generated iteratively as

H(z) ≡ F (0)(z) = F (1)(zL1)G
(1)
1 (z) + [z−L1N

(1)
F

/2 − F (1)(zL1)]G
(1)
2 (z) (21a)

F (1)(z) = F (2)(zL2)G
(2)
1 (z) + [z−L2N

(2)
F

/2 − F (2)(zL2)]G
(2)
2 (z) (21b)

...
...

...

F (R−1)(z) = F (R)(zLR)G
(R)
1 (z) + [z−LRN

(R)
F

/2 − F (R)(zLR)]G
(R)
2 (z). (21c)
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Figure 5 Amplitude responses for a filter synthesized using the frequency-response masking ap-

proach. (a) Periodic response F (Lω). (b) Responses G1(ω) (solid line) and G2(ω) (dashed line).

(c) Overall response.

Here, the G
(r)
1 (z)’s and G

(r)
2 (z)’s for r = 1, 2, · · · , R as well as F (R)(z) are the filters to be

designed. For implementation purposes, H(z) can be expressed in the form shown in Table
3. Figure 6 shows an efficient implementation for a three-stage filter, where the delay terms

z−M3 , z−m2 , and z−m1 can be shared with F (3)(zL̂3). In order to obtain a desired overall

solution, the orders of the G
(r)
1 (z)’s and G

(r)
2 (z)’s for r = 2, 3, · · · , R, denoted by N

(r)
1 and
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Table 3 Implementation Form for the Transfer Function in the Multistage
Frequency-Response Approach

H(z) ≡ F (0)(zL̂0) = F (1)(zL̂1)G
(1)
1 (zL̂0) + [z−M1 − F (1)(zL̂1)]G

(1)
2 (zL̂0)

F (1)(zL̂1) = F (2)(zL̂2)G
(2)
1 (zL̂1) + [z−M2 − F (2)(zL̂2)]G

(2)
2 (zL̂1)

...
...

...

F (R−1)(zL̂R−1) = F (R)(zL̂R)G
(R)
1 (zL̂R−1) + [z−MR − F (R)(zL̂R)]G

(R)
2 (zL̂R−1),

where

L̂0 = 1, L̂r =
r∏

k=1

Lk, r = 1, 2, · · · , R

MR = L̂RN
(R)
F /2, MR−r = MR−r+1 +mR−r, r = 1, 2, · · · , R− 1

mR−r = L̂R−r max{N
(R−r+1)
1 , N

(R−r+1)
2 }/2, r = 1, 2, · · · , R− 1

N
(R)
F is the order of F (R)(z).

N
(r)
1 and N

(r)
2 are the orders of G

(r)
1 (z) and G

(r)
2 (z), respectively.

N
(r)
2 in Table 3, have to be even.

Given the filter specifications and the Lr’s for r = 1, 2, · · · , R, the G
(r)
1 (z)’s and G

(r)
1 (z)’s

as well as F (R)(z) can be synthesized in the following steps:

1. Set r = 1, L = L1, and

DH(ω) =

{
1 for ω ∈ [0, ωp]
0 for ω ∈ [ωs, π],

WH(ω) =

{
1/δp for ω ∈ [0, ωp]
1/δs for ω ∈ [ωs, π].

(22)

2. Determine whether F (r−1)(z) is a Case A or Case B design as well as θ, φ, and l for

F (r)(z) according to Eq. (13b) or (14b). Also, determine ω
(Gk)
p and ω

(Gk)
p for k = 1, 2

from Eq. (8) or (9).

3. Design G
(r)
k (z) for k = 1, 2 using either the Remez algorithm or linear programming,

in such a way that

max

ω ∈ [0, ω
(Gk)
p ] ∪ [ω

(Gk)
s , π]

|WH(ω)[G
(r)
k (ω) −DH(ω)]| ≤ 0.9. (23)

4. Determine WF (ω) and DF (ω) from Table 1.

5. If r = R, then go to the next step. Otherwise, set r = r+1, L = Lr, WH(ω) = WF (ω),
DH(ω) = DF (ω), ωp = θ, ωs = φ, and go to Step 2.
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Figure 6 An implementation for a filter synthesized using the three-stage frequency-response

masking approach.

6. Design F (R)(z), using either the Remez algorithm or linear programming, in such a
way that

max
ω ∈ [0, θ] ∪ [φ, π]

|WF (ω)[F (R)(ω) −DF (ω)]| ≤ 1. (24)

In the above algorithm, G
(1)
1 (z) and G

(1)
2 (z) are determined like in the one-stage

frequency-response masking technique. The remaining filter part as given by Eq. (21b)
has then to be designed such that the maximum absolute value of the error function given
in Table 1 becomes less than or equal to unity on [0, θ] ∪ [φ, π]. Using the substitutions

ωp = θ and ωs = φ, the synthesis problem for F (1)(z) becomes the same as for the overall
filter with the only exception that the desired function DF (ω) and the weighting function
WF (ω) are not constants in the passband and stopband regions. Therefore, the following

G
(r)
1 (z)’s and G

(r)
2 (z)’s can be designed in the same manner. Finally, F (R)(z) is determined

at Step 6 like F (z) in one-stage designs.

Given the filter specifications, the remaining problem is to select R as well as the Lr’s
to minimize the filter complexity. This problem has been considered in [Lim and Lian,
1993]. Assuming that for all the selected Lr’s, θ + φ ≈ π, the sum of the estimated orders

of F (R)(z) and the G
(r)
1 (z)’s and G

(r)
2 (z)’s becomes

Nove(R) =

[
1
/ R∏

r=1

Lr + [2(ωs − ωp)/π]

R∑

r=1

Lr

]
Nopt. (25)
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The minimum of Nove(R) taking place at

L1 = L2 = · · · = LR = Lopt(R) =

[
2(ωs − ωp)

π

]−1/(R+1)

(26)

is

Nove(R) = (R+ 1)

[
2(ωs − ωp)

π

]R/(R+1)

Nopt. (27)

The derivation of the above formula is based on the assumption that the orders of all

the G
(r)
1 (z)’s and G

(r)
2 (z)’s for r = 1, 2, · · · , R are equal, which is seldom true. Therefore,

in order to minimize the overall filter complexity, the values of the Lr’s should be varied in
the vicinity of Lopt(R). Given ωp, ωs, and R, good values for the Lr’s can be obtained by
the following procedure:

1. Set r = 1.

2. Determine L = Lopt(R+ 1 − r) from Eq. (26).

3. For values of L̃r in the vicinity of L determine θ(L̃r) and φ(L̃r).

4. If r = R, then go to Step 7. Otherwise, go to the next step.

5. Determine Lr = L̃r minimizing

(R+1−r)

[
2[φ(L̃r) − θ(L̃r)]

π

](R−r)/(R+1−r)

+
φ(L̃r) − θ(L̃r)

θ(L̃r) + φ(L̃r)
+

φ(L̃r) − θ(L̃r)

2π − θ(L̃r) − φ(L̃r)
. (28)

6. Set r = r + 1, ωp = θ(Lr), ωs = φ(Lr), and go to Step 2.

7. Determine LR = L̃R minimizing

1

L̃R

+
φ(L̃R) − θ(L̃R)

θ(L̃R) + φ(L̃R)
+

φ(L̃R) − θ(L̃R)

2π − θ(L̃R) − φ(L̃R)
. (29)

At the first step in this procedure, L1 is determined to minimized the estimated overall

complexity of G
(1)
1 (z), G

(1)
2 (z), and the remaining F (1)(z), which is given by Eq. (28) as

a fraction of Nopt. Compared to Eq. (17) for the one-stage design, 1/L̃r is replaced in

Eq. (28) by the first term. This term estimates the complexity of F (1)(z) based on the use

of Eq. (27) with ωp = θ(L̃r) and ωs = φ(L̃r) and the fact that it is a R − 1 stage design.
Also, L2 is redetermined based on the same assumptions and the process is continued in
the same manner. Finally, LR is determined to minimize the sum of the estimated orders

of G
(R)
1 (z), G

(R)
2 (z), and F (R)(z) like in the one-stage design [cf. Eq. (17)].

Example 2: Consider the specifications of Example 1. For a two-stage design, the above
procedure gives L1 = L2 = 6. For these values, F (0)(z) ≡ H(z) and F (1)(z) are Case A
designs (l = 1) with θ = 0.4π and φ = 0.412π; and θ = 0.4π and φ = 0.472π, respectively.

The minimum orders ofG
(1)
1 (z), G

(1)
2 (z), G

(2)
1 (z), G

(2)
2 (z), and F (2)(z) are 26, 40, 28, 36, and

74, respectively. Compared with the conventional direct-form FIR filter of order 2541, the
number of multipliers and adders required by this design (107 and 204) are only 8 % at the
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Figure 7 Amplitude responses for filters synthesized using the multistage frequency-response

masking approach. (a) Two-stage filter. (b) Three-stage filter.

expense of a 15 % increase in the overall filter order (to 2920). For a three-stage design, we

get L1 = L2 = L3 = 4. In this case, F (0)(z), F (1)(z), and F (2)(z) are Case B designs (l = 1)
with θ = 0.392π and φ = 0.4π; θ = 0.4π and φ = 0.432π; and θ = 0.272π and φ = 0.4π,

respectively. The minimum orders of G
(1)
1 (z), G

(1)
2 (z), G

(2)
1 (z), G

(2)
2 (z), G

(3)
1 (z), G

(3)
2 (z),

and F (3)(z) are 16, 28, 18, 24, 16, 32, and 40, respectively. The number of multipliers and
adders (94 and 174) are only 7% of those required by the direct-form equivalent at the
expense of a 26 % increase in the overall filter order (to 3196). The amplitude responses
of the resulting two-stage and three-stage designs are depicted in Fig. 7.

Design of Narrowband Filters

Another general approach for designing multiplier-efficient FIR filters has been pro-
posed by Jing and Fam [Jing and Fam, 1984]. This design technique is based on iteratively
using the fact that there exist efficient implementation forms for filters with ωs < π/2 and
for filters with ωp > π/2. A filter with ωs < π/2 is called a narrowband filter while that with
ωp > π/2 is called a wideband filter. This subsection considers the design of narrowband
filters, whereas the next subsection is devoted to the design wideband filters. Finally, these
techniques are combined, resulting in the Jing-Fam approach.
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Figure 8 Synthesis of a narrowband filter as a cascade of a periodic and a nonperiodic filter.

When the stopband edge of H(z) is less than π/2, the first transition band of F (zL)
can be used as that of H(z) (see Fig. 8), that is,

ωp = φ/L, ωs = θ/L. (30)

In this case, the overall transfer function can be written in the following simplified from
[Neuvo, Dong, Mitra, 1984], [Saramäki, Neuvo, Mitra, 1987]:

H(z) = F (zL)G(z), (31)

where the orders of both F (z) and G(z) can be freely selected to be either even or odd.
As shown in Fig. 8, the role of G(z) is to provide the desired attenuation on those regions
where F (zL) has extra unwanted passband and transition band regions, that is, on

Ωs(L, ωs) =

⌊L/2⌋⋃

k=1

[
k
2π

L
− ωs, min(k

2π

L
+ ωs, π)

]
. (32)

There exist two ways of designing the subfilters F (zL) and G(z). In the first case, they
are determined, by means of the Remez algorithm, to satisfy

1 − δ
(F )
p ≤ F (ω) ≤ 1 + δ

(F )
p for ω ∈ [0, Lωp] (33a)

−δs ≤ F (ω) ≤ δs for ω ∈ [Lωs, π] (33b)

1 − δ
(G)
p ≤ G(ω) ≤ 1 + δ

(G)
p for ω ∈ [0, ωp] (33c)

−δs ≤ G(ω) ≤ δs for ω ∈ Ωs(L, ωs), (33d)
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where
δ
(G)
p + δ

(F )
p = δp. (33e)

The ripples δ
(F )
p and δ

(G)
p can be selected, e.g., to be half the overall ripple δp. In the above

specifications, both F (zL) and G(z) have [0, ωp] as a passband region.

Another approach, leading to a considerable reduction in the order of G(z), is to design
simultaneously F (ω) to satisfy

1 − δp ≤ F (ω)G(ω/L) ≤ 1 + δp for ω ∈ [0, Lωp] (34a)

−δs ≤ F (ω)G(ω/L) ≤ δs for ω ∈ [Lωs, π] (34b)

and G(ω) to satisfy
G(0) = 1 (35a)

−δs ≤ F (Lω)G(ω) ≤ δs for ω ∈ Ωs(L, ωs). (35b)

The desired overall solution can be obtained by iteratively determining, by means of the
Remez algoritm, F (z) to meet the criteria of Eq. (34) and G(z) to meet the criteria of
Eq. (35). Typically, only three to five designs of both of the subfilters are required to
arrive at a solution which does not change if further iterations are used. For more details,
see [Saramäki, Neuvo, Mitra, 1987] or [Saramäki, 1993]. Figure 9 shows typical responses
for G(z) and F (zL) and for the overall optimized design. As seen in this figure, G(z) has
all its zeros on the unit circle concentrating on providing the desired attenuation for the
overall response on Ωs(L, ωs), whereas F (zL) makes the overall response equiripple in the
passband and in the stopband portion [ωs, π/L].

For the order of F (z), a good estimate is

NF ≈
Φ(δp, δs)/L

ωs − ωp
, (36)

so that it is 1/Lth of that of an optimum conventional nonperiodic filter meeting the given
overall criteria. The order of G(z), in turn, can be estimated accurately by [Saramäki,
1993]

NG = cosh−1(1/δs)

[
1

X
(
ωp,

2π
L −

ωp + 2ωs
3

) +
L/2

X
(
Lωp
2 , π −

L(ωp + 2ωs)
6

)
]
, (37a)

where
X(ω1, ω2) = cosh−1

[
(2 cosω1 − cosω2 + 1)/(1 + cosω2)

]
. (37b)

The minimization of the number of multipliers, ⌊(NF + 2)/2⌋+ ⌊(NF + 2)/2⌋, with respect
to L can be performed conveniently by evaluating the sum of the above estimated orders
for admissible values of L, 2 ≤ L < π/ωs. The upper limit is a consequence of the fact that
the stopband edge angle of F (z), φ = Lωs, must be less than π. The following example
illustrates the minimization of the filter complexity.

Example 3. The narrowband specifications are ωp = 0.025π, ωs = 0.05π, δp = 0.01,
and δs = 0.001. Figure 10(a) shows the estimated NF , NG, and NF + NG as functions
of L, whereas Fig. 10(b) shows the corresponding actual minimum orders. It is seen that
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Figure 9 Typical amplitude responses for a filter of the form H(z) = F (zL)G(z). L = 8,

ωp = 0.025π, ωs = 0.05π, δp = 0.01, and δs = 0.001. (a) F (zL) of order 26 in zL. (b) G(z) of

order 19. (c) Overall filter.

the estimated orders are so close to the actual ones that the minimization of the filter
complexity can be accomplished based on the use of the above estimation formulas. It
is also observed that NF + NG is a unimodal function of L. With the estimates, L = 8
gives the best result. The estimated orders are NF = 25 and NG = 19, whereas the actual
orders are NF = 26 and NG = 19. The amplitude responses for the subfilters and for the
overall filter are depicted in Fig. 9. This design requires 24 multipliers and 45 adders. The
minimum order of a conventional direct-form design is 216, requiring 109 multipliers and
216 adders. The price paid for these 80 % reductions in the filter complexity is a 5 %
increase in the overall filter order (from 216 to 227).
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Figure 10 Estimated and actual subfilter orders as well as the sum of the subfilter orders verus L

in a typical narrowband case.

In the cases where L can be factored into the product

L =
R∏

r=1

Lr, (38)

where the Lr’s are integers, further savings in the filter complexity can be achieved by
designing G(z) in the following multistage form [Saramäki, Neuvo, Mitra, 1988]:

G(z) = G1(z)G2(z
L1)G3(z

L1L2) · · ·GK(zL1L2···LR−1). (39)

Another alternative to reduce the number of adders and multipliers is to use special
structures for implementing G(z) [Saramäki, Neuvo, Mitra, 1988], [Saramäki, Fam, 1988],
[Saramäki, 1993].

Design of Wideband Filters

The synthesis of a wideband filter H(z) can be converted into the design of a narrow-

band filter based on the following fact. If Ĥ(z) of even-order 2M is lowpass design with
the following edges and ripples:

ω̂p = π − ωs, ω̂s = π − ωp, δ̂p = δs, δ̂s = δp, (40)

then
H(z) = z−M − (−1)MĤ(−z) (41)

is a lowpass filter having the passband and stopband edge angles at ωp and ωs and the
passband and stopband ripples of δp and δs. Hence, if ωp and ωs of H(z) are larger than
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Figure 11 Implementation for a wideband filter in the formH(z) = z−M−(−1)MF ((−z)L)G(−z).

F̂ (zL) = (−1)MF ((−z)L) and Ĝ(z) = G(−z).

π/2, then ω̂p and ω̂s of Ĥ(z) are smaller than π/2. This enables us to design Ĥ(z) in the
form

Ĥ(z) = F (zL)G(z) (42)

using the techniques of the previous subsection, yielding

H(z) = z−M − (−1)MF ((−z)L)G(−z), (43a)

where
M = (LNF +NG)/2 (43b)

is half the order of F (zL)G(z). For implementation purposes, H(z) is expressed as

H(z) = z−M − F̂ (zL)Ĝ(z), F̂ (zL) = (−1)MF ((−z)L), Ĝ(z) = G(−z). (44)

An implementation of this transfer function is shown in Fig. 11, where the delay term z−M

can be shared with F̂ (zL). To avoid half-sample delays, the order of F̂ (zL)Ĝ(z) has to be
even.

Example 4: The wideband specifications are ωp = 0.95π, ωs = 0.975π, δp = 0.001, and

δs = 0.01. From Eq. (40), the specifications of Ĥ(z) become ω̂p = 0.025π, ω̂s = 0.05π,

δ̂p = 0.01, and δ̂s = 0.001. These are the narrowband specifications of Example 3. The

desired wideband design is thus obtained by using the subfilters F (zL) and G(z) of Fig. 9
(L = 8, NF = 26, and NG = 19). However, the overall order is odd (227). A solution with
even order is achieved by increasing the order of G(z) by one (NG = 20). Figure 12 shows
the amplitude response of the resulting filter, requiring 25 multipliers, 46 adders, and 228
delay elements. The corresponding numbers for a conventional direct-form equivalent of
order 216 are 109, 216, and 216, respectively.

Generalized Designs

The Jing-Fam approach [Jing and Fam, 1984] is based on iteratively using the facts that
a narrowband filter can be implemented effectively as H(z) = F (zL)G(z) and a wideband
filter in the form of Eq. (43). In this approach, a narrowband filter is generated as [Saramäki
and Fam, 1988]

H(z) ≡ Ĥ1(z) = G1(z)F1(z
L1), (45a)

where
F1(z) = z−M1 − (−1)M1Ĥ2(−z), Ĥ2(z) = G2(z)F2(z

L2) (45b)
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Figure 12 Amplitude response for a wideband filter implemented as shown in Fig. 11.

F2(z) = z−M2 − (−1)M2Ĥ3(−z), Ĥ3(z) = G3(z)F3(z
L3) (45c)

...
...

...

FR−2(z) = z−MR−2 − (−1)MR−2ĤR−1(−z), ĤR−1(z) = GR−1(z)FR−1(z
LR−1) (45d)

FR−1(z) = z−MR−1 − (−1)MR−1ĤR(−z), ĤR(z) = GR(z), (45e)

with Mr for r = 1, 2, · · · , R − 1 being half the order of Ĥr+1(z). Here, the basic idea is to
convert iteratively the design of the narrowband overall filter into the designs of narrowband

transfer functions Ĥr(z) for r = 2, 3, · · · , R until the transition bandwidth of the remaining

ĤR(z) = GR(z) becomes large enough and, correspondingly, its complexity (the number of
multipliers) is low enough. The desired conversion is performed by properly selecting the
Lr’s and designing the low-order filters Gr(z) for r = 1, 2, · · · , R− 1.

In order to determine the conditions for the Lr’s as well as the design criteria for the
Gr(z)’s, we consider the rth iteration, where

Ĥr(z) = Gr(z)Fr(z
Lr) (46a)

with
Fr(z) = z−Mr − (−1)MrĤr+1(−z). (46b)

Let the ripples of Ĥr(z) be δ̂
(r)
p and δ̂

(r)
s and the edges be located at ω

(r)
p < π/2 and

ω
(r)
s < π/2. Since Fr(z) is implemented in the form of Eq. (46b), it cannot alone take care

of shaping the passband response of Ĥr(z). Therefore, the simultaneous criteria for Gr(z)
and Fr(z) are stated according to Eq. (33) so that the passband and stopband regions of

Gr(z) are, respectively, [0, ω
(r)
p ] and Ωs(Lr, ω

(r)
s ) with Ωs(L, ωs) given by Eq. (32). Lr has

to be determined such that the edges of Fr(z), Lrω
(r)
p and Lrω

(r)
s , become larger than π/2

and, correspondingly, the edges of Ĥr+1(z), ω
(r+1)
p = π − Lrω

(r)
s and ω

(r+1)
p = π − Lrω

(r)
s ,

become less than π/2.
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In the case of the specifications of Eq. (33), the stopband ripple of Gr(z), denoted for

later use by δ
(r)
s , and that of Fr(z) are equal to δ̂

(r)
s , whereas the sum of the passband ripples

is equal to δ̂
(r)
p . Denoting by δ

(r)
p the passband ripple selected for Gr(z), the corresponding

ripple of Fr(z) is δ̂
(r)
p − δ

(r)
p . Since Fr(z) and Ĥr+1(z) interchange the ripples, the ripple

requirements for Ĥr+1(z) are δ̂
(r+1)
p = δ̂

(r)
s and δ̂

(r+1)
s = δ̂

(r)
p − δ

(r)
p .

The criteria for the Gr(z)’s for r = 1, 2, · · · , R, can thus be stated as

1 − δ
(r)
p ≤ Gr(ω) ≤ 1 + δ

(r)
p for ω ∈ [0, ω

(r)
p ] (47a)

−δ
(r)
s ≤ Gr(ω) ≤ δ

(r)
s for ω ∈ Ω

(r)
s , (47b)

where

Ω
(r)
s =





⌊Lr/2⌋⋃

k=1

[
k
2π

Lr
− ω

(r)
s , min(k

2π

Lr
+ ω

(r)
s , π)

]
for r < R

[ω
(R)
s , π] for r = R.

(47c)

Here, the ω
(r)
p ’s and ω

(r)
s ’s for r = 2, 3, · · · , R are determined iteratively as

ω
(r)
p = π − Lr−1ω

(r−1)
s , ω

(r)
s = π − Lr−1ω

(r−1)
p , (47d)

where ω
(1)
p = ωp and ω

(1)
s = ωs are the edges of the overall design, and the δ

(r)
s ’s as

δ
(r)
s =






δp −
r−1∑

k=1
k odd

δ
(k)
p for r even

δs −

r−1∑

k=2
k even

δ
(k)
p for r odd,

(47e)

where δp and δs are the ripple values of the overall filter and δ
(r)
p is the passband ripple

selected for Gr(z). In order for the overall filter to meet the given ripple requirements, δ
(R)
s

and the δ
(r)
p ’s have to satisfy for R even

R∑

k=2
k even

δ
(k)
p = δs, δ

(R)
s +

R−1∑

k=1
k odd

δ
(k)
p = δp (48a)

or for R odd
R∑

k=1
k odd

δ
(k)
p = δp, δ

(R)
s +

R−1∑

k=2
k even

δ
(k)
p = δs. (48b)

In the above, the Lr’s have to be determined such that the ω
(r)
s ’s for r < R become smaller

than π/2. It is also desired that for the last filter stage GR(z), ω
(R)
s is smaller than π/2.
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If 2π/Lr−ω
(r)
s < π/2 for r < R or ω

(R)
s < π/2, then the arithmetic complexity of Gr(z)

can be reduced by designing it, using the techniques of previous subsections, in the form

Gr(z) = G
(1)
r (zKr)G

(2)
r (z). (49)

It is preferred to design the subfilters of Gr(z) in such a way that the passband shaping is

done entirely by G
(1)
r (zKr). The number of multipliers in the Gr(z)’s for r = 1, 2, · · · , R−1

can be reduced by the experimentally observed fact that the overall filter still meets the
given criteria when the stopband regions of these filters are decreased by using in Eq. (47c)
the substitution

(2ω
(r)
s + ω

(r)
p )/3 7→ ω

(r)
s . (50)

After some manipulations, H(z) as given by Eqs. (45) and (49) can be rewritten in the

explicit form shown in Table 4. If Gr(z) is a single-stage design, then G
(1)
r (zKr) ≡ 1. In

order to obtain the desired overall solution, the overall order of Gr(z) for r ≥ 2, denoted
by Nr in Table 4, has to be even. Realizations for the overall transfer function are given
Fig. 13, where

mr = M̂r − M̂r+1 =
1

2
L̂rNr, r = 2, 3, · · · , R− 1, mR = M̂R. (51)

The structure of Fig. 13(b) is preferred since the delay terms z−mr can be shared with

H
(1)
R (zKRL̂R) or, if this filter stage is not present, with H

(2)
R (zL̂R). This is because the

overall order of this filter stage is usually larger than the sum of the mr’s.

If the edges ωp and ωs of the overall filter are larger than π/2, then we set H(z) ≡

F1(z). In this case, δ
(1)
p ≡ 0, L1 ≡ 1, and G1(z), ω

(1)
p , and ω

(1)
s are absent. Furthermore,

ω
(2)
p = π − ωs and ω

(2)
s = π − ωp, and H1(z) is absent in Fig. 13 and in Table 4.

The remaining problem is to select R, the Lr’s, the Kr’s, and the ripple values such
that the filter complexity is minimized. The following example illustrates this.

Example 5: Consider the specifications of Example 1, that is, ωp = 0.4π, ωs = 0.402π,
δp = 0.01, δs = 0.001. In this case, the only alternative is to select L1 = 2. The resulting
passband and stopband regions for G1(z) are (the substitution of Eq. (50) is used)

Ω
(1)
p = [0, 0.4π], Ω

(1)
s = [0.5987π, π].

For Ĥ2(z), the edges become ω
(2)
p = π − L1ωs = 0.196π and ω

(2)
s = π − L1ωp = 0.2π.

For L2, there are two alternatives to make the edges of Ĥ3(z), ω
(3)
p = π − L2ω

(2)
s and

ω
(3)
s = π − L2ω

(2)
p , less than π/2. These are L2 = 3 and L2 = 4. For R = 5 stages, there

are the following four alternatives to make all the the ω
(r)
s ’s smaller than π/2:

L1 = 2, L2 = 4, L3 = 3, L4 = 2

L1 = 2, L2 = 4, L3 = 4, L4 = 4

L1 = 2, L2 = 3, L3 = 2, L4 = 4
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Table 4 Explicit Form for the Transfer function in the Jing-Fam Approach

H(z) = H1(z
L̂1)[I2z

−M̂2 +H2(z
L̂2)[I3z

−M̂3 +H3(z
L̂3)[· · ·

[IR−1z
−M̂R−1 +HR−1(z

L̂R−1)[IRz
−M̂R +HR(zL̂R)]] · · ·]]],

where

Hr(z
L̂r ) = H

(1)
r (zKrL̂r)H

(2)
r (zL̂r)

H
(1)
r (z) = G

(1)
r (J

(1)
r z), H

(2)
r (z) = SrG

(2)
r (J

(2)
r z)

S1 = 1, Sr = −(−1)M̂r/L̂r , r = 2, 3, · · · , R

J
(2)
1 = 1, J

(2)
2 = −1, J

(2)
r = −[J

(2)
r−1]

Lr−1
, r = 3, 4, · · · , R

J
(1)
r = [J

(2)
r ]

Kr

L̂1 = 1, L̂r =

r−1∏

k=1

Lk, r = 2, 3, · · · , R

M̂R = 1
2 L̂RNR, M̂R−r = M̂R−r+1 + 1

2 L̂R−rNR−r, r = 1, 2, · · · , R− 2

I2 = 1, Ir = [J
(2)
r−1]

M̂r/L̂r−1
, r = 3, 4, · · · , R

Nr = KrN
(1)
r +N

(2)
r

N
(1)
r and N

(2)
r are the orders of G

(1)
r (z) and G

(2)
r (z), respectively.

L1 = 2, L2 = 3, L3 = 2, L4 = 3.

Among these alternatives, the first one results in an overall filter with minimum complexity.

In this case, the edges of Ĥ3(z), Ĥ4(z), and Ĥ5(z) ≡ G5(z) become as shown in Table 5.
The corresponding passband and stopband regions for G2(z), G3(z), G4(z), and G5(z) are

Ω
(2)
p = [0, 0.196π], Ω

(2)
s = [0.3013π, 0.6987π] ∪ [0.8013π, π],

Ω
(3)
p = [0, 0.2π], Ω

(3)
s = [0.4560π, 0.8773π],

Ω
(4)
p = [0, 0.352π], Ω

(4)
s = [0.616π, π],

Ω
(5)
p = [0, 0.2π], Ω

(5)
s = [0.296π, π].

What remains is to determine the ripple requirements. From Eq. (48b), it follows for R = 5,

δ
(1)
p +δ

(3)
p +δ

(5)
p = δp and δ

(2)
p +δ

(4)
p +δ

(5)
s = δs. By simply selecting the ripple values in these

summations to be equal, the required ripples for the Gr(z)’s become as shown in Table 5.
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Figure 13 Implementations for a filter synthesized using the Jing-Fam approach. (a) Basic

structure. (b) Transposed structure. (c) Structure for the subfilter Hr(z
L̂r ).

The first and fourth subfilters are single-stage filters since their stopband edges are
larger than π/2, whereas the remaining three filters are two-stage designs. The parameters
describing the overall filter are shown in Table 5, whereas Fig. 14(a) depicts the response of
this filter. The number of multipliers and the order of this design are 78 and 4875, whereas
the corresponding numbers for the direct-form equivalent are 1271 and 2541. The number
of multipliers required by the proposed design is thus only 6 % of that of the direct-form

filter. Since the complexity of H5(z
L̂5) is similar to those of the earlier filter stages, R = 5

is a good selection in this example.

The overall filter order as well as the number of multipliers can be decreased by selecting
smaller ripple values for the first stages, thereby allowing larger ripples for the last stages.
Proper selections for the ripple requirements and filter orders are shown in Table 6. The
first four filters have been optimized such that their passband variations are minimized. The
first criteria are met by a half-band filter of order 34, having the passband and stopband
edges at 0.4013π and 0.5987π. Since every second impulse response coefficient of this filter
is zero-valued except for the central coefficient with an easily implementable value of 1/2,
this filter requires only 9 multipliers. For the last stage, K5 is reduced to 2 to decrease the
overall filter order. The order of the resulting overall filter [see Fig. 14(b)] is 3914, which
is 54 percent higher than that of the direct-form equivalent. The number of multipliers is



– 25 –

Table 5 Data for a Filter Designed Using the Jing-Fam Approach

r = 1 r = 2 r = 3 r = 4 r = 5

ω
(r)
p 0.4π 0.196π 0.2π 0.352π 0.2π

ω
(r)
s 0.402π 0.2π 0.216π 0.4π 0.296π

δ
(r)
p

1
3 × 10−2 1

3 × 10−3 1
3 × 10−2 1

3 × 10−3 1
3 × 10−2

δ
(r)
s 10−3 2

3 × 10−2 2
3 × 10−3 1

3 × 10−2 1
3 × 10−3

Lr 2 4 3 2 —

Kr — 3 2 — 3

N
(1)
r — 20 11 — 22

N
(2)
r 31 10 8 26 14

Nr 31 70 30 26 80

L̂r 1 2 8 24 48

J
(1)
r — −1 1 — −1

J
(2)
r 1 −1 −1 1 −1

M̂r — 2422 2352 2232 1920

Ir — 1 1 −1 1

Sr 1 1 −1 1 −1

mr — 70 120 312 1920

reduced to 70.

The above Jing-Fam approach cannot be applied directly for synthesizing filters whose
edges are very close to π/2. This problem can, however, be overcome by slightly changing
the sampling rate or, if this not possible, by shifting the edges by a factor of 3

2 by using
decimation by this factor at the filter input and interpolation by the same factor at the
filter output [Jing and Fam, 1984]. One attractive feature of the Jing-Fam approach is
that it can be combined with multirate filtering to reduce the filter complexity even further
[Ramstad and Saramäki, 1990].

When comparing the above designs with the filters synthesized using the multistage
frequency-response masking technique (Example 2), it is observed that the above designs
require slightly fewer multipliers at the expense of an increased overall filter order. Both of
these general approaches are applicable those specifications that are not very narrowband
or very wideband. For most very narrowband and wideband cases, filters synthesized in
the simplified forms H(z) = F (zL)G(z) and H(z) = z−M − F ((−z)L)G(−z), respectively,
give the best results (see Examples 3 and 4).
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Table 6 Data for Another Filter Designed Using the Jing-Fam Approach

δ
(r)
p 7.3 × 10−4 7.1 × 10−5 3.5 × 10−4 12.1 × 10−5 89.2 × 10−4

δ
(r)
s 10−3 92.7 × 10−4 92.9 × 10−5 89.2 × 10−4 80.8 × 10−5

Kr — 3 2 — 2

N
(1)
r — 22 13 — 27

N
(2)
r 34 10 8 24 6
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Figure 14 Amplitude responses for filters synthesized using the Jing-Fam approach.
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