80509 LINEAR DIGITAL FILTERING |

PART lll: Design of Linear-Phase FIR Filters

1) Different types of linear-phase FIR filters and their
characteristics as well as their use in filtering.

2) Several design techniques.

® What to read for the examination ?:

1) Different types of linear-phase FIR filters: how to express
their frequency response in a simple form; their phase
and group delays as well as their implementation using
the coefficient symmetry; characteristics of the impulse
responses.

2) Basic idea of designing FIR filters using windowing;
basic idea of using the Remez (MPR) algorithm for de-
signing FIR filters in the minimax sense. Advantages
and disadvatages of these design techniques;

Characteristics of the resulting filters.

3) Pages 1-162; 193-221; and 234-250 (as well as the
appendices).
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DESIGN OF FINITE IMPULSE RESPONSE
(FIR) FILTERS

1.
2.
3.

Why FIR filters?

Conditions for linear phase

Design of linear-phase FIR filters by window-
ing

eDesign of linear-phase FIR filters in the least-
mean-square sense

. ®Design of maximally-flat linear-phase FIR fil-

ters

. eSome simple linear-phase FIR filter designs
. Design of linear-phase FIR filters in the mini-

max sense

eDesign of minimum-phase FIR filters

. eDesign of FIR filters with constraints in the

~ time or frequency domains

10.

11.

12.

eDesign of linear-phase FIR filters using peri-
odic subfilters as basic building blocks

eeDesign of linear-phase FIR filters using iden-
tical subfilters as basic building blocks

eeDesign of linear-phase FIR filters using mul-
tirate and complementary filtering

To be considered in the course “Digital Linear
Filtering II”.

To be considered in the course “System Level
DSP Algorithms”.




- 2 -

SECTION 1: WHY FIR FILTERS?

The main advantages of the FIR filter designs over

their IIR equivalents are the following:

1. FIR filters with exactly linear phase can be easily
designed.

2. There exist computationally efficient realizations
for implementing FIR filters. These include both

nonrecursive and recursive realizations.

3. FIR filters realized nonrecursively are inherently
stable and free of limit cycle oscillations when
implemented on a finite-wordlength digital sys-

tem.

4. Excellent design methods are available for various

kinds of FIR filters with arbitrary specifications.

5. The output noise due to multiplication roundoff
errors In an FIR filter is usually very low and
the sensitivity to variations in the filter coeffi-

cients is also low.




DISADVANTAGES

e IR filter designs require, especially in applica-
tions demanding narrow transition bands, consid-
erably more arithmetic operations and hardware
components, such as multipliers, adders, and de-

lay elements than do comparable IIR filters.

e As the transition bandwidth is made narrower,
the filter order, and correspondingly the arith-
metic complexity, increases inversely proportion-

ally to this width.

e This makes the implementation of narrow transi-

tion band FIR filters very costly.

e The cost of implemenation of an FIR filter can,
however, be reduced by using multiplier-efficient
realizations, fast convolution algorithms, and mul-

tirate filtering.

e These topics will be considered in the courses
“Digital Linear Filtering II” and “System Level
DSP Algorithms”.




EXAMPLE

e w, = 0.4m, 6, =0.01 (4, = 0.17 dB), §; = 0.0001
(As = 80 dB).

Case I: w; = 0.6m, Elliptic filter: order 7, Linear-

phase FIR filter: order 33

Case II: w; = 0.4027, Elliptic filter: order 18,
Linear-phase FIR filter: order 3138

e In Case I, the linear-phase FIR filter is very at-
tractive to implement compared to its IIR coun-

terpart:

e For the signal processor implementation, the

code length is shorter.

e For the hardware or VLSI implementation,
only 17 multipliers are required if the coeffi-
cient symmetry is exploited (to be considered

later).
e The finite wordlegth effects are much milder.

e The phase is exactly linear.
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e The above two desired properties make the FIR
filter more attractive compared to the IIR imple-
mentation that requires 7 multipliers when imple-
mented as a parallel connection of two allpass fil-
ters (lattice wave digital filters) to be considered

in the course “Digital Linear Filtering II”.

e For the optimally scaled cascade-form structure
using first- and second-order direct-form II blocks
(to be considered later), the elliptic filter requires
19 or 15 multipliers, depending on the implemen-

tation.

e The next two transparencies show the character-
istics of the FIR and IIR filter designs in Case I
(the elliptic filter has been designed such that the

passband criteria are just met).




Characteristics for the linear-phase FIR filter

of order 33 meeting the Case I criteria
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Characteristics for the elliptic filter of order

7 meeting the Case I criteria
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e In Case II, the linear-phase FIR filter is not

worth implementing in the conventional manner:

e It is on the borderline whether it is possible
to design this filter with the minimum order.

The order has been estimated.

e This is why the filter characteristics for the

conventional FIR filter are not shown for Case
II.

o If the coefficient symmetry is exploited, 1570
multipliers are required compared to 19 multipli-
ers required by an ellptic filter of order 19 when
implemented as a parallel connection of two all-

pass filters.

e For this implementation, the order must be
odd and is attractive if the phase linearity

is not needed.

e The elliptic filter cannot be used if the

phase linearity is of importance.

The following two transparencies show one alter-
native to reduce the number of multipliers of a

linear-phase FIR filter to meet the Case II criteria.
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An approach for reducing the number of

multipliers in Case I1

F(zb)

2-LNg/2

+
In > Z-L > Z-L 00 —p z"L > z'l- :@—-» GZ(Z)

1(0)

4

G4(2)

o L =16, F'(2) of order 200, G1(z) of order 84, and
Go(z) of order 122

e When exploiting the coefficient symmetry, the
number of multipliers reduces from 1570 to 206

at the expense of an increase in the filter order

(number of delays) from 3138 to 3322.

e This approach will be considered in more details

in the course “Digital Linear Filtering II”.
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Frequency responses: (a) for F(z%); solid and
dashed lines in (b) for Gi(z) and G(z); (c)

for overall filter
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SECTION 2: CONDITIONS FOR LINEAR-
PHASE

The transfer function of an FIR filter of order N
1S

H(z) =) hln]z™

The corresponding frequency response is given by
N
H(eY) = Z h{nle™ ™.
n=0

Here, N is the order of the filter that is equal
to the highest power of 27!, that is, the number
of delays.

The number of impulse response coefficient values
h[O],R[1],---,h[N] is N 4+ 1. This is called the
length of the filter.

Exact linearity of phase is achieved if we can

write H(e’) in terms of the phase term ¢(w)
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and the zero-phase frequency response H(w)

as
H(e) = H(w)el*W),
where

d(w) = aw + B.

o H(w) is what is left when the phase term is

taken away.

e As we shall see later, in all the linear phase cases
to be considered, H(w) is a real and continous
function of w that can take on both positive and

negative values.

o After introducing the four basic linear-phase cases,
the relations between the amplitude and phase
responses and the zero-phase frequency response

and the phase term will be given.
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FOUR LINEAR-PHASE TYPES

e The four linear-phase cases are the following:

Type I: N is even and h|N — n] = h[n] for all n
Type II: N is odd and h[N — n| = h|n| for all n
Type IIIl: N is even and h[N — n] = —h[n| for all n
Type IV : N is odd and h[N — n] = —h[n] for all n

e The following transparency gives typical (short)

impulse responses for these four linear-phase types.
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TYPICAL IMPULSE RESPONSES FOR
THE FOUR LINEAR-PHASE FIR FILTER
TYPES

Type: N=6 Typel: N=7
0.6} 0.6
0.4} : 0.4} :
< 02} T T 1 02} ?
L L .
P | ¢ T : T
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n n

Type ll N=6 Type lV:N=7
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CHARACTERISTICS OF THE IMPULSE RE-
SPONSES FOR LINEAR-PHASE FILTERS

o As seen from the previous transparency, the im-
pulse responses for the four different linear-phase

cases are characterized by the following facts:

Type I: There exists a lonely center impulse
response sample at the center of symmetry

n =K = N/2 since N is even.

e The other impulse response values are related via
h|[K — k] = h|[K + k] for k = 1,2,---,N/2, that
is, h[0] = R[N], h[l] = R[N —1], ---, h[K — 1] =
hIN/2 — 1] = h[K 4+ 1] = h[N/2 + 1].

e Hence, the impulse response is symmetric around
n=K=N/2.

e Because of the symmetry, the number of distinct

impulse response values is 1+ N/2.

Type II: There exists no lonely impulse re-

sponse sample at the center of symmetry n =

K = N/2 since N is odd.
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e The impulse response values are related via h[K—
(n+1/2)] =h[K+(n+1/2)] for k=0,1,---,(N —
1)/2, that is, h]0] = h[N], h[l] = h[N — 1], -
hlK —1/2] = h[(N —1)/2] = h[K +1/2] = h[(N—I—
1)/2].

e Hence, the impulse response is symmetric around
n=K=N/2.

e The number of distinct impulse response values is

(N +1)/2.

Type III: There exists a lonely center impulse
response sample at the center of symmetry
n =K = N/2 since N is even.

e The condition A[N — n] = —h[n] implies that
h|N/2] = —h[N — N/2] = —h[N]. This means
that the value of h|K| = h[N/2] is restricted to

be zero.

e The other impulse response values are related via
hK — k] = —h|K + k] for k = 1,2,---,N/2, that
is, h|0] = =h[N], h[l] = —=h[N —1], ---, h[K —1] =
h|N/2 — 1] = —h[K + 1] = —h[N/2 + 1].
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e Hence, the impulse response is antisymmetric

around n = K = N/2.

e The number of distinct impulse response values is

N/2 (h[N/2] = 0).

Type IV: There exists no lonely impulse re-

sponse sample at the center of symmetry n =

K = N/2 since N is odd.

e The impulse response values are related via h[K—

(n+1/2)] = —h[K+(n+1/2)] for k=0,1,--- (N —

1)/2, that is, h[0] = —hA[N], h[l] = —h[N - 1],
-+, h[K —1/2] = h[(N —1)/2] = —h[K +1/2] =
—h[(N +1)/2]

e Hence, the impulse response is symmetric around
n=K=N/2.
e The number of distinct impulse response values is

(N +1)/2.
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Introductory Example for Type I: N =6

Since h[6] = h[0], h[5] = h[1], and h[4] = h[2], the

transfer function is expressible as

= Z hln)z~

:h[O](l + 2 6) + h1](z7 ! + z‘5)
+h[2)(z7* + 27) + h[3]z”
=z"*{h[0 ](z +27°) +A[1)(z" + 27
h[2](z' + 271 + h[3]}.

e By using the substitution z = e/* and exploiting
the identity (e/* + e™7*) = 2cos(kw), the fre-
quency response can be written as
H(e") =e™{h[0)(e’™ + e™7*) + h[1](e* + e77*)

h[2](e’ + e77) + h[3]}
=e 73L2h[0] cos(3w) + 2h[1] cos(2w)
+ 2h[2] cos(w) + h[3]}.
e This H(e’¥) can be expressed as
H(eY) = H(w)ej¢(w),

where the zero-phase frequency response H(w)
(the phase term is kicked out) and the phase
term ¢(w) are given by

H(w) = 2h[0] cos(3w)+2h[1] cos(w)+2h[2] cos(w)+h[3]




and

P(w) = —
e H(w) taking both positive and negative val-
ues and ¢(w) for hln] =1 for n = 0,1,---,6 are

shown in the following transparency.

o Alternatively, H(e’*) is expressible as
H (/) = |H(e)|ef2eH ()

where the amplitude response |H(e’*)| and the
phase response argH(e’*) are related to H(w)

and ¢(w) via
[H(e)| = |H(w)

[ p(w) for H(w) >

argH (') = { ¢(w) +7 for H(w) <0 and w >0
(w)
t

\qb(w)—ﬂ' for H(w) < 0 and w < 0.
e These are also shown in the next transparency.

e Note that the above definitions make the ampli-
tude response even around w = 0 and the phase
response odd around this point, as is desired.

e Note also that equally well we can select jumps
of —m and +m in the definition of the phase re-

sponse.
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Characteristics for a Type I linear phase fil-

ter with N =6 and h[n]=1 for n=0,1,---,6

Zero-Phase Response
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General Type I Linear-Phase Filter of Order
N

e In the general case, h[N/2] is a lonely impulse
response sample, whereas h{N — n] = h[n] for

n=0,1,---,N/2 — 1.

e Therefore, the transfer function is expressible as

N
H(z) = Z hlm|z™™

N/2—-1
= h[N/2]zM? + Y h[m](z7™ 4 2~ W)
m=0 |

N/2-1
= h[N/2]z~N/? + Z h[m)z N2 (N2 4 7~ (N/2=m))

m=0
N/2-1

= 2 VRN + 3 Rl (N )

m=0
N/2

=2 "{h[N/2] + ) h[N/2 —n](" + z7™)}.

n=1
e The last expression has been generated by using

the substitution m = N/2 —n in the summation.




e By exploiting the identity (e/™+e ™) = 2 cos(nw),
the frequency response takes the following form:
N/2
H(e™) =e ?N“I?{R[N/2] + ) “h[N/2 —n](e/™ + ™)}

n=1

N/2
=e N2 {R[N/2] + ) ~h[N/2 — n][2 cos(nw)]}.

n=1

e This H(e’*) can be expressed in the following de-

sired form:
H(e) = H(w)el?@),
where
N/2
H(w) = h[N/2] + ) h[N/2 — n][2 cos(nw)]
n=1
and

d(w)=—Nw/2.
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Introductory Example for Type II: N =7

e Since h[7] = h[0], h[6] = h[l], h[5] = h[2], and

h|4] = h[3], the transfer function is expressible as

;:[0 (1+27") +Rr[1](z"" + 27°)
+h2)(z72 + 27 + A3 (273 4+ 274
:z_7/2{h[0](z7/2 + z—~7/2) 4+ h[l](z5/2 + 2_5/2)
+ R[2)(2%2 + 27%/2) + K[3] (2% + 272
e By exploiting the identity (e/®/2 4 e=7hw/2) —
2 cos(kw/2), the corresponding frequency response

can be written as
H(e’) =e /™2 {n[0](e/™/? 4 e77™/2)
+ h[1](e7%? + e/ p[2] (732 4 e7I3/2)
+ h[3](e™/? + e71w/%)}
=eI™/2{9h[0] cos(Tw/2) + 2h[1] cos(5w/2)
+ 2h|2] cos(3w/2) + 2h[3] cos(w/2)}.
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Alternatively, H(e’*) can be expressed in the fol-

lowing desired form:
H(e'™) = H(w)el?),
where
H(w) =2h[0] cos(7w/2) + 2h[1] cos(bw/2)
+ 2h[2] cos(3w/2) + 2h[3] cos(w/2)

and |

d(w) = —Tw/2.
H(w) and ¢(w) for h[n] =1 for n=0,1,---,7 are
shown in the following transparency.

It gives also the amplitude and the phase re-

sponses that are given by

[H ()] = |H (w)]
( p(w) for H(w) >0
argH(e‘jw) =< ¢(w)+7m for Hw)<0and w>0
{ p(w) —7 for H(w) <0 and w <0.

W
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Characteristics for a Type II linear phase fil-
ter with N =7 and hln]=1 for n=0,1,---,7

Zero-Phase Response
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General Type II Linear-Phase Filter of Order
N

e In the general case, h[N — n|] = h[n] for n =
0,1,---,(N—1)/2.

e Therefore, the transfer function is expressible as

N
H(z) = Z hlm]z™™
m=0
(N-1)/2
= h[m](z™™ + z~ V=)
m=0
(N—-1)/2
_ h[m}Z—N/Z(ZN/Z—m + z—(N/2—m))
m=0
(N-1)/2
Z_N/2{ Z h[m](ZN/2—m+z—(N/2—m))}
m=0

(N-1)/2
— Z—~N/2{ Z h[(N . 1)/2 . n](z(n+1)/2 + Z—(n+1)/2))}'
n=0

e The last expression has been generated by using
the substitution m = (N —1)/2—n in the summa-

tion.




e By exploiting the identity (e/("+1)w/24 e=iln+1)w/2) —
2 cos|[(n + 1)w/2)], the frequency response can be

written as

H(e™®)
(N-1)/2
_ 6—]Nw/2{z h . 1)/2 . n](ej(nJrl)w/Q + e~—j(n+1)w/2)}

(N 1)/2

— ¢ INw/2 Z —1)/2 — n][2cos[(n + 1)w/2)]]}.

e This H(e’*) can be expressed in the following de-

sired form:
H(e) = H(w)el?™),

where
N—-1)/2
Z h[(N —1)/2 — n][2cos[(n + 1)w/2)]

and

d(w) = —Nw/2.
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Introductory Example for Type III: N =6

Since h|6] = —h[0], h[5] = —h][1], h[4] = —h[2], and

h|3] = 0, the transfer function is expressible as

H(z) = Z hln]z™"

RlOJ(1 — 27O + A[1](z7! — 279)
+ h[2](z7% - 27

=2"{h[0](2® — 27%) + h[1](z* — z7?)
+ h[2](z* — z27H}.

e By exploiting the identities (e/* — e7hw) =
2jsin(kw) and j = e/™/?, the frequency response
can be written as
H (™) =e 73{h[0](e’> — e773) + h[1](e/> — e77%)

h(2)(e” — e77¥)}

=je~7**{2h[0] sin(3w) + 2h[1] sin(2w)
+ 2h[2] sin(w)}

=el"/2=3%1 19 [ 0] sin(3w) + 2h[1] sin(2w)
+ 2h[2] sin(w)}.




— 929 -

Alternatively, H(e’*) can be expressed in the fol-

lowing desired form:
H () = H(w)ej¢(w),
where
H(w) = 2h[0] sin(3w) + 2h[1] sin(w) + 2h[2] sin(w)
and
b(w) = /2 — 3w.

H(w) and ¢(w) for h[0] = 1, h[1] = 2/3, h[2] =
1/3, h[3] = 0, h[4] = —1/3, h[5] = —2/3, and
h|6] = —1 are shown in the next transparency.

This transparency shows also the amplitude and

the phase responses as given by

[H ()| = [H(w)]
( p(w) for H(w) >0
argH(e) = ¢ ¢p(w)+m for Hw)<0and w>0
{ p(w) — 7 for H(w) <0 and w < 0.

Note that for the phase response argH (e’¥) there

is a jump of ™ at w =0 (from —7/2 to 7/2).
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Characteristics for a Type III linear phase
filter with N = 6 and h[0] = 1, h[l] = 2/3,
hl2] = 1/3, h[3] = 0, hl4] = —-1/3, h[5] = —2/3,
and h[6] = —1
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General Type III Linear-Phase Filter of Or-
der N

e In the general case, h[N/2] = 0 and h[N — n] =
—h|n| for n=0,1,---,N/2 — 1.

e Therefore, the transfer function is expressible as

— }d#nJZ—AU2(zAU2—nz__Z—(AU2~WQ)

m=0
N/2-1

:z—N/Q Z h[m](zN/2_m— Z—(N/Q—m))}
m=0

N/2—1
=z V2N h[N/2 =1 —n](z" T — 2T}

n=0
e The last expression has been generated by using
the substitution m = N/2 — 1 — n in the summa-

tion.




e By exploiting the identities (e/("+1)w — g=i(n+lwy) =
2jsin[(n + 1)w] and j = /™2, the frequency re-

sponse can be written as

H(e) =
N/2—1
_ 6—ij/2 Z h[N/Q 1 n](ej(n+1)w . e—j(n—l—l)w)}
"N/
= je NN RIN/2 — 1 — n][2sin](n + 1)w)]]}.
nj\?/zq
= MPNRIENT BIN/2 — 1 — n][2sin](n + 1)w)]]}.
n=0 :

o This H(e’*) can be expressed in the following de-

sired form:
H(e) = H(w)ej¢(w),
where
N/2—1
H(w)= ) h[N/2—1-n]2sin[(n + 1)w)]]
n=0
and

¢p(w) =m/2 - Nw/2.
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Introductory Example for Type IV: N =7

e Since h[7] = —h[0], h[6] = —h][1], h[5] = —h[2], and
h|4] = —h[3], the transfer function is given by
7
Z h[n
=0
h[O](l — 2z )+ h1)(z7 =279
+h2)(z72 = 27°) + A[3) (273 — 274
=z 2{R[0)(z7* — 27T) + R[1](272 — 277)

+ h[2)(2% — 2732) + R[3)(2M? — 27}

e By exploiting the identities (e/*/2 — e~ ikw/ ) =
27 sin(kw/2) and j = e/™2, the frequency response

can be written as
H(ev) :e—j7w/2{h[0](ej7w/2 — e I/2)
+ R[1](e05/2 — e=35/2y 4 h[2](e73/2 — ¢=I39/2)
+ h[3](e//? — e7Iw/2)}
=je™/2{2h]0] sin(Tw/2) + 2h[1] sin(5w/2)
+ h[2] sin(3w/2) + h[3] sin(w/2)}
="/ 2372191 [0] sin(Tw/2) + 2k[1] sin(5w/2)
+ 2h[2] sin(3w/2) + 2h][3] sin(w/2)}.
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This H(e’) can be expressed in the following de-

sired form:
H(e™) = H(w)el*@),

where
H(w) =2h[0]sin(7w/2) + 2h[1] sin(5w/2)
+ 2h|2] sin(3w/2) + 2h[3] sin(w/2)
and
d(w)=m/2 —Tw/2.

H(w) and ¢(w) for h[0] = 1, h[1l] = 5/7, h2] =
3/7, h[3] = 1/7, hl4] = —1/7, h[5] = -3/7,
hl6] = —5/7, and h[7] = —1 are shown in the next

transparency.

This transparency shows also the amplitude and

the phase responses as given by

[H (") = |H(w)|
( Pp(w) for H(w) >0
argH (') = { ¢(w)+7 for H(w) <0 and w > 0
{ p(w) — 71 for H(w) <0 and w < 0.
Note that, like for Type III, for the phase re-

sponse argH (e’*), there is a jump of 7 at w = 0.
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Characteristics for a Type IV linear phase
filter with N = 7 and hR[0] = 1, A[l] = 5/7,
h|2) = 3/7, h[3] = 1/7, hl4] = —1/7, h[5] = —3/7,
h|6] = —5/7, and h[7] = —
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General Type IV Linear-Phase Filter of Or-
der N

e In the general case, h[N — n] = h[n] for n =
0,1,---, (N —-1)/2.

e Therefore, the transfer function is expressible as

N
H(z) =) hlm]z™"
m=0
(N-1)/2

m=0
(N-1)/2
— h[m]z-—N/2(ZN/2—m Z—(N/Q—m))
m=0
(N-1)/2
_ Z—N/Q{ Z h[m](ZN/2_m . Z—(N/Z—m))}
m=0

(N-1)/2
_ Z_N/2{ Z h[(N - 1)/2 . n](z(n—l—l)/Q . Z—(n+1)/2))}.
n=0

e The last expression has been generated by using
the substitution m = (IV—1)/2 —n in the summa-

tion.




e By exploiting the identities (e/("+1w/2_e=ilnt+l)w/2) —
27 sin[(n + 1)w/2)], the frequency response can be

written as
H (™)
(N-1)/2
_e—JNw/z{ Z h _ 1)/2 _ n](ej(n+1)w/2 . e—j(n+1)w/2)}
(N 1)/2
—je INw/2f Z h(N —1)/2 — n][2sin[(n + 1)w/2)]]}
(N 1)/2

=TI WV = 1/2 = nl2sinl(n+ Do/}

e This H(e’%) can be expressed in the following de-

sired form:
H (%) = H(w)el?w),
where
(N=1)/2
h[(N —1)/2 —n][2sin[(n + 1)w/2)]
n=1
and

p(w)=n/2 — Nw/2.
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COMMON RESPRESENTATION FORM FOR
THE FOUR LINEAR-PHASE TYPES

e By combining the above results, H(e’*) can be

expressed in the following common form:

H(e) = H(w)el?w),

where ( .
h[N/2] + ) h[N/2 — n][2 cos nw]
" for Type 1
(N=1)/2
h[(N —1)/2 — n][2cos[(n + 1/2)w]]
H(w) = ¢ N/T;i(l for Type 1II
> " h[N/2 —1—n][2sin[(n + 1)w]]
(;:j)/g for Type III
> h[(N —1)/2 — n][2sin[(n + 1/2)w]]
\ " for Type IV.
and

o) —Nw/2 for Types I and 1I
W) =
7/2 — Nw/2 for Types III and IV.
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ALTERNATIVE REPRESENTATION FORM

FOR H(w)
M
H(w) = b[n]trigw,n),
n=0
where
(1 for Type I, n =0
2 cos nw for Type I, n > 0
trig(w,n) = ¢ 2cos[(n+ 1/2)w] for Type II
2sin(n + 1)w for Type III
| 2sin[(n + 1/2)w] for Type IV,
((h[N/2 — n] for Type I

b[n] =< h|(N—1)/2—n] for Types II and IV
( h|[N/2 — 1 — n] for Type III,

(N/2 for Type 1
(N —-1)/2 for Type II
(N —2)/2 for Type III
L (V —1)/2 for Type IV.

e This form is wuseful when designing the four

linear-phase filter types in the least-mean-square

sense or when using linear programming.
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EXPRESSION OF THE TRANSFER FUNC-
TION AS A CASCADE OF A COMMON
TERM AND A FIXED TERM

e According to the previous considerations, the

overall transfer function can be expressed as

( (N/2)—1
h[N/2]zN + Z h[n][z=" 4 2=V ="7)]
for Type 1
(N-1)/2
Z hln][z=" 4 2z~ (V=]
n=0
H(z) = { . for Type II
Z hin][z™" — z=(V=n)]
n=0
for Type III
N-1)/2
S e o
\ for Type 1IV.

¢ What we are now interested in is to check
whether these filter types have fixed zeros at z =

1 or at z = —1.

e This can be found out by substituting z = 1
or z = —1 in the above equations and checking
whether H(1) or H(—1) is zero or not.
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Type I: These filters do not necessarily have any

zeros at z=or at z = —1

e The h[n|’s can be selected such that H(1) and

H(—1) are not equal to zero.

Type II: These filters have at least one zero at
z=—1.
e Because N is odd, each of the terms [z7" +
2~ V=] is zero at z = —1 (For n even [odd],
N —n is odd [even]).
Type III: These filters have at least one zero at

z=1and z = —1.

e h[N/2] = 0 is absent. Because N is odd, each
of the terms [z — 2= W=")] is gero at z = =+1
(For n even [odd], N —n is even [odd]).

Type IV: These filters have at least one zero at

z = 1.

e Because N is odd, each of the terms [z7" +

N—n)]

7 is zero at z = 1 (For n even [odd],

N —n is odd [even]).




— 42 -

COMMON REPRESENTATION FORM

e Based on the above, the overall transfer function
is expressible as a cascade of a fixed term F(z)

and an adjustable Type I term as follows:

H(z) = F(2)G(2),

where
(1 for Type 1
1+ 271/2 for Type II
F(z) =< | o |
1 —27%]/2 for Type III
\[1—=27"/2 for Type IV
and
oM
G(z) =) gln]z™"
n=0
with
g[2M — n] = g[n] for all n
and

(N/2 for Type 1
N —1)/2 for Type II
N —2)/2 for Type III
N — 1)/2 for Type IV.

(
(
(

\
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e In the equation of the previous transparency,

F(z) contains the fixed zeros.

e The g[n]’s for n = 0,1,---,M contain the ad-
justable parameters of H(z) for all the four

linear-phase filter types.

e The next two transparencies show the relations
between the impulse response coefficients hln] of

the overall filter transfer function H(z) and the
gln]’s of G(2).
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Determination of the h[n]’s in terms of the

gln]’s

Type I: F(z) =1. |

o Therefore, h{n| = g[n] for n =10,1,---, N.

Type II: F(z2) = (1+271)/2.

e Therefore, h|n| = 1/2(g[n] + g[n — 1}).

e This means that h[0] = ¢[0]/2, h[n] = 1/2(g[n] +
gln—1]) for n=1,2,---, N —1, and h[N] = g[N —
1]/2.

Type III: F(z) = (1 - 272)/2.

e Therefore, h{n| =1/2(g[n] — gln — 2]).

e This means that h[0] = g¢[0]/2, h[l] = g¢g[1]/2,
hin] = 1/2(g[n] + g[n — 1]) for n = 2,3,---, N — 2,
hIN — 1] = —g[N — 3]/2, and h[N] = —g[N — 2]/2.

Type IV: F(2) = (1 - z71)/2.

o Therefore, hn] = 1/2(g[n] — g[n — 1]).

e This means h|0] = ¢[0]/2, h[n] = 1/2(g[n]—g[n—1])
for n=1,2,---,N —1, and h[N] = —g[N — 1]/2.
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Determination of the g[n|’s in terms of the
h|n|’s for Types II, III, and IV

Type II: H(z) = [(1+ 271)/2]G(?)

= G(z) =2H(2)/[1 + 2z}

=g|n] = —gln — 1]+ 2h[n], g[n]=0,n<0.
o Type III: H(z) = [(1 - 272)/2]G(z)

= G(z2) =2H(2)/[1 — 27

= g[n] = g[n — 2] + 2h[n], g[n]=0,n <O0.
Type IV: H(z) = [(1 - )/2G()

= G(z2) =2H(2)/[1 — z71]

= gln] = g[n — 1] +2h[n], g¢[n] =0, n <O0.
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EXAMPLES

To illustrate the use of the formulas of the pre-

vious transparency, we consider the introductory

examples of pages 25, 30, and 35.
Type I1I: N =7 and h[n|=1 for n=0,1,---,7.
e Using gn] = —g[n — 1] 4+ 2h[n], g[n] = 0 for n
0, we obtain g[0] = —g[—1] + 2h[0] = 2, g[1]

—g[0] + 2h[1] = 0, g[2] = —g[1] + 2h[2] = 2, g[3] =

2
—g[4] + 2h[5] = 0, g[6] = —g]5] + 2A[6] = 2, g[7
6

n > 0.
Type 1II: N =6 and h[|0] =1, h[l] = 2/3, h[2]
1/3, h[3] =0, hl4] = —1/3, h[5] = —2/3, and h[6]
—1

2] +2h[3] = 0, g[4] = —g[3] + 2h[4] = 2, g[5] =

6] + 2h[7] = 0, and, in general, g[n]A: 0 for

e Using g[n] = g[n — 2] + 2h[n], g[n] = 0 for n <
0, we obtain g|0] = ¢[—2] + 2A[0] = 6/3, g[1] =
g9l—1]+2h[1] = 4/3, g[2] = g[0]+2h[2] = 8/3, g[3] =
g[1] +2h[3] = 4/3, g[4] = g[2] + 2h[4] = 6/3, g[5] =
g|3] + 2h[5] = 0, ¢[6] = g[4] + 2h[6] = 0, and, in

general, g[n| =0 for n > 4.




Type IV: N =7 and }L[O]—: 1, h[1] = 5/7, h|2] =

3/7, h|3] = 1/7, hl4] = —1/7, h[5] = —3/7, hl[6] =

~5/7, and h[7] = —1

o Using g[n] = g[n — 1] + 2h[n], g[n] = 0 for n <
0, we obtain ¢[0] = g[—1] + 2h[0] = 14/7, g[1] =

gl0] + 2h[1] = 24/7, g[2] = g[1] + 2h[2] = 30/7,
93] = g[2]+2h[3] = 32/7, g[4] = g[3]+2h[4] = 30/7,
9[5] = gl4]+2h[5] = 24/7, g[6] = g[5]+2h[6] = 14/7,
gl7] = g[6]+2h[7] =0, and, in general, g[n] =0 for
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FREQUENCY RESPONSE FOR THE CAS-
CADE FORM

e Using the substitution z = e for H(z) =
F(z2)G(z) as given on transparency 42, we obtain

after some manipulations (left as an exercise)

H(eY) = F(Y)G ()

where
(1 for Type I
. el (=9/2) cog(w /2 for Type II
Py =1 ¢ .( /2) yp
el (7/2=9) gin w for Type III
(T /2—w/2) o
\ e/ 72~/ gin(w/2) for Type IV
and

G(e) = e ML g[M] + Zg[M — n|[2 cos(nw)}.

n=1
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EXPRESSION IN TERMS OF THE ZERO-
PHASE FREQUNCY RESPONSE AND
PHASE TERM

H(e) = H(w)el?w),

where
H(w) = F(w)G(w)
and
() {—Nw/2 for Types I and II
W) =
m/2 — Nw/2 for Types II and IV
with
(1 for Type I
Flw) cos(w/2) for Type II
W)= sin w for Type III
| sin(w/2) for Type 1V,
M
G(w) = ) a[n]cosnw,
n=0
and
g|M], n =70
aln] =
2g|M —n], n#0.

e The above expression form for G(w) is very use-
ful when designing linear-phase FIR filters in the

minimax sense to meet the given criteria.
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ZERO-PHASE RESPONSES FOR DIFFER-
ENT FILTER TYPES

e Type I: H(w) is even about w = 0 and w = 7
and the peridiocity is 27 (see the following trans-

parency).

o Type II: The fixed term F(w) = cos(w/2) gen-
erates a zero for H(w) at w = m, making it odd
about this point. The periodicity is 47 (see the

following transparency).

o Type III: The fixed term F(w) = sinw gives a
zero at both w = 0 and w = 7, making H(w) odd
about these points. The periodicity is 27 (see the

following transparency).

e Type IV: The fixed term F(w) = sin(w/2) gener-
ates a zero at w = 0, making H(w) is odd about
w = 0. The periodicity is 47 (see the following

transparency).
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EXAMPLE ZERO-PHASE FREQUENCY
RESPONSES

Type | H(w)
i N W
-7 0

Type 1l H(®)
L /_ T | l /—_ "
-7t 0 \ 271 /

Type Il H(w)

e
]

Type IV H(®)

\

|
C
(@]
=]
N
/ﬁ
w
=]
.
=]
e
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USE OF THE DIFFERENT TYPES

e Type I and II filters are used for conventional fil-
tering applications as, in these cases, the delay
caused for sinusoidal signals, —¢(w)/w = N/2, is

independent of the frequency w.

e T'ype IIl and IV filters have an additional 90-
degree phase shift and they are most suitable for
realizing such filters as differentiators and Hilbert

transformers.

e For Type IIl and IV filters, the delay caused
for sinusoidal signals depends on the ffequency:
—¢(w)/w = N/2 — (5/2)/w. However, the group
delay, —d¢(w)/dw, is a constant (equal to N/2 in

all the cases).




— 53 -

EFFICIENT IMPLEMENTATIONS: STRUC-
TURES EXPLOITING THE COEFFICIENT
SYMMETRY

e Because of the symmetry in the filter coefficients,
all the four linear phase filter types can be im-
plemented such that the multipliers needed in the

actual implementation is approximately half the
filter order N.

e The following two transparencies give the direct-
form structures and the transposed direct-from
structures exploiting the coefficient symmetry for

all the linear-phase filter types.

e For Type I and II filters, the number of multipli-
ers needed is 1+ N/2 and (N + 1)/2, respectively.

e For Type III and IV filters, the number of multi-
pliers needed is N/2 (h[N/2] = 0) and (N +1)/2,

respectively.
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EFFICIENT IMPLEMENTATIONS: DIRECT-
FORM STRUCTURES EXPLOITING THE
COEFFICIENT SYMMETRY

+ for Type |

- for Type lll
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g k4 I z m=m—>z
z-1
2—1 e . o 2-1 ‘ - —] z-1 <)o
vy+ T T n + for Type i
D D &
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Out
D—D--- ——P——
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EFFICIENT IMPLEMENTATIONS: TRANS-
POSED STRUCTURES EXPLOITING THE
COEFFICIENT SYMMETRY
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ZERO LOCATIONS FOR THE COMMON
ADJUSTABLE TYPE I TRANSFER FUNC-
TION G(z)

1. Since g[2M — n| = g[n] with 2M being the order
of G(z),

G(z™) = g[M]2M + > " hln][" + 2]

M-1

= 22M{g[M]=" + Y gz + 2~}
n=1

= 2*MG(2).

e This means that G(z) and G(z7!) have identical
zeros and the zeros of G(z) thus occur in recip-
rocal pairs (If there is a zero at z = re/?, then
there exists also zero at z = 1/(re/?) = (1/r)e™%).

2. The coefficients of G(z) are real so that the ze-
ros are either real or occur in complex conjugate
pairs (If there is a zero at z = re’?, then there

exists also zero at z = re7%).




e From the above facts, it follows that G(z) is ex-

pressible as
G(z) = g[0]G1(2)G2(2)G3(2),

where

Gi(z) = H(l — |2(r; + l) cos 0]z

r
i=1 v

1
+ [r? + poiy 4 cos? 6;]z 2

7

1
— [2(ri + —) cos 0;]27° + 274

T3
N R
Gso(z) = H(l —[2cos 8]z + 27%)
i=1
N {
_ ~ 1, =2
Gs(z) = g(l —Fr sl ),

1. G1(z) contains the zeros occuring in quadru-
plets, that is, in complex conjugate and mirror-
image pairs off the unit circle at z = r;e™%
(1/r;)e*% for 1 =1,2,---, Ny.

2. Gs(z) contains the zeros occuring in complex con-
jugate pairs on the unit circle at z = 3% for

i=1,2,-- Ny
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e The reciprocal zero of z = €/ is z = 1/e/ =

e /’, that is, it is simultaneously the complex

conjugate of the zero at z = el?.

. G3(2) contains the zeros occuring in reciprocal

pairs on the real axis at z = 7r;,1/m for ¢ =
1,2,---, Ns.
. If G(z) possesses a zero at z = 1 or at z = —1,

then it follows from the symmetry of G(z) and
the fact that G(z) is of even order that the num-

ber of zeros at this point must be even.

The figure of the next transparency shows sev-
eral characteristics for a Type I filter of order 46

|H(z) = G(z)] including the zero plot.
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Some Characteristics of a Type I Filter
order N = 46

of
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DIFFERENCE BETWEEN THE LINEAR-
PHASE CASES

1. Type I designs have an even number or no zeros

at z=1 and at 2z = —1.

2. Type II designs have either an even number or
no zeros at z = 1, and an odd number of zeros

at z = —1.

3. Type III designs have an odd number of zeros at

z=1 and at z = —1.

4. Type IV designs have an odd number of_ zeros at

z =1, and either an even number or no zeros z =
—1.

e Zero plots will be given for several filters in
the following examples after introducing one more
useful representation form for the zero-phase fre-

quency response G(w).
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POLYNOMIAL REPRESENTATION FORM
FOR TYPE I FILTERS

M
H(w)=Gw) = Z a|n] cos nw (A)
n=0
e Using the identity
cosnw = T, (cosw), (B)

where T,(x) is the n-th degree Chebyshev poly-
nomial (see the next transparency), defined by

T.(2) cos(n cos™! x) for |z| <1
n\L) =
cosh(ncosh™z) for |z| > 1,

M

G(w) =) a[n]cos" w. (C)

n=0

e Chebyshev polynomials can be conveniently gen-

erated by using the following recursion formulas:
Tolx] =1
Ti|x) =«
Thlx]) = 22T, 1 [x] — T, _ox].
e Later on, the above form is used in designing

maximally-flat linear-phase FIR filters as well as

some simple FIR filters.
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Characteristics of Chebyshev Polynomials

The first six Chebyshes polynomials are Ty(x) =
1, Ti(z) = z, To(x) = 22° — 1, Ty(z) = 42° — 3z,
Ty(z) = 8x*—8x?+1, and Tx(z) = 162° — 202>+ 5z.
If M =5 in Equation (A), then the above equa-
tions and the identity of Equation (B) shown
that G(w) can be expressed in the form of Equa-
tion (C) with a[5] = 16al5], a[4] = 8a[4], a[3] =
—20al5] + 4a[3], «a[2] = —8al4] + 2a[2], «a[l] =
5a[5] — 3a[3] + a[l], and «[0] = a[4] — a[2] + a[0].
The figure of the next transparency shows the re-
sponses of Ty(x) for n =1,2,---,5.

It is observed that 7, (z) oscillates in the interval
[—1, 1] between +1 achieving these values at m +
1 points such that the value at x =1 [x = —1] is
1 [(-1)7]

This attractive behavior is utilized in Section 6
for generating FIR filters whose response oscil-
lates within £65; (1 4+ J,) in the stopband (pass-
band).
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Chebyshev Polynomials T,(x) for n =1,2,3,4,5

Chebyshev polynomials T_n(x) for n=1,2,3,4,5
2 ! I ! ] ! ! f I I T

T_n(x)

5 A S S
-1 -08 06 -04 -02 0 02 04 06 08 1
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SOME TYPICAL LINEAR-PHASE FIR FIL-
TERS

In the following, six typical linear-phase FIR fil-

ters will be given.

In each case, the impulse response, the zero plot

as well as the amplitude response are given.

The phase response is not given as it is known

after fixing the filter type and the filter order.

Also the weighted error function and the mat-
lab code for generating the filter in the minimax

sense are given for each case.

This error function as well as the matlab code
should become clear after reading Section 7: De-
sign of linear-phase FIR filters in the minimax

SE1Se.

This is why it is not worth trying to undstand
these topics at this point. Please return back to

the following six examples after reading Section

7.
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EXAMPLE 1: Type I lowpass filter, N = 46
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EXAMPLE 1: Error function

e The filter coefficients have been determined to

minimize on [0, 0.57] U [0.67, 7| the peak ab-

solute value of

BE(w) = W(w)[H(w) — D(w)],

where D(w) = 1 and W(w) = 1 on [0, 0.57]

and D(w) =0 and W(w) = /10 on [0.67, =].

e N = 46 is the minimum order to make this

quantity less than 0.01 (passband ripple).

stopband ripple is then 0.01/4/10 (50 dB).
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Example 1: Matlab code

%Design of an FIR filter of order 46
%(Type I) using the Remez algorithm
%with passband edge at 0.5pi, stopband
%edge at 0.6pi, passband ripple=0.01,
%stopband ripple =sqrt(.00001)

%(50 dB attenuation)

%Tapio Saramaki 28.10.1995

%This can be found in SUN’s
%~ts/matlab/dsp/luefirl.m

m=[10];

dev=[.01,sqrt(.00001)];

f=[.5,.6];
[n,f0,m0,w]=remezord(f,m,dev,2);
n=46

h=remez(n,f0,m0,w);
[H,f]=freqz(h,1,4*2048,2);

figure(1)

subplot(2,1,1)
plot(f,20*log10(abs(H)));

axis([0 1 -100 10]);

ylabel(‘Amplitude in dB’);
xlabel(‘Angular frequency omega/pi’);
hold on;

axes(‘position’,[.21 .68 .3 .14]);
plot(f,(abs(H)));axis([0 .5 .99 1.01]);
title(‘Passband amplitude’);xlabel(‘omega/pi’);
hold off;

subplot(2,1,2)

impz(h);xlabel(‘n in samples’);
ylabel(‘Impulse response’);

figure(2)

zplane(h);title(‘“Zero-plot’)

figure(3);
[H1,wl]=zeroam(h,.0,.5,500);
[H2,w2]=zeroam(h,.6,1.,500);
%zeroam is a routine evaluating

%the zero-phase frequency response;
Joprogrammed by Tapio Saramaki
%This can be found in SUN’s
%~ts/matlab/dsp/zeroam.m
subplot(2,1,1)
plot(w1/pi,H1-1,w2/pi,H2);grid;
xlabel(‘Angular frequency omega/pi’);
ylabel(‘Zero-phase response’);
title(‘Error H(w)-D(w)’)
subplot(2,1,2)
plot(w1/pi,H1-1,w2/pi,H2*sqrt(10));grid;
xlabel(‘Angular frequency omega/pi’);
ylabel(‘Zero-phase response’);
title(“Weighted error W(w)[H(w)-D(w)]’)
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EXAMPLE 2: Type II lowpass filter, N = 47
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EXAMPLE 2: Error function

e The filter coeflicients have been determined to
minimize on [0, 0.57] U [0.6m, 7| the peak ab-

solute value of

where D(w) = 1 and W(w) = 1 on [0, 0.57]
and D(w) =0 and W(w) = /10 on [0.67, 7.

Absolute error H(w)-D(w)
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Example 2: Matlab code °

%Design of an FIR filter of order 47
%(Type II) using the Remez algorithm
%with passband edge at 0.5pi, stopband
%edge at 0.6pi, passband ripple=0.01,
%stopband ripple =sqrt(.00001)

9%(50 dB attenuation)

%Tapio Saramaki 28.10.1995

%This can be found in SUN’s
%~ts/matlab/dsp/luefir2.m

m=[10};

dev=[.01,sqrt(.00001)];

f=[.5,.6];
[n,fO,mO0,w]=remezord(f,m,dev,2);
n=47

h=remez(n,f0,m0,w);
[H,f]=freqz(h,1,4*2048,2);

figure(1)

subplot(2,1,1)

plot(f,20*log 10(abs(H))),grid;

axis([0 1 -100 10]);grid;
ylabel(‘Amplitude in dB’);
xlabel(‘Angular frequency omega/pi’);
hold on;

axes(‘position’,[.21 .68 .3 .14]),
plot(f,(abs(H)));axis([0 .5 .99 1.01]);
title(‘Passband amplitude’);xlabel(‘omega/pi’);
hold off;

subplot(2,1,2)

impz(h);xlabel(‘n in samples’);
ylabel(‘Impulse response’);

figure(2)

zplane(h);title(‘Zero-plot’)

figure(3);
[H1,w1]=zeroam(h,.0,.5,500);
[H2,w2]=zeroam(h,.6,1.,500);
%zeroam is a routine evaluating

%the zero-phase frequency response;
%programmed by Tapio Saramaki
%This can be found in SUN’s
%~ts/matlab/dsp/zeroam.m
subplot(2,1,1)
plot(w1/pi,H1-1,w2/pi,H2);grid;
xlabel(‘Angular frequency omega/pi’);
ylabel(‘Zero-phase response’);
title(“Error H(w)-D(w)’)
subplot(2,1,2)
plot(w1/pi,H1-1,w2/pi,H2*sqrt(10));grid;
xlabel(‘Angular frequency omega/pi’);
ylabel(‘Zero-phase response’);
title(“Weighted error W(w)[H(w)-D(w)]’)
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EXAMPLE 3: Type IV differentiator,

31
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EXAMPLE 3: Error function
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e The filter coefficients have been determined to
minimize on [0, 7| the peak absolute value of
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Example 3: Matlab code

%Design of an FIR differentiator of
%order 31 (Type IV) using

%the Remez algorithm with edges at 0
%and pi. The zero-phase response is
%desired to follow the desired function
%D(w)=w, that is, at pi the desired
Jovalue is pi.

" %Tapio Saramaki 28.10.1995

%This can be found in SUN’s
%~ts/matlab/dsp/luefir3.m

f=[0 1]; m=[0 pil;

n=31;

h=remez(n,f,m, differentiator’);

h=-h;

%the algorithm gives a wrong sign
[H,w]=zeroam(h,.0,1.,4000);

%zeroam is a routine evaluating

%the zero-phase frequency response;
%programmed by Tapio Saramaki
%This can be found in SUN’s
%~ts/matlab/dsp/zeroam.m

figure(1)

subplot(2,1,1)
plot(w/pi,(abs(H))/pi),grid;
ylabel(‘Amplitude/pi’);
xlabel(‘Angular frequency omega/pi’);
subplot(2,1,2)

impz(h);xlabel(‘n in samples’);
ylabel(‘Impulse response’);

figure(2)

zplane(h);title(‘“Zero-plot’)

figure(3);

subplot(2,1,1)

Hi=H-w;

plot(w/pi,H1);grid;

xlabel(‘Angular frequency omega/pi’);
ylabel(‘Error’);

title(“Error H(w)-D(w)’)
subplot(2,1,2)

plot(w/pi,H1./w);grid;

xlabel(‘Angular frequency omega/pi’);
ylabel(‘Error’);

title(“Weighted error (1/w)[H(w)-D(w)]*)
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EXAMPLE 4: Type III differentiator,

30
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EXAMPLE 4: Error function

e The filter coefficients have been determined to
minimize on [0, 0.87] the peak absolute value

of the error function
E(w) = (1/w)[H(w) — w].

e Because of a fixed zero at w = m, the approx-
imation interval is selected to be [0, 0.87] in-
stead of [0, =].
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Example 4: Matl_ab code

%Design of an FIR differentiator of
%order 30 (Type III) using
%the Remez algorithm with edges at 0
%and 0.8*pi. The zero-phase response is
%desired to follow the desired function
%D(w)=w, that is, at pi the desired
%value is pi. However, since this filter
%is forced to have a zero at z=-1, the
Joupper ege must be less than pi.
%Tapio Saramaki 28.10.1995
%This can be found in SUN’s
%~ts/matlab/dsp/luefird.m
f=[0 .8]; m=[0 0.8*pi};
n=30;

=remez(n,f,m, differentiator’);
h=-h;
%the algorithm gives a wrong sign
[H,w]=zeroam(h,.0,1.,4000);
%zeroam is a routine evaluating
%the zero-phase frequency response;
%programmed by Tapio Saramaki
%This can be found in SUN’s
9o~ts/matlab/dsp/zeroam.m
figure(1)
subplot(2,1,1)
plot(w/pi,(abs(H))/pi),grid;
ylabel(‘Amplitude/pi’);
xlabel(‘Angular frequency omega/pi’);
subplot(2,1,2)
impz(h);xlabel(‘n in samples’);
ylabel(‘Impulse response’);
figure(2)
zplane(h);title(‘Zero-plot’)
[H,w]=zeroam(h,.0,.8,4000);
figure(3);
subplot(2,1,1)
H1=H-w;
plot(w/pi,H1);grid;
xlabel(‘Angular frequency omega/pi’);
ylabel(‘Error’);
title(‘Error H(w)-D(w)’)
subplot(2,1,2)
plot(w/pi,H1./w);grid;
xlabel(‘Angular frequency omega/pi’);
ylabel(‘Error’);
title(“Weighted error (1/w)[H(w)-D(w)]’)
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EXAMPLE 5: Type III Hilbert transformer,
N =30
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EXAMPLE 5: Error function

e The filter coefficients have been determined to
minimize on [0.057, 0.957] the peak absolute

value of the error function

E(w) = [H(w) — 1].
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Example 5: Matlab code

%Design of an FIR Hilbert transformer
%of order 30 (Type III) using

%the Remez algorithm with edges at 0.05
%and 0.95*pi. The zero-phase response is
%desired aproximate unity in this

%band.

%Tapio Saramaki 28.10.1995

%This can be found in SUN’s
%~ts/matlab/dsp/luefirS.m

f=[.05 .95]; m=[1 1];

n=30;

h=remez(n,f,m, Hilbert’);

h=-h;

%the algorithm gives a wrong sign
[H,w]=zeroam(h,.0,1.,4000);

%zeroam is a routine evaluating

%the zero-phase frequency response;
%programmed by Tapio Saramaki

%This can be found in SUN’s
%~ts/matlab/dsp/zeroam.m

figure(1)

subplot(2,1,1)

plot(w/pi,(abs(H)))/pi,grid;

axis([0 10 1.1]);

ylabel(‘Amplitude’);

xlabel(‘Angular frequency omega/pi’);
subplot(2,1,2)

impz(h);xlabel(‘n in samples’);
ylabel(‘Impulse response’);

figure(2)

zplane(h);title(‘Zero-plot’)
[H,w}=zeroam(h,.05,.95,4000);

figure(3);

plot(w/pi,H-1);grid;axis([.05 .95 -.05 .05]);
title(‘Error in the interval [0.05pi, 0.95pi]’)
xlabel(‘Angular frequency omega/pi’);
ylabel(‘Error’);
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EXAMPLE 6: Type IV Hilbert transformer,
N =31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 T T T 1 T 1
3 05} 1
[e]
73
9 G{\ 0000 0 Q@ (o0 IO (P <P T . , o
: [FETTTToveeoooy
0
3
E -0.5+ .

-1 ! 1 \ 1 1 i
0 5 10 15 20 25 30

n in samples

Zero-plot
T T T ! T T T
‘0
© : o
2 -
o] :
: (@]
o ©° o
0.5F o] © O .
< o : o
& :
o z
g :
P 0 ................ O. ......... O ..................... r .......................... @ ................... —
k=) :
g :
= o O
0.5 ©
-0. o ° : o
: 0
O o
: O
o :
-1+ ]
o : ©
e
L 1 1 i ! 1 1
-1.5 -1 -0.5 0 0.5 1 1.5




- 81 -

EXAMPLE 6: Error function

e The filter coefficients have been determined to
minimize on [0.057, 0.957] the peak absolute

value of the error function
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Example 6: Matlab cpﬂe

%Design of an FIR Hilbert transformer
%of order 31 (Type IV) using

%the Remez algorithm with edges at 0.05
%and 0.95*pi. The zero-phase response is
%desired aproximate unity in this

%band.

%Tapio Saramaki 28.10.1995

%This can be found in SUN’s
%-~ts/matlab/dsp/luefir6.m

f=[.05 .95]; m=[1 1];

n=31;

h=remez(n,f,m, Hilbert’);

h=-h;

%the algorithm gives a wrong sign
H,w]=zeroam(h,.0,1.,4000);

%zeroam is a routine evaluating

%the zero-phase frequency response;
%programmed by Tapio Saramaki

%This can be found in SUN’s
%-~ts/matlab/dsp/zeroam.m

figure(1)

subplot(2,1,1)

plot(w/pi,(abs(H))),grid;

axis([0 10 1.1])

ylabel(‘Amplitude’);

xlabel(‘Angular frequency omega/pi’);
subplot(2,1,2)

impz(h);xlabel(‘n in samples’);
ylabel(‘Impulse response’);

figure(2)

zplane(h);title(‘Zero-plot’)
[H,w]=zeroam(h,.05,.95,4000);

figure(3); ,
plot(w/pi,H-1);grid;axis([.05 .95 -.05 .05});
title(‘Error in the interval [0.05pi, 0.95pi]’)
xlabel(‘Angular frequency omega/pi’);
ylabel(‘Error’);
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SECTION 3: DESIGN OF LINEAR-PHASE
FIR FILTERS BY WINDOWING

e The most straightforward approach to designing
FIR filters is to determine the infinite-duration
impulse response by expanding the frequency re-
sponse of an ideal filter in a Fourier series and
then to truncate and smooth this response using

a window function.

¢ The main advantage of this design technique is
that the impulse-response coefficients can be ob-
tained in closed form and can be determined very

fast even using a calculator.

e The main drawback is that the passband and
stopband- ripples of the resulting filter are re-

stricted to be approximately equal.
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ORGANIZATION OF THIS SECTION

e For simplicity, we start by designing Type I
linear-phase filters and concentrate mainly on the

lowpass case.

e For design purposes, first fixed window func-
tions (the only adjustable variable is the win-
dow length) are used and then adjustable win-

dows having a changeable variable are introduced.

e Finally, the windowing technique is generalized

for designing also Type II, III, and IV filters.

e Also, four general-purpose matlab routines based
on the use of the windowing technique are given

In appendices in the end of this chapter.
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"BASIC DESIGN PROCESS

Step 1: Specify the ideal Type I zero-phase fre-
quency response Hij(w) that is even around

w = (0 and has the periodicity of 2.

e The ideal responses for the lowpass, highpass,
bandpass, and bandstop cases are shown in the

next transparency.

e Note that there is no transition band(s) for
the ideal responses. Only the cutoff fre-
quency(ies) between the passband(s) and stop-
band(s) are given: w. for the lowpass and
highpass cases and w, and w, and for the

bandpass and bandstop cases.

Step 2: Expand Hiy(w) in a Fourier series
Hy(w) = hi(O) |+ 2 Z h ] cos nw,

where

h(o)[ =5 / H;i(w) cos(nw)dw, 0<n < oo.
s
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IDEAL TYPE I ZERO-PHASE FREQUENCY
RESPONSES

Hig(®)
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| ] ] l |
-2n -7t -W¢ 0 We T 2n ®
Hig (®)
Highpass
S 41 —
| | 1 [ I I
-27 ~TT -W¢ 0 Wc T 2n ®
Hig (@)
Bandpass
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L | | | | J o
-27n -T ~0c2 -0c1 O gt we2 T 2n
Hid(m)
Bandstop 1
l | | l l I o

-2n - ~0c2 -0Wc1 0 wgy we2 = 2n
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e The Fourier series contain only cosine terms since
Hij(w) has the peridicity of 27 and is even

around w = 0.

e The above series for Hijg(w) can be interpreted
as the frequency response of the ideal infinite-
duration filter that has the impulse response val-
ues hi(g)[n] for n > 0 and hi(g)[n] h( )[ n| for
n < 0, as shown in the next transparency.

e For this unrealizable uncausal filter, the infinite-
duration impulse response is symmetric around
n = 0. |

e The corresponding transfer function is given
by

Hyy(z) = hig In] Zh“” 1l + 2],

from which the above Fourier series is ob-
tained by using the substitution z = €/ and
the identity e/™ + ™7™ = 2 cosw.

e The hi(g) n]’s for the ideal lowpass, highpass,
bandpass, and bandstop cases are given in

transparency 89.
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DESIGN PROCESS IN THE TIME DOMAIN

hig’[n]
‘ (a)
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COEFFICIENT FOR IDEAL ZERO-PHASE
TYPE I FILTERS

Lowpass filter with edge at w = w, :

O 1 _ we/ T, n =0
a 1] {Sin(wcn)/(ﬁn) In| > 0.

Highpass filter with edge at w = w, :

h(o)n—— 1—(")6/77'7 n=20
") { — sin(wn)/(mn) |n| > 0.

Bandpass filter with edges at w = w, and
W = We9:
Weo — We1) /T, n=>0
0 = { 2=/
sin(wean) — sin(wan)]/(mn) |n| > 0.
Bandstop filter with edges at w = w, and
W = WeH.
I — (We2 — wep)/m, n=>0
R
sin(wen) — sin(wen)]/(mn) |n| > 0.
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Step 3: Form the coefficients of the approximating
finite-duration zero-phase (center of sym-

metry is at n = 0) filter according to
RO [n] = wn]h{y [n]

where wn| is a window function which
is nonzero for —M < n < M (see trans-
parency 88).

e Some commonly used fixed window functions
(the only adjustable parameter is M, as we
shall see later) are shown in transparency 91
for M = 128. The actual definitions are given

later.

Step 4: The coefficients of the causal realizable fil-
ter are obtained by shifting the center of
symmetry from n =0 to n = M (see tran-

parency 88), yielding
hin] = hO[n — M].

e Note that the order of the resulting Type I fil-
ter is N = 2M.
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DIRECT TRUNCATION

When using the rectangular window defined

by
{1, —M<n<M

winl = 0, otherwise,
we obtain
0
0, otherwise .
This corresponds to the direct truncation of the

ideal impulse response and leads to the well-
known Gibbs phenomenon

This phenomenon means that the response of the
resulting filter exhibits large ripples before and
after the dicontinuity of the ideal response inde-
pendent of the value of M.

This phenomenon is illustrated in the next trans-
parency that shows the resulting zero-phase fre-
quency response H(w) in the lowpass case with

we = 0.4m for M = 10 and M = 30.

As M is increased, the transition bandwidth of

H(w) becomes narrower.

However, for both cases the passband maximum

and stopband minimum are approximately the same

(1.09 and —0.09, respectively).
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Responses for Type I Lowpass Filters De-
signed Using the Rectangular Window. w, =
0.4mw.  Solid and dashed lines are for M = 10
and M = 30, respectively.

H(w)

0 0.2n 0.4x 0.6m 0.8 T
FREQUENCY
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Explanation of the Gibbs Phenomenon

The Gibbs phenomenon can be explained by the
fact that H(w) is related to the ideal response
Hiq(w) and the frequency response of the window

function as given by

through
H(w) = % /_ Ha(0)U(w — 0)do.  (A)

Since all the commonly used window functions
satisfy wl0] = 1 and w[-n] = win], the above

U(w) is expressible as

M
U(w)=1+ 2ZW[’I?,] COS NW.

n=1

For the rectangular window,

U(w) = Z W[n]e_j"w = Z eI
Csin[@M + w2
B sin(w/2) '

The following transparency shows V¥ (w) for M =
10 and M = 30.
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Frequency responses for the rectagular win-
dow for M = 10 (solid line) and M = 30
(dashed line)

-7 -0.8n -0.6nt -0.4n -0.2n 0 02nr 0.4n 0.6n 0.8n i
FREQUENCY

o As seen from the above figure, ¥(w) appears as a
gradually decaying sinusoid.

e Lor later use, we give the following definitions:

e The mainlobe is the part of the frequency re-
sponse situated around w = 0 between the points

where ¥(w) crosses the value of zero.

e The sidelobes are the parts of the frequency re-

sponse situated between two zero-crossings.

e For the rectangular window, the mainlobe witdth

1s twice the sidelobe widths that are the same.
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Explanation of the Gibbs phenomenon (con-
tinued)

e According to Eq. (A) of transparency 94, the
value of H(w) at any frequency point w is ob-
tained in the lowpass case with cutoff edge w. by
integrating ¥(w—#) with respect to 6 over the in-
terval [—we,w,].

e This is the interval on [—m,n] where Hjj(w) = 1.

Elsewhere it is zero.

e The next transparency illustrates the integration

process.




Explanation of the Gibbs phenomenon. (a)
Convolution process. (b) Response for the

resulting filter.
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As seen from the previous tranparency, for w = T,
only small ripples of ¥(w—#) are inside the inter-
val [~we,we], resulting in a small value of H(w)

at w = 7.

As w is made smaller, larger ripples of ¥(w — 0)
are entering into the interval, resulting in larger

values in H(w) for w < .

The ripples are due to the fact that the area un-
der every second sidelobe of W(w) is of opposite
sign and the sidelobe heights are different (see

transparency 95).

For w = w,, half the mainlobe is inside the inter-
val [—wc,w]. Since the integral of ¥(w) over the
interval |—m, 7] is one and most of the energy is
concentrated in the mainlobe, the value of H(w)
at w = w, is approximately 1/2.

When w is further decreased, the whole mainlobe
enters the interval and the area in this interval is
approximately one, resulting in the passband re-

sponse of H(w).

The ripples around one are due to fact that
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the sidelobes of W(w — 6), which are of different
heights and of different signs, go inside the inter-

val |—w.,w. and leave it as w varies.

As M is increased, the widths of the mainlobe

~and the sidelobes decrease.

However, the area under each lobe remains the
same since at the same time the heights of the

lobes increase (see transparency 95).

This means that as M is increased, the oscilla-
tions of the resulting filter response occur more

rapidly but do not decrease.
In summary:

e As M is increased, the energy in the sidelobes

remains the same.

e As M is increased, the oscillations of H(w)
occur more rapidly but do not decrease (see

transparency 93).
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FIXED WINDOW FUNCTIONS

The Gibbs phenomenon can be reduced by using

a less abrupt truncation of the Fourier series.

This is achieved by smoothing the coefficients of
the ideal filter range —M < n < M using a win-
dow that tapers smoothly to zero at both ends.

Some of the well-known fixed window functions
w[n| are summarized in the first table of the next
transparency along with their frequency responses
U(w).

These windows are called fixed since the only ad-
Justable parameter is M, half the order (N =
2M) of the resulting filter.

The second table of this transparency shows some
characteristics of these windows as well as those

of the resulting filters (to be considered later).

The ealier transparency 91 showed the window
functions for M = 128, whereas transparency 102
shows the frequency responses of these window
functions for M = 128 as well as those of the re-

sulting filters for w, = 0.4.
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SOME FIXED WINDOWS
Table 1: Some Fixed Windows

Window Type Window Function, Frequency Response,
wln], - M <n<M U (w)
Rectangular 1 VU p(w) = sin[(2M + 1)w/2]/ sin(w/2)
n . . 2
Bartlett 1-— ]\/[|—%I-1 [sin[(M + 1)w/2]/sin(w/2)]
Hann Y+ cosl 1] 0.5% p(w) + 025 p(w — 251)
+0.25¥ p(w + m)
Hamming |0.54 + 046 cos[5 2] | 0.54¥g(w) + 0.23¥ p(w — 5257)
+0.230 g(w + 57
0.42¥ p(w) + 0.25V p(w — 5722)
Blackman | 0.42 + 0.5 cos[Z2l 21| 0.25% p(w + 52ET)
4
+0.08 cos A +0.04T p(w — 2M7T+1)

Table 2: Properties of Some Fixed Windows

Window Type Mainlobe Sidelobe Ag Aw =
Width Ay Ripple Ws — Wp
Rectangular 5 1\2111 ~13.3 dB | 20.9 dB | 1.847/(2M)
Bartlett M41 T —26.5 dB | see text see text
Hann 2]\573_1 —31.5 dB | 43.9 dB | 6.227/(2M)
Hamming 2]\;7;1 —44.0 dB | 54.5 dB | 6.647/(2M)
Blackman 2]\142_7;1 —58.1 dB | 75.3 dB | 11.137/(2M)
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Frequency Responses for Fixed Window Functions
and the Resulting Filters for M = 128 and w. = 0.4m.
(a,b) Bartlett Window. (c,d) Hann Window. (e,f)

Hamming Window. (g,h) Blackmann Window.
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PROPERTIES OF FIXED WINDOWS

The {following transparency depicts, in the low-
pass case, a typical relation between H(w) and
U(w), which is given in terms of 6 — w, in order

to center the response at the cutoff edge.

Notice a close similarity to the case where V(w),
Hig(w), and H(w) correspond to the impulse re-
sponse, the step exitation, and the response of a

continuous-time filter, respectively.

As seen from this transparency, H(w) satisfies ap-
proximately H(w.+w)+H(w.—w) =1 in the vicin-
ity of the cutoff edge w..

This means that H(w.) =~ 1/2.

Furthermore, the maximum passband deviation
from wunity and the maximum stopband devia-
tion from zero are about the same, and the peak
passband overshoot (14 ¢) and the peak negative
stopband undershoot (—J§) occur at the same dis-

tance from the discontinuity point w,.

The distance between these two overshoot points
is for most windows approximately equal to the

mainlobe width Ajy.
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Typical Relations Between the Window Func-
tion and the Resulting Filter in the Lowpass
Case With Cutoff Edge at w,
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CRITERIA MET BY THE RESULTING FIL-
TER

e The criteria met by H(w) can be given by
1-0<Hw) <1446 for we[0,w,)
—0< Hw)<4§ for wé€ |w,m].
o Here, w, (ws) is defined to be the highest fre-
quency where H(w) > 1 — ¢ (the lowest fre-
quency where H(w) < ) (see the previous

transprarency).

e The width of the transition band, Aw = ws; — w,,

is thus less than the mainlobe width Ajy,.

e This means that for a good window function, the

mainlobe width has to be as narrow as possible.

e On the other hand, for a small ripple value ¢, it
1s required that the area under the sidelobes of

U(w) is as small as possible.

e These two requirements contradict each other and
the fixed windows of transparency of 101 make

proper compromises between these requirements.
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PROPERTIES OF FIXED WINDOWS IN
NUTSHELL

e The only adjustable paramater is M, half the or-
der of the resulting filter.

o H(w) satisfies
1-6,<Hw) <1+, for wel0,w,)
—0s < H(w) <45 for w € |ws, 7.

e For each window,

0p =2 0,
wy & w. — A/2,
and
ws = we + A/2,
where

Aw = ws —w, =~ v/(2M)
with 0; and v being (approximately) constants.

e The ripple values cannot be varied.

e The second table of transparency 101 summarizes
the properties of the fixed windows under consid-

eration.

e The relation ws —w, ~ v/(2M) can be seen from

the last column of this table.




The maximum sidelobe ripple for ¥(w) is given
in decibels for the case where ¥(w) is normalized

to achieve the value of unity at w = 0.

As = —20 - log;p(d) is the minimum stopband at-

tenuation of the resulting filter.

These values have been determined for the case
we = 0.4m and M = 128.

For the Bartlett window v and A are not given
since it is very difficult to locate the stopband

edge (see transparency 102).
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DESIGN OF LOWPASS FILTERS USING
FIXED WINDOWS

o If for one of the fixed windows the stopband at-
tenuation, As given in the second table in trans-
parency 101 is satisfactory, then the only ad-
justable parameters are M, half the filter order,
and w,., the cutoff edge of the ideal filter.

e If the desired passband and stopband edges are
at w, and w,., then these parameters are selected

as follows:

Step I: Select w. to be the average of the pass-
band and stopband edges, that is,

we = (wp + ws) /2.
Step II: Find from the second table of trans-
parency 101 the constant v in the equation
Aw = ws —w, = v/(2M).
Step III: Determine the smallest value of M sati-

fying

M>25""p
/2
Step IV: Perform the design process described in

the beginning of this section.
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ADJUSTABLE WINDOWS

These windows contain an additional parameter

with which 0, ~ d; can be adjusted.

There exist four adjustable windows:

Kaiser window
Saramaki window
Dolph-Chebyshev window

Transitional window obtained from the Saramaki

and Dolph-Chebyshev windows

In the following, the basic characteristics of these
windows are considered. If you are interested in

more details, contact the lecturer.
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THE KAISER WINDOW

This window function is given by

wln| = {Io[oz\/l - (%)2]/10(04), —M S.n <M
0, otherwise.

M is half the filter order.

a 1s the adjustable parameter.

Ip(x) is the modified zeroth-order Bessel function
of the first kind:

fo(flf)zlJFZ[

(93/2)’“]2
=k

r

For most practical applications, about 20 terms
in the above summation are sufficient to arrive at

reasonably accurate values of w[n].

No analytic frequency-domain representation.
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LOWPASS TYPE I FILTER DESIGN WITH
THE KAISER WINDOW

Given: w,, ws, 0, =~ d5, then o, M, and w,. are

determined as follows:

Step I:

(0.1102(A4, — 8.7), A, > 50

0.5842(A, — 21)**
‘T +0.07886(As — 21), 21 < A; <50
L0, A, < 21
where
As = —20 - logyg s

Step 1I:

B As —7.95
 14.36(ws — wy) /7
Step III: Cutoff frequency of the ideal filter is

we = (wp + wyg) /2.

e The design process described in the beginning of
this section yields a filter meeting approximately

(very closely) the given criteria.
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THE SARAMAKI WINDOW

e The frequency response for the unscaled window

(w[0] # 1) is given by

M M
U(w)= > Wnle?™ =1+ 2T[ycosw + (v — 1))
n=—M k=1
2M + 1
sin| 2+ cos H{ycosw + (7 — 1)}
_ - :
sin[§ cos {ycosw + (y — 1)}
where
1 + cos 2
B OM + 1
' 1 + cos 2bm_
2M + 1

e 3 is the adjustable parameter.

e The mainlobe width is 487/(2M + 1) that is

times that of the rectangular window.
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SCALED RESPONSES (w[0] = 1)

e The scaled window and the corresponding fre-
quency respose are, respecyiovely, given by
{v?f[n]/v?f[()], —M<n<<M
win] = .
0, otherwise

and

U(w) = U(w)/%(0).

e The W(n)’s can be expressed as

M
win] = vo(n) + 2 Z vi[n),
k=1

where the wvi[n|’s can be calculated using the re-

cursion relations:

i { 1, n=0
win| =
’ 0, otherwise

(=1, n=0
viln] =4 7/2,  In[=1
L0, otherwise
[ 2(7 = Dvg-1[n] — vg-o[n]
vp[n) = ¢ +y[vkin — 1]+ v n+1]], —k<n<k
L 0, otherwise.
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FORMULAS FOR FILTER DESIGN

o Given ws, ws, and 6§, ~ J; for the lowpass Type
I filter, B8, M, and w, are determined like for the

Kaiser window.

e Empirical formulas for estimating 8 and M for
the above Saramaki window are given in the ta-

ble of the following transparency.

e This table gives the corresponding formulas also
for the Dolph-Chebyshev and transitional win-
dows to be considered later as well as for the

Kaiser window.

e It should be pointed out that the estimation for-
mulas for the Dolph-Chebyshev and transitional
windows are not so accurate as they are for the

Kaiser and Saramaki windows.
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Estimation Formulas for M and the Adjustable
Parameter for Adjustable Windows to Give
the Desired Attenuation A, and the Transi-

tion Bandwidth w; — w,

Window ‘
Type Adjustable Parameter M
0.1102(As — 8.7),  Ag > 50
, 0.5842(A, — 21)%4 Ag —7.95
K = M — S .
YT 10.07886(4s — 21), 21 < A, < 50 14.36(ws — wp) /7
07 AS < 21
(0.000121(A, — 21)
+0.0224( A, — 21) T
e . . _ S - .
Saraméaki | 8 = +1, 21 < A; <65 M = 14.36(ws — wp) /7
0.0334, + 0.062, 65 < A5 < 110
[ 0.0345A4, — 0.097, A > 110
Dolph-
(0.0000769(As)>
+0.0248 4, + 0.330, As < 60 1.028A, — 8.4
Chebyshev | 3 = s  As S M= s
! 0.0000104(A;)? 14.36(ws — wp) /7
| +0.032845 4+ 0.079, A, > 60
( 2
0.000154(As) M= ! »
L ) 40.01534, +0.465, A, < 60 14.36(ws — wp)/m
Transitional| g = 5 2
0.0000204(A,) [0.00036(As)
( +0.030345 + 0.032, A, > 60 +0.95145 — 9.4]
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THE DOLPH-CHEBYSHEV WINDOW

For the mainlobe width of 487 /(2M + 1) and for
the order of 2M, the frequency response for the

unscaled window is given by
U(w) = Tylycosw + (y — 1),

where
20T
2M + 1

7:(1+cos——7—f—)/(1+cos )-

2M

The unscaled coefficients are
w{n| = vy(n],

where the wvps[n]’s can be determined using the

recursion relations of transparency 113.

The scaled window function and the correspond-
ing frequency response are, respectively, given by
wln]/w[0], —-M <n<M
win| = .
0, otherwise

and

U(w) = U(w)/®[0].
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TRANSITIONAL WINDOW

e For the mainlobe width of 487 /(2M + 1) and for
the order of N = 2M, the frequency response for

the unscaled window is given by

M M
U(w) = Z W(n)e /™ = H(cosw — COSWy),
n=—M k=1
where
Wy = ,ow,(:) + (1 — p)w,(f).
with
1) _ypcos|fm/(2M + 1)) km
“k cos™| cos|m/(2M + 1)] COS[QM + 1“
and
@) _ 9 el cos|fm/(2M + 1)] (2k — U)m
Wi =2eos = ey o U
e Here, w,(;) and wl(f) for k = 1,2, ..., M are the

zero locations of the Saraméki and the Dolph-
Chebyshev windows, respectively.

e for p = 1 and p = 0, \/I}(w) is thus the un-
scaled frequency response for the Saraméiki and

the Dolph-Chebyshev window, respectively.

e LFor this transitional window, 0 < p < 1 is an ad-

justable parameter in addition to 0.
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e In most cases,

(0.4, A, <50
p=1{ 0.5, 50<A;<T75
0.6, 75< A,

1s a good selection.

e Accurate values for the unscaled window coeffi-

cients w(n) are obtained from

R 1 ~ 27rk 2mnk |
Wil = or YO +Z cos(oar 4 1)

o Alternatively, the coefficients can be determined
by evaluating U(w) at 27 (> 2M + 1) equally-
spaced frequencies and using the inverse fast
Fourier transform (this is used in a matlab file
generated by the lecturer for evaluating the tran-

sitional window; can be found in Appendix A).
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COMPARISON BETWEEN THE ADJUST-
ABLE WINDOWS

An informative way to compare the performances
of adjustable windows is to design several classes
of filters with various values of the adjustable pa-

rameter for fixed values of M and w,.

Based on the resulting filter frequency responses,
a plot of the stopband attenuation as a function
of the parameter D = 2M (ws — w,) can be gener-
ated (D, instead of wy; — w,, is used to make the

plot almost independent of M).
The figure of transparency 121 gives such plots

for the above-mentioned adjustable windows for
w, = 0.47m and M = 128.

For the Kaiser window and the Saramaki win-

dow, the difference in the plots is very small.

For comparison purposes, also a corresponding
plot is included for filters for which the passband
and stopband ripples 0, = 0; are minimized in the

minimax manner for the given value of D.

This plot gives thus an upper limit for the stop-
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band attenuation attainable using window func-

tions.

For the Kaiser window and the Saramaki win-
dow, the resulting attenuation is typically 6 dB

less than this upper limit.

The stopband attenuation obtained by the Dolph-
Chebyshev window is 2 to 5 dB worse than that

of the Kaiser or Saramaki window.

For the transitional window, the improvement is
typically 2 to 4 dB over the Kaiser and Saramaki
windows and the resulting attenuation approaches

the upper limit.
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COMPARISON BETWEEN THE ADJUST-
ABLE WINDOWS
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Example

e It is desired to design with each adjustable win-
dow considered above a filter with a 80-dB stop-
band attenuation for M = 128 and w, = 0.47.

e Using the estimation formulas of transparency
115 above, the values for the adjustable param-
eters for the Kaiser, the Saramaki, the Dolph-
Chebyshev, and the transitional windows are o =
7.857, B = 2.702, g = 2.770, and B = 2.587, re-
spectively.

e The resulting attenuations are 79.68, 80.17, 79.29,
and 80.75 dB, respectively.

e The following two transparencies show the fre-
quency responses of both the window function
and the resulting filter in the case of an exactly
80-dB attenuation as well as the corresponding

window in the time domain.
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Responses for the adjustable windows and the result-
ing filters for an exactly 80-dB attenuation. (a,b)
Kaiser. (c,d) Saramaiki. (e,f) Dolph-Chebyshev. (g,h)
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Comparisons and Comments

The transition bandwidths for these filters are
0.03937, 0.03907, 0.04047, and 0.03727, respec-
tively.

To achieve the transition bandwidth resulting
when using the Kaiser window, the Dolph-Cheby-
shev window requires M = 132, whereas for the

transitional window M can be reduced to M =
123.

It is interesting to observe from transparency 123,
that for the Kaiser and Saramaki windows, the
responses of both the window function and the

filter have larger ripples near the stopband edge.
For the Dolph-Chebyshev window, all the side-

lobe levels are the same and there is a ‘hole’ in

the response of the filter near the stopband edge.

As expected, the behaviors of the transitional
window and the resulting filter are between those

of the Saramaki and Dolph-Chebyshev windows.
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DESIGN OF TYPE II FILTERS

e The design of a Type II filter of odd order N

can be carried out by using the following process:

Step I: Instead of the Type II ideal response

Hij(w) that is even around w = 0, odd around

w = m, and has the peridicity of 4w, we first con-

centrate on the Type I ideal response Hiq(2w).

e As seen from the figure shown below for a low-

pass case, the resulting Hij3(2w) is even around

w = 7 and the periodicity is 2w, as required by

the Type 1 zero-phase frequency response.

Hig (w)

1

Hig (20)

~T+0 /2

n-0c/2

2n

J -2n -n -0e/2

0 0c/2 n

2n

(a)

(b)
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Step II: Like in the process described in the be-
ginning of this section, determine the coefficients of

the infinite-duration zero-phase filter according to

1 ™
hgg)[n] = %/ H,i(2w) cos(nw)dw, —oo <n < 0.

e In the lowpass case of the previous transparency,

h(o)[ | {O for n even
ia [ = sin(wen/2)/(mn) for n odd.

e Also for other cases, hi(g) [n] = 0 for n even, since
Hiq(2w) is odd around the points w = +7/2.
Step 3: Form the coefficients of the approximating

finite-duration zero-phase (center of symmetry is at

n = 0) filter according to
0
PO n] = win]h{[n]
where w(n| is a window function which is nonzero

for —N <n < N (see the next transparency).

Step 4: The coefficients of the causal realizable
filter are obtained by shifting the center of sym-
metry from n = 0 to n = N (see the next trans-

parency), yielding
h[n] = KO — N.
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DESIGN PROCESS FOR TYPE II FILTERS
IN THE TIME DOMAIN
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e The Type I filter having the impulse response
coeflicients /f;[n] obtained at the previous step 1is
characterized by the facts (see both the previous

and the next transparencies):

e The filter order is 2N, instead of the desired
order V.

e [ts zero-phase frequency response approximates
Hiq(2w), instead of the desired Hig(w).

e The impulse-response coefficients sastisfy }L\{N +
2r| =0 for r=0,1,---,(N —1)/2.
Step 5: The Type II filter with the zero-phase
frequency approximating the orginal Type II ideal
zero-phase frequency response is obtained by dis-
carding the zero-valued impulse response samples
of E[n], yielding (see the previous transparency and

transparency 131)
hin] = E[2n] for n=0,1,...,]V.

e The order of the resulting Type II filter is

now NN, as is desired.
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Responses for the Type I Filter Obtained at
Step 4: N =63, w, = 0.47, and the Hann win-

dow has been used.

Response for the Filter Designed at Step 4
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Responses for the Type II Filter Obtained at
Step 5: N =63, w, = 0.47, and the Hann win-

dow has been used.

Response for the Filter Designed at Step 5
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COMBINED FORMULAS FOR THE CAUSAL
TYPE I AND II FILTERS DESIGNED BY
WINDOWING

o After some reasoning, the coefficients of the causal
filters for both Type I (N even) and Type II
(N odd) can be expressed in the lowpass, high-
pass, bandpass, and bandstop cases in the follow-

ing common form:
hin] = Wn|f[n] for n=0,1,---,N.

e Here, f[n| for n=0,1,---, N is given by

we /T, n = N/2 and N even
fln] = { sinfw.(n — N/2)] .
Tn—N/2) otherwise
for the lowpass case with cutoff edge at w,
1 —w./m, n = N/2 and N even
f[n] = < sinfw.(n — N/2)] :
wn—N/2) otherwise
for the highpass case with cutoff edge at w,
(Weo — wer) /T, n=N/2 and N even
fln] = { sinfwea(n — ]\;{(272,]—_]31;12[3061 (n — N/Q)], otherwise

for the bandpass case with cutoff edges at weq

and wg, and
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sinfwe (n — N/2)] — sinfweg(n — N/2)]
w(n — N/2) ’

for the bandpass case cutoff edges at w, and we.

fln) =

otherwise

{1—(wcg—wcl)/w, n = N/2 and N even

e Here, w, is the cutoff edge for the ideal lowpass
and highpass cases, whereas w,; and w. and the
lower and upper cutoff edges for the ideal band-

pass and bandstop cases.

e For highpass and bandstop filters, N is restricted
to be even, since for N odd there exist a fixed
zero at z = —1 (w = w). This is not allowed
for these cases since the zero-phase frequency re-
sponse should approximately unity in these cases
at w = .

e Win| for n = 0,1,---,N is given for the fixed
windows by

Win] =1

for the rectangular window,
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n— N/2
Win = 1-— N/2+1/ , N even
n— N/2 N
| — 57— even
for the Bartlett window,
2 — N/2
Win] = 0.5+ 0.5 cos| W(XT n 1/ )]
for the Hann window,
2w(n — N/2)
W n] = 0.54 + 0.46 cos] N1 ]
for the Hamming window, and
2 — N/2
Wn] =0.42 + 0.5 cos| W(Z] n 1/ )]
Am(n — N/2)
.0
+ 0.08 cos N1

for the Blackman window.

e Among the adjustable windows,

Win] = Io[a\/ 1= 2 o)

for the Kaiser window.

e F'or the remaining three adjustable windows for
N even the w{n|’s are determined according to
the previous discussion for —N/2 < n < N/2 and
Win] =w[n — N/2] for n=0,1,---, N.
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e For N odd, the win|’s are determined according
to the previous discussion for —N < n < N and
Win] = w[2n — N] for n=0,1,---, N.

e We are now ready to generalizing the design pro-
cedure described in the beginning of this section
to include both Type I (N even) and Type II (N
odd) filters.
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DESIGN OF LOWPASS FILTERS BY WIN-
DOWING FOR THE GIVEN VALUES OF

Step I: Determine w, = (w, + ws)/2 and A; =
—20log;(min [6,, d;].

o If 0, < 05, then A, is determined according to
the value of §, and J, is forced to be approx-
imately equal to 6,. However, in most cases,
0, > 05 and A, depends on the value of §, and
dp = 0. |

Step II: A fixed or an adjustable window func-
tion? This depends on whether one of the fixed
window functions considered in transparency 101

provides a satisfactory value for A,.

Step IIA: If a fixed window function is selected
and both even and odd values of N are used, then
N/2 takes the role of M and N is selected to be
the smallest integer satisfying the condition given
in the last column of the second table of trans-

parency 101, that is,

Awy = (wp —ws) < 7/N
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or
N > 7/(('_‘}1? R wS)?

where

(1.847, for the rectangular window

6.22w, for the Hann window

v =4 (4)

6.644mw, for the Hamming window

| 11.137, for the Blackmann window.

e What is left is to apply the formulas of trans-
parencies of 132-135.

Step ITA: If an adjustable window function is se-
lected, then N/2 takes again the role of M. « for
the Kaiser window and (3 for the remaining three
adjustable windows are selected according the sec-
ond columns of the table in transparency 115. By
replacing M by N/2, the last column of this table

can rewritten as

2
~ 14.36(ws — wy) /7’
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where

(A, — 7.95, Kaiser window
Ay — 8.15, Saramaki window
f(As) =< 1.0284, — 0.84  Dolph-Chebyshev window
0.00036(A,)?
| +0.951A4, — 9.4, transitional window

(A)
e Again, what is left is to apply the formulas of

transparencies 132-135.
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DESIGN OF HIGHPASS FILTERS BY WIN-
DOWING FOR THE GIVEN VALUES OF

Wpy Wsy Opy and 0

e Determine A; = —20logymin|[d,,ds] and w, =

(wp + ws)/2, like for lowpass filters.

e The design of highpass filters is very similar to

that of lowpass filters.
e The only differences are the following:
® Wy > Ws.
e N must be even in order to avoid a zero at

z=—-1 (w=m).
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DESIGN OF BANDPASS FILTERS BY WIN-
DOWING FOR THE GIVEN VALUES OF

Wply Wp2y Wsly Ws2y 5p’ and 0,

Step I: Determine we = (wp + ws1)/2, wea = (wp2 +
ws2)/2, and A; = —20log;,min [6,,ds]. Determine
also

Aw = min [wp) — ws1, Wsy — Wpa).

Step II: A fixed or an adjustable window func-
tion?

Step IIA: If a fixed window function is selected,
then N is selected to be the smallest integer satis-
fying

N = v/(Aw),

where v is given by Eq. (A) of transparency 137.
Finally, the formulas of transparencies 132-135 are

used.

Step ITA: If an adjustable window function is se-
lected, then NN is selected to be the smallest inte-

ger satisfying
_2f(A)
~ 14.36Aw/7’
where f(A;) is given by Eq. (A) of transparency
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138. Finally, the formulas decribed earlier are used.

e It should be pointed out that in the bandpass
case, the resulting ripples d; ~ 0, are usually close

to those of the lowpass filter.

e However, for filters having rather narrow band-
pass region, one of these ripples is in the worst
case twice those of the lowpass design (this oc-

curs very rearly).
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DESIGN OF BANDSTOP FILTERS BY WIN-
DOWING FOR THE GIVEN VALUES OF

Wply Wp2y Wsly Ws2y 5p9 and 53

o Determine wy = (wp1 + ws1)/2, wee = (Wp2 + ws2)/2,

and A; = —20log;, min [d,, d;]. Determine also
Aw = min [ws; — wp1, Wy — Wsa).

e The design of bandstop filters is very similar to
that of bandpass filters.

e The only differences are the following:
o wy < ws and wpr > wgs.

e N must be even in order to avoid a zero at

z=—1 (w=m).
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DESIGN OF TYPE III FILTERS

Before the actual design, consider an infinite-
duration Type III filter whose impulse response
values satisfies hfg) 0] =0 and hi(g) n| = —hi(g)[——n]
forn=1,2,...,00

For this filter
Huero(2) = Y hid[-n][z" — 27"
n=1
and
zero e]w) == ] Z hld 2 sin TL(,U]
— e371’/2}Iid( )7
where -
Hig(w) =Y hiy[-n][2sinnw)].
n=1
For this filter, the center of symmetry is at n =

0, instead at n = N/2 like for a causal Type III
filter of order V.

The above formulas show that the design of Type
IIT filters can be carried out by windowing as will

be described in the following transparencies.
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BASIC DESIGN PROCESS FOR TYPE III
FILTERS

Step 1: Specify the ideal Type III zero-phase fre-
quency response Hij(w) that is odd around

w = 0 and has the periodicity of 2.

e The ideal responses for the Hilbert transformer
and the differentiator are shown in the next
transparency. For the Hilbert transformer, the de-
sired function is +1 for 0 < w < 7 and —1 for
—m < w < 0. For the differentiator, the desired
function is w for —w, < w < w, and zero else-

where in the interval [—m, .

Step 2: Determine the coefficients of the ideal

zero-phase filter as follows:

1 ™
hi(g)[—n] = %/ Hij(w)sin(nw)dw, 1<n < oo,

and
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e For the Hilbert transformer,

)1 — 0, for n=20
g (1) {—[1 — cos(n/m)]/(nm) for n 0.

e Lor the differentiator with cutoff edge at w,,
(0, for n =20
0 _ sin(nw,)
hl(d) [n] — < 7'(7’1,2( )
We CoS(Nnw,
|+ ) for n # 0.

Step 3: Form the coefficients of the approximating
finite-duration zero-phase using a window

function win| being nonzero for —M <
n <M as

KOn] = wln]h(Y [n).

Step 4: The coeflicients of the causal realizable fil-

ter are then
h[n] = KO — M].

e Note that the order of the resulting Type III
filter is N = 2M.
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COMBINED FORMULAS FOR THE CAUSAL
TYPE III AND IV FILTERS DESIGNED
BY WINDOWING

e The design of Type IV Hilbert transformers and
differentiators can be accomplished with the aid
of Type III filters in a manner similar to the de-
sign of Type II filters with the aid of Type I fil-

ters.

e The coeflicients of the causal filters for both
Type III (N even) and Type IV (N odd) can be
expressed for the Hilbert transformers and differ-

entiators in the common form:
hin] = Win]f[n] for n=0,1,---,N.

e For the Hilbert transformer, f[n] for n=0,1,--- N
is given by |

(0, n = N/2 and N even

_1 = cos(n — N/2)n] n # N/2 and N even

fln] = < (?—N/Z)Tl’ ’
=N N odd.

e For the differentiator with cutoff w., f[n] for n =
0,1,---,N is given for n = N/2 and N even by

fln] =0,
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whereas for N odd and n # N/2 and N even by
_sin[(n — N/2)w,]

o) === N2y
wecos[(n — N/2)w,]
w(n— N/2)

e The causal windows W{n| are the same as those
considered previously in connection with design-
ing Type I and II filters (see transparencies 133-
135).
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DESIGN OF HILBERT TRANSFORMERS
BY WINDOWING

e For Hilbert transformers, we give usually the
maximum allowable deviation ¢, from unity on

lwh, ™ — wy] for N even and on |wp, w| for N
odd.

e There are the following differences compared to

the design of Type I and II lowpass filters.

e If a lowpass filter has been designed using a win-

dow function such that

1) The transition bandwidth is
Aw = ws — ws.
2) The passband and stopband ripples are
0p R 05 = 5.

e Then to the corresponding Hilbert transformer
designed by the same window applies approxi-

mately:

1) The first stopband edge is at

Wh = Aw/2
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2) The maximum deviation from unity is
5y = 20.
e Therefore, when designing Hilbert transformers,
ds = Op/2

and

Ws — Wp = 2wy,

can be used in the formulas described above.
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DESIGN OF DIFFERENTIATOTS BY WIN-
DOWING

e For differentiators, we give usually the band
0, wgy] where it is desired to approximate w
with tolerance 4, and the band |wgs, 7] where it

is desired to approximate zero with tolerance dgys.

e Like for lowpass filters, the cutoff edge is selected
to be

we = (w)p + ws) /2.

o If a lowpass filter has been designed using a win-

dow function such that

1) The transition bandwidth is
Aw = ws — wp.
2) The passband and stopband ripples are
8y~ 8, = 0.

e Then to the corresponding differentiator designed

by the same window applies approximately:

1) The transition bandwidth wgs — wg, is the same

as for the lowpass filter.
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2) The passband and stopband ripples are
Odp = 0ds = WeOs.
e Therefore, when designing differentiators
Js = Ous/we

and

can be used in the formulas described above.
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MATLAB ROUTINES

The author of these lecture notes has generated

four general-purpose routines:

Given the criteria for a lowpass, highpass, band-
pass, or bandstop filter (edges and ripples) as
well as the adjustable window (Kaiser, Saraméki,
Dolph-Chebyshev, or transitional window), fir-
winad.m automatically searches for the minimum
filter length and finds the adjustable paramerter

to just meet the given criteria.

This routine is given in Appendix A in the end

of this chapter.

hilwinad.m (Appendix B) and difwinad.m (Ap-
pendix C) do the same for the Hilbert transform-

ers and differentiators, respectively.

firwifix. m (Appendix D) is a routine for designing
with the aid of fixed windows lowpass, highpass,
bandpass, and bandstop filters as well as Hilbert

transformers and differentiators.

We consider next some examples.
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EXAMPLE 1

e It is desired to design with the aid of adjustable
windows a linear-phase FIR filter (Type I or
Type II) such that the maximum deviation from
unity on [0, 0.57] is at most 0.002 and the max-

imum deviation from zero on [0.6mw, 7] is at most
0.001 (60-dB attenuation).

e The results obtained using firwinad.m are given

in the next four transparencies.

e The minimum orders for the Kaiser window, the
Saramaki window, the Dolph-Chebyshev window,
and the transitional window are 73, 72, 76, and

70, respectively.
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Kaiser window: N = 73
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Saramaki window: N = 72
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Dolph-Chebyshev window: N = 76
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Transitional window: N = 70

Window function
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EXAMPLE 2

e It is desired to design with the aid of hilwinad.m
a Hilbert Transformer such that for Type III (N
even) the passband region is [0.057, 0.957] and
for Type IV [0.057, m]. The maximum allowable

deviation from unity is 0.05.

e The minimum orders for the Kaiser, Saramaki,
Dolph-Chebyshev, transitional windows are 33,
33, 35, and 30, respectively.

e The figures below and in the next transparency
show the characteristics of the transitional win-

dow and the resulting filter.
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Hilbert Transformer Designed With the Aid
of the Transitional Window

Resulting filter
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EXAMPLE 3

e It is desired to design with the aid of difwinad.m
a differentiator such that its response approxi-
mates w in the band [0, 0.457] with tolerance
0.001 and zero in the band [0.557, w] with the

same tolerance.

e The minimum orders for the Kaiser, Saramaki,
Dolph-Chebyshev, transitional windows are 78,
78, 82, and 76, respectively.

e The figures below and in the next transparency
show the characteristics of the transitional win-

dow and the resulting filter.
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Differentiator Designed With the Aid of the

Transitional Window

Resulting filter
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SECTION 4: DESIGN OF LINEAR-PHASE
FIR FILTERS IN THE LEAST-MEAN-
SQUARE SENSE

e The second straightforward approach for design-
ing FIR filters is based on the use of the least-

squared approximation.

e The problem is to find the filter coefficients to

minimize |
By = [ W)[H) - D))d

where X contai);s the passband and stopband re-

gions, D(w) is a desired response, and W(w) is a

positive weighting function.

e For the conventional lowpass case, X = [0, wp|]U
lws, 7, D(w) is unity in the passband and
zero in the stopband.

e If D(w) and W(w) are sampled at a very dense
grid of frequencies wy,wo,...,wg on X, then min-
imizing the above equation may be achieved by
minimizing

K

Ey =Y W(wy)[H(w) - Dwol. (1)

k=1
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e According to above considerations, H(w) can be
expressed in the four different linear-phase cases

in the form (see transparency 39)

M
= Z bnltrig(w, n)
n=0

e By substituting this for H(wg) in Eq. (1) and

transtering W (wy) inside the parentheses yields

K M
Ey = Z Z bln]trig(wy, n) — W (wg)D(wi)]*.
k=1 n=0

This equation can be written in the followmg
quadratic form

E:eTe,
where
e=Xb-d
with
W(w)trig(w1,0)  W(wy)trig(wy,1) ...  W(wy)trigw;, M)
X — W(wz)tfig(w2,0) W(wz)tr_ig(wg,l) W(wg)tri_g(wz,M)
W(wK)tr.ig(wK,O) W(wK)tr'ig(wK, 1) ... W(wg)trig(wg, M)
bz[b[O], b[l]v 7b[M”T
= [W@)D(1), W(w2)Dws), - ,W(wg)D(w)]"

e Here, e is a K length vector with the k-th ele-
ment being W (wy)[H (wg) — D(wy)].
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The optimum solution of minimizing E5 is given
by

b= (X'X)"1X%d (2)
and 1t satisfies the "normal equations”

XT'Xb = X14.

It K is much larger than M, then Eq. (2) should
not be solved directly because it becomes ill con-
ditioned.

In this case, direct solution will probably have

larger errors.

Parks and Burrus recommend the use of the soft-
ware package LINPACK, which has a special pro-

gram for solving the above problem.

In the case where both W(w) and D(w) are
piecewise-constant functions, a significantly sim-
pler procedure for finding the optimum solution
can be generated. As a matter of fac;t, the mat-

lab routine firls.m uses this alternative.

Future work is devoted to generating a more gen-

eral matlab routine.
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Example

e Consider the design of a Type I filter of order
N = 46 (M = 23) and having the passband and
stopband edges of w, = 0.57 and ws, = 0.67.
D(w) =1 on [0,w,] and D(w) =0 on [w,,7].

e The following figure shows the resulting responses
for two cases. In both cases, the W(w) = 1
on [0,w,], whereas W(w) = W, on |w,, 7|, where

Ws =1 in the first case and W, = 10 in the sec-

ond case.
T | T [ ] I T I T
0
0 _
T 20 |
prd
E B LIN. AMP.
O ..40 - 102
- ~ -~ 'y I
E B \
. |
% 60
< [ 0.92
-80 - 0 0.57
-100 | I I l
0 0.2n 0.4rn
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Comments

The effect of the stopband weighting is clearly

seen from the figure of the previous transparency.

It is also seen that the maximum deviations be-
tween the actual and the desired responses are
much larger near the passband and stopband

edges.

This is characteristic of the least-squared-error

designs.

If the maximum deviations are desired to be min-
imized, then it is preferred to design the filter in

the minimax sense.

Compare the figure of the previous transparency
to that of transparency 59, which gives a re-
sponse for an FIR filter designed in the minimax

SEISE.

The filter orders in these two figures are the

Saine.

From the next transparency, you can find a
matlab routine for designing the previous filters.

Please try it!
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MATLAB CODE GENERATING THE PREVIOUS FILTERS

%Design of FIR filters of order 46

%(Type 1) in the least-mean-square sense
%with passband edge at 0.5pi, stopband
%edge at 0.6pi.

%Stopband weighting for the first filter

%is 1, and for the second one 100.

%Note that the weighting must be 1072 in
%the case of the matlab routine to be used
%Tapio Saramaki 2.11.1995

%This can be found in SUN’s
%~ts/matlab/dsp/luefir7.m

PFirst filter

h1=firls(46,[.0.5 .6 1.], [1 100}, [1 1]);
%Second filter

h2=firls(46,[.0 .5 .6 1.], [1 1 0 0], [1 100));

%

[H,f]=freqz(h1,1,4*2048,2);

figure(1)

subplot(2,1,1)

plot(f,20*log10(abs(H))); axis([0 1 -100 10])
ylabel(‘Amplitude in dB’);

xlabel(‘Angular frequency omega/pi’);
title(‘Filter with stopband weigting of 1°);

hold on;axes(‘position’,[.21 .68 .3 .14]);
plot(f,(abs(H))); axis([0 .5 .98 1.02)]);
xlabel(‘omega/pi’);

title(‘Passband amplitude’);

hold off;

subplot(2,1,2)

impz(h1);xlabel(‘n in samples’);
ylabel(‘Impulse response’);

figure(2)

zplane(h1);title(‘Zero-plot, stopband weigting is 1)
[H,f]=freqz(h2,1,4*2048,2);
figure(3);subplot(2,1,1)
plot(f,20*log10(abs(H))); axis([0 1 -100 10])
ylabel(‘Amplitude in dB’);xlabel(‘Angular frequency omega/pi’);
title(‘Filter with stopband weigting of 10°);
hold on;axes(‘position’,[.21 .68 .3 .14]);
plot(f,(abs(H))); axis([0 .5 .94 1.02]);xlabel(‘omega/pi’);
title(‘Passband amplitude’);hold off;
subplot(2,1,2);impz(h2);xlabel(‘n in samples’);
ylabel(‘Impulse response’);
figure(4):zplane(h2);title(‘Zero-plot, stopband weigting is 10”)
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MAXIMALLY-FLAT LINEAR-PHASE FIR
FILTERS

e The third straightforward approach for designing
FIR filters is to use filters with maximally flat re-

sponse around w =0 and w = 7.

e The advantages of these filters are that the de-
sign 1s extremely simple and they are useful in
applications where the signal is desired to be pre-
served with very small error near the zero fre-

quency.

e In the case where the maximum deviation from
the desired response is desired to be minimized,
the disadvantage of these filters compared to
the filters designed in the minimax sense is that
the required filter order is much higher to meet

the same criteria.
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Conditions

e Consider a Type I filter with transfer function
2M
H(z) =) hln]z™, h[2M —n] = h[n].
n=0

e For maximally flat filters, it is advatageous to ex-
press H(w) as an Mth degree polynomial in cosw

as follows (see transparency 61):

M
H(w) =) aln]cos"w.

n=0
e This H(w) is determined in such a way that
o H(w) has 2K zeros at w = .
o H(w)—1 has 2L = 2(M —K+1) zeros at w = 0.

e M is thus related to L and K through M = K +
L—1.



- 171 -

Desired Solution

e The above conditions are satisfied if H(w) can be

written simultaneously in the forms

H(w) = 1—l—cosw Zl l—cosw]

= cos?® (w/2) d[ ] sin**(w/2)

e The coefficients d[n] and &l\[n] giving the desired

solution are given by

dn] = (K —1)n! "’ nl = (L—1)n! "’
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Characteristics of the Solution

e The resulting H(w) is characterized by the fol-

lowing facts:

e Hw) =1 at w = 0 and and its first 2L — 1

derivatives are zero at this point.

o H(w) =0 at w = and its first 2K — 1 deriva-

tives are zero at this point.

e The primary unknowns of the above filters are K
and L.

o Given the filter specifications, the problem is thus
to determine these integers such that the given

criteria are satisfied.
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Specifications Stated by Kaiser
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B
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FREQUENCY

above.

[ is the center of the transition band.

T

Kaiser has stated the filter specifications as shown

v 1s the width of the transition band which is

defined as the region where the response varies

from 0.95 (passband edge angle) to 0.05 (stop-

band edge angle).

v < min(28, ™ — 20).

For meaningful specifications, v has to satisfy 0 <
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Design Procedure Proposed by Kaiser

e The lower estimate for M = K + L — 1 (half the
filter order) is given by

Mlower ~ (77/7)2
e Then, p is determined by

p=(14+cosp)/2.
e The next step is to determine
Kp — <10Mp>7

where (z) stands for the nearest integer of z, for
the values of M, in the range Mwe < M, <
2]\Ilower-

e Finally, the values of the integers K, and M, for
which the ratio K,/M, is closest to p are se-
lected.

e The desired values of K, L, M are then K = K,
L=M,-K, M=M,—1.

e With the above selections of K and L, the de-

sired value of 3 can be achieved accurately.
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Example

o Consider the specifications: 8 = 0.4w, v = 0.27.

e The above procedure results in K = 17 and L =
9. The order of the filter is thus 2(K + L — 1) =
50.

e The amplitude response of this filter is depicted

in the following figure.
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Implementations

e The resulting H(z) can be implented using the
conventional direct-form structure exploiting the
coefficient symmetry (see transparencies 54 and
55).

o Alternatively, the transfer function can be written

in the forms

1+ Z_l 2K L—-1 1 — Z_l 2n
H _1\n —(L—1-n)
(2) = (—5—) nEZOI( 1)"d[n]z (—5—)
H(z)=2zM
_1 oL K—1 12

) > din G
2

In the latter case, there are fewer multipliers, but

the finite wordlegth effects are worse.

e The next two transparency give a matlab routine
to carry out the design procedure proposed by
Kaiser and shows how the filter coefficients can

be determined accurately.
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Matlab routine for designing maximally-flat linear-
phase FIR filters

kkkkkkkkkkhkkhkhkhkkkhhkkkhkhhkhhkihkkkkkkikihkkkhikhikikkikhkkhikkikikkk

% Matlab m-file (maxfir.m)

% This is a program for synthesizing maximally

% flat FIR filters according to the procedure

% suggested by Kaiser, see, e.g,

% T. Saramaki, "Finite impulse response Filter

% Design" in Handbook for Digital Signal Processing,
% S. K. Mitra and J. F. Kaiser, Eds, John Wiley &

% Sons, 1993, pages 193--195.

% Tapio Saram"aki 1.2.96

% Can be found in SUN's: ~ts/matlab/dsp

disp('This program designs maximally flat FIR filters');
disp(‘according to the procedure suggested by Kaiser.');
disp('The parameters to be given are');

disp('beta, the center of the transition band ');
disp('gamma, the width of the transition band ’);
disp(‘give both as a fraction of pi or as a fraction’)
disp('of half the sampling rate')

disp(‘'For meaningful specifications,');
disp('0<-gamma<-min(2beta,2-2beta’)
beta=input('beta =');

gammas=input('gamma ="');

beta=beta*pi;

gamma=gamma*pi;

Milower=round((pi/gamma)~2);

rho=(1+cos(beta))/2;

help=200;

for k=Mlower:2*Miower

Mp=k;

Kp=round(rho*Mp);

if abs(Kp/Mp-rho)< help

help=abs(Kp/Mp-rho); K=Kp;L=Mp-Kp;M=Mp-1;end
end

%

% Coefficients

I(1)=1

1(2)=1

for n=3:K-1+L I(n)=(n-1)*I(n-1);end

for n=0:L-1;d(n+1)=I(K-1+n+1)/(I(K-1+1)*I(n+1));end
%

% What is now remaining is to evaluate the impulse
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% response coefficints of the resulting filter.

% To do this, we evaluate the zero-phase frequency
% response of our filter at 271 > 2M+1 equally spaced
% frequencies and use the IFFT.

%

I=log2(2*M+1);i=floor(l)+1;k=2AI;
w=0:2*pi/k:2*(k-1)*pi/k;

A=((1+cos(w))/2).7K; B=zeros(size(w));

for n=0:L-1 B=B+d(n+1)*((1-cos(w))/2).~An;end
A=A."B;

b=ifft(A);

b=real(b);

b=fftshift(b);

for k=1:2*M+1

h(k)=b(2*(I-1)+1-(M+1)+k);end

figure(1)

subplot(211);xlabel('n in samples');

impz(h);xlabel('n in samples');ylabel('Impuise response');
title(['Maximally-Flat FIR Filter with L = ', num2str(L),' and K =
,num2str(K)])

[HH,w]=zeroam(h,.0,1.,1000);

subpiot(212)

plot(w/pi,abs(HH));axis([0 1 -.01 1.01]);
xlabel('Frequency omega/pi');ylabel('Amplitude’)
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SECTION 6: SOME SIMPLE LINEAR-PHASE
FIR FILTER DESIGNS

e There exist two special cases where the optimum
solution in the minimax sense can be obtained

analytically.

e The first analytically solvable case 1s the one
where the zero-phase frequency response is mono-
tonically decaying in the passband region and ex-
hibits an equiripple behavior in the given stop-
band region |ws, 7].

e An equiripple behavior on [wg, ] can beAachieved
by mapping the Chebyshev polynomial Ty (z) to
the w-plane such that the region [—1,1], where
Ty (z) oscillates within 41 (see transparencies 62

and 63), is mapped to the region [wg, ].

e The next transparency shows how this mapping

can be performed.
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Generation of a zero-phase frequency response
oscillating within the limits +1 in the stop-
band [w,, 7] based on mapping the Mthe de-
gree Chebyshev polynomial T),(w) to the w-

plane
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As seen from the previous transparency, the de-
sired tranformation mapping x =1 to w = w, and

= —1 to w=m is given by

2
T =7ycosw+ (y— 1), Y = T eos i

This result in the following zero-phase frequency

response:

P

H(w) =Ty[(2cosw + 1 — cosws) /(1 + cos wy)].

This is expressable as an Mth order polynomial

iIn Ccos w.

According to the discussion of transparency 61,
the resulting H(w) is the zero-phase frequency re-

sponse of a Type I filter of order 2M.

The response of the resulting filter shown in the
previous transparency is not acceptable at all as
it oscillates in the stopband region between =+1

and achieves the value of almost 9 at w = 0.

This problem can be solved by using a proper
scaling, as will be described in the next trans-

parency.
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Scaled Response

e The response taking the value 1+ 6, at w = 0
is simply obtained by dividing H(w) by H (0) and
multiplying by 1+ J,, giving

H(w) = (1+ 6,)H(w)/H(0)

e This H(w) oscillates on |ws,w] within the =4,

where

s = (1+6,)/H(0).

e The response of transparency 180 after scaling for

6p = 0.1 is shown in the next transparency.

e Based on the properties of Chebyshev polynomi-
als, it can be shown that the minimum value of
M (half the filter order) to give the specified rip-
ples 0; and J, is the smallest integer satisfying

cosh™H[(1 + dp)/ 0]
B cosh_l[(S — cosws) /(1 4+ cos ws)].
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Response of the filter in transparenscy 180
after scaling it to take the value 1+ 4, with
0p = 0.1 at w = 0.
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Example

e As an example, the following figure gives re-
sponses with ws; = 0.17 and ¢, = 0.1 for M = 15
and M = 30.

e The disadvantage of these designs is that all the
zeros of the filter lie on the unit circle and the
passband region where the response decays from

1+0, to 1—0, is narrow and cannot be controlled.
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Matlab Routines for Designing Filters with
Equiripple Stopband or Passband

e The next four transparencies give a matlab rou-
tine for generating filters having an equiripple

stopband behavior.
e It can be used in the following two cases:

e M, ws, and ¢, are specified and 9, is de-
termined according to the formula in trans-

parency 182.

® w,, 05, and 6, are specified and M is de-
termined according to the formula in trans-
parency 182. Also J, is redetermined to be

less than or equal to the specified value.

e The same routine can be used for designing
linear-phase FIR filters with its zero-phase fre-
quency response oscillating within 1 + 9, in the
passband [0, w,| and being monotonically decay-
ing outside this band achieving the value of —§,

at w = 1.
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Matlab routine for designing linear-phase FIR filters
with equiripple stopband or passband

khkkkhkkkkhkhhkhkhkhhhkhhhhhhkhkhkikkkkihiikkikkikhkkikkkhkkiikkihikhkkkkik

% This program (simple.m) designs filters with equiripple
% stopband or passband region with the aid of Chebyshev
% polynomials
(-7
% Tapio Saramaki 14.11.1997
% This can be found in SUN's:
% ~ts/matlab/dsp/simple.m
o/,
disp(‘'Hi there, | am a program of designing FIR filters')
disp(‘with the aid of Chebyshev polynomials')
disp(‘The order of the resulting filter is always twice')
disp(‘the degree of the Chebyshev polynomial')
disp(‘As input data, | need the following:')
disp('1 for filter with equiripple stopband');
itype1=input(‘2 for filter with equiripple passband: ');
disp('1 for specifying the order of the Chebyshev polynomial');
itype2=input('2 for specifying the filter criteria: ');
if itype2==
M-=...
input(‘half the filter order or the degree of the polynomial: ');
if itype1==1
oms=input(‘stopband egde as a fraction of pi: ');
disp('the value at omega=0 is given as 1+delta_p');
dp=input(‘delta_p: ');
end
if itypel==
omp=input('passband egde as a fraction of pi: ');
disp(‘the value at omega=pi is given as -delta_s’);
ds=input(‘delta_s: ');
end
end
if itype2==2
if itype1==
oms=input('stopband egde as a fraction of pi: ');
ds=input(‘stopband ripple delta_s: ');
disp(‘the value at omega=0 is given as 1+delta_p');
dp=input('delta_p: ');
num=acosh((1+dp)/ds);
den=acosh((3-cos(pi*oms))/(1+cos(pi*oms)));
M=ceil(num/den);
end
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if itypei==2
omp=input('passband egde as a fraction of pi: ');
dp=input(‘passband ripple around unity delta_p');
disp(‘'the value at omega=pi is given as -delta_s');
ds=input('delta_s: ');
num=acosh((1+ds)/dp);
den=acosh((3-cos(pi*(1-omp)))/(1+cos(pi*(1-omp))));
=ceil(num/den);
end
end
%
% Filter with equiripple stopband generated using the
% subroutine chepols(M,oms)
o/,
if itypei1==1
h=chepols(M,oms);

o/,

9

% Value at omega=0

o/,
[H,w]=zeroam(h,.0,.0,1);
h=(1+dp)*h/H(1);
ds=(1+dp)/H(1);

end

o/
/0

% Filter with equiripple passband generated using the
% subroutine chepols(M,oms)
o/
if itype1==
oms=1-omp;
h=chepols(M,oms);
for k=1:2:M
h(M+1-k)=-h(M+1-k);
h(M+1+k)=-h(M+1+k);
end
%
% Value at omega=pi
o/
[H,w]=zeroam(h,1.,1.,1);
dp=(1+ds)/H(1);
=-dp*h;
h(M+1)=h(M+1)+1;
end
%

% Plot the responses

o/
/0
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[H,w]=zeroam(h,.0,1.,8000);
figure(1)
amax=1+1.5*max(H-1);
amin=1.5*min(H);
subplot(211)
plot(w/pi,H);axis([0 1 amin amax]); grid;
ylabel('Zero-phase frequency response’);
xlabel('Angular frequency omega/pi');
subplot(212)
amax=40*log10(abs(ds));
HH=20*log10(abs(H));
plot(w/pi,HH); axis([0 1 amax 10]);grid;
ylabel('Amplitude in dB');
xlabel('Angular frequency omega/pi');
figure(2)
subplot(211)
impz(h);ylabel('Impulse response');grid;
xlabel('n in samples');
subplot(212)
if itype1==1
plot(w/pi,H);grid;axis([oms 1 -ds ds]);
title('Stopband Details’)
ylabel('Zero-phase frequency response');
xiabel('Angular frequency omegal/pi');
end
if itype1==2
plot(w/pi,H);grid;axis([0 omp 1-dp 1+dp]);
title('Passband Details’)
ylabel('Zero-phase frequency response’);
xlabel('Angular frequency omega/pi');
end
function [h]=chepols(M,omegas)
o/
% [h]=chepols(N,omegas) evaluates the impulse response
% values of a Type I filter with zero-phase frequency
% response given by H(omega)=T_M[gamma*cos(omega)+
% (gamma-1)] with gamma=2/1+cos(omegas). The resulting
% H(omega) oscillates within the +1 amd -1 on
% [omegas, pi]. The order of the resulting filter is
% 2M.
% omegas is is given as a fraction of pi

o/
/0
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o/,
% Programmed by Tapio Saramaki, 14.11. 1997.
% This can be found in SUN's
% ~ts/matlab/dsp/chepols.m
o/
gamma=2/(1+cos(pi*omegas));
gammai=gamma/2;
gamma2=gamma-1;
w1(1,2*M+1)=0; w2(1,M+2)=0; w3(1,M+2)=0;
wi(1)=1; w2(1)=gamma2; w2(2)=gammaf;
fori=2:M
w3(1)=2*gamma1i*(w2(2)+w2(2))+2*gamma2*w2(1)-w1(1);
for k=2:i+1
w3(k)=2*gamma1*(w2(k-1)+w2(k+1))+2*gamma2*w2(k)-w1(k);
end
for k=1:M+1 wi(k)=w2(k); w2(k)=w3(k); end
end
for i=1:M+1 w1(i)=w3(M+2-i); end
for i=2:M+1 w1(i+M)=w3(i); end
h=w1;
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Filters with Equiripple Passband

The response which is equiripple in the passband
0, wy] oscillating within 1 + 6, and monotonically
decaying in the region [w,, 7] can be derived in
the same manner.

The desired response is

H(w) = 1-0,Ty[(—2cosw+1+4cosw,)/(1—cosw,)].

If it is desired that H(w) = —ds, then §, can be

determined from
5p = (14 65)/Tor[(3 + cosw,) /(1 — coswy,)].

The minimum value of M required to meet the
given ripple requirements can be solved from the
equation given previously in transparency 182 by
interchanging 90, and d; and by replacing ws by
T — Wp.

The next transparency shows the optimized filter
for w, = 0.97 and 6, = d; = 0.01.
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Optimized Filter with Equiripple Behavior in
the Passband [0, 0.87]: §, =, = 0.01
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SECTION 7: DESIGN OF LINEAR-PHASE
FIR FILTERS IN THE MINIMAX SENSE

One of the main advantages of FIR filters over
their IIR counterparts is that there exists an ef-
ficient algorithm for optimizing in the minimax

sense arbitrary-magnitude FIR filters.

For IIR filters, the design of arbitrary-magnitude
filters is usually time-consuming and the conver-
gence to the best solution is not always guaran-
teed.

The most efficient method for designing optimum
magnitude FIR filters with arbitrary specifications

is the Remez multiple exchange algorithm.

The most frequently used method for implement-

ing this algorithm is the one originally advanced
by Parks and McClellan.

The actual program has been written by McClel-

lan, Parks, and Rabiner.

This is why this methdd is referred later to as
the MPR algorithm.
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Usefulness of the Algorithm

This program is directly applicable to obtaining
optimal designs for most types of FIR filters like
lowpass, highpass, bandpass, and bandstop filters,

Hilbert transformers, and digital differentiators.

Also filters having several passbands and stop-

bands can be directly designed.

Filters having some constraints in the time or

frequency domains cannot be directly designed

Linear programming can be used in most of

these cases.

We start this section with theory, but don’t
worry: The theory becomes, hopefully, clear with

the aid of examples.
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When Are We Able to Use the Remez Algo-

rithm?

e The Remez multiple exchange algorithm is the
most powerful algorithm for finding the coeffi-

cients a|n] of the function

M
G(w) = Z a|n| cos nw
n=0

minimizing on a closed subset X of [0,7] the
peak absolute value of the following weighted er-

ror function

T~

E(w) = W(w)[G(w) — D(w)],
that is, the quantity

e = max |F(w)].

weX

e All that is required is that D(w) is continuous on
X and /W(w) > 0.

e Ior designing FIR filters, X 1is simply a union
of the passband and stopband regions, as will be

seen later on.
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How to Use This Algorithm for Designing
Linear-Phase Type I, II, III, and IV FIR Fil-

ters

e According to the discussion of Section 2, in all
the four linear-phase cases, the zero-phase fre-
quency response H(w) of a filter of order N can

be expressed as (see transparencies 42 and 49)

H(w) = F(w)G(w),

where
M
G(w) = Z a|n] cos nw,
n=0
(1 for Type 1
cos(w/2) for Type II
Flw)=4q .
sin w for Type III
| sin(w/2) for Type IV,
and
(N/2 for Type 1
N —1)/2 for Type II
M 4 ( )/ yp

(N —2)/2 for Type III
| (N —1)/2 for Type IV.
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What Do We Get?

e If the desired function for H(w) on X is D(w)
and the weighting function is W(w), then the er-

ror function can be written into the desired form

as follows:
Ew) = W(w)[H(w) — D(w)]
= W(w)[F(w)G(w) — D(w)]
= W(w)F(w)[G(w) — D(w)/F(w)]
= W(w)[G(w) - D(w)],
where

W(w) = F(w)W(w), D(w)= D(w) /F(w).

e This error function is of the form to which we

can directly apply the Remez algorithm!!
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Characterization Theorem:

Let G(w) be

Gw) = Z a|n] cos nw.

n=0

Then G(w) is the best unique solution minimizing

= max |E
¢ = max |[F(w)],

where
E(w) = W(w)[G(w) — D(w)]
if and only if there exists at least M + 2 points

Wiy, W, ... ,Wpr42 in X such that

wp <wgy < - < Wyt < W42
E(wiﬂ) = ~—E(wi), 1= 1,2,,M—I—1
|E(w)| =€ i=1,2,...,M+ 2.

e In other words, the optimum solution is charac-
terized by the fact that the weighted error func-
tion E(w) alternatingly achieves the values e,
with € being the peak absolute value of the
weighted error, at least at M + 2 consecutive

points in X.
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What Does This Theorem Mean?

e To illustrate the meaning of the above character-
1zation theorem, consider the figure of the next
transparency showing the response of a typical
optimum Type I lowpass filter of order N = 12
and the corresponding error function.

e For this Type I filter, M = N/2 = 6, Hw) =
G(w), D(w) = D(w) and W(w) = W (w).

e The weighted error function is

where )
G(w) = Z aln] cos nw,
n=0
~ 1, e |0,
D(w) :{ w € | Wp]
0, we€ |ws 7,
~ 1, e 0, w
W(w) :{ W [ p]
2, wé€ws, 7,
and
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A Typical Optimum Type I Filter of Order
N =122 M = 6 and Hw) = Gw). D) =
D(w)=1and W(w) = W(w) =1 for w € [0, w,)],
whereas D(w) = D(w) = 0 and W(w) = W(w) =2

for w € |w;, 7.

H(w)=G(w)
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e As seen from the figure of the previous trans-
parency, for the optimum solution, there exist
M + 2 = 8 extremal points wy for k = 1,2,---.,8
(marked by dots) in X (four in the passband

and four in the stopband) where |E(w)| achieves

the value of € such that F(wxi1) = —F(wg) for
k=0,1,---,7.
¢ G(w) contains seven unknowns a[0], a[l], ..., a[6]

so that there are one is one more extremal

point than there are unknowns.
e Another very crucial fact to point out is:

e Since the stopband weigting is two and the pass-
band weighting is two, the passband ripple §, = €
and the stopband ripple is §; = ¢/2 = §,/2.
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In general, for the optimum solution there exists

M + 2 points w; in X such that

E(wr) = W(wi)[G(wr) — D(wy)] = (—1)*e.

e Here, € is either positive or negative and the

pear absolute value is [e|.

For the unweighted “real” error G(w) — ﬁ(w) this
implies that

G(wi) — D(wy) = (=1)*e/W (wy).

This shows that the deviation of G(w) form D(w)
i1s forced to become smaller in those parts of X
where W(w} is larger.

The larger is the relative difference in the weight
function /W(w), the larger is the difference in the

deviation.
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How to Use the Theorem to Check the Opti-

mality of a Lowpass Filter Solution?

e According to the theorem, it is thus easy to
check whether a given lowpass filter solution is

the optimum one.

o If the relative weighting between the passband
and stopband errors is K and there exists a so-
lution H(w) which alternatingly goes through the
values 1 & € in the passband and through the val-
ues +e/K in the stopband and the overall num-
ber of these extrema is M + 2, then this solution
1s, according to the characterizarion theorem, the

best unique solution.

e It should be noted that in the lowpass case,
both w, and w, are always extremal points, and
H(w,) =1 —€ and H(ws) = ¢/K so that E(w,) =
—e and F(w;) = €.



- 203 -

Starting Point for Constructing the McClellan-
Parks-Rabiner (MPR) Algorithm

e Given a set of M + 2 points on X, denoted by
) = {wi,ws,...,wys2}, the unknowns coefficients
al0], a[l], ..., a[M] and € can be determined such
that F(w) satisfies

E(wi) =W (wi)[G(wr) — D(wy)] = (—1)",
k=1,2,...,M+2.

e This can be achieved by solving for the un-
knowns the following system of M +2 linear equa-

tions:
Z aln] cos nwk—(—l)ke//I/I?(wk) = ﬁ(wk),

n=0

k=1,2,....M+2.

e This F(w) goes alternatingly through the values
+ € at the points wy.

o If X consists of the above set of M + 2 points,
1.e. X = (2, then |e] is the peak absolute value of
E(w) on X and the conditions of the above char-

acterization theorem are satisfied.
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The Remez exchange algorithm makes use of the

above fact.

The problem is simply to find a set Q on X in
such a way that the optimum solution on  is si-

multaneously the optimum solution on the overall
set X.

This is achieved if value of |e| is simultaneously
the peak absolute value of F(w) on the overall
set X.

We start by giving the Remez algorithm in the

mathematical form.

After that, a simple filter design problem is con-
sidered to make this algorithm easier to under-

stand.
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The Remez Algorithm for Iteratively Finding
the Desired Set of M + 2 Extremal Points

1. Set [ = 1. Select an initial set of M + 2 extremal
points Q0 = {wgl),w‘_gl), . ,w](\9+2} in X.
2. Solve the following system of M + 2 linear equa-

tions
M ——— P
> O] cosnw!) — (=1)% eV /W (M) = D),
n=0

k=1,2,...,M + 2 |
for the unknowns a”[0], ---, a®[M] and ¥,

3. Find on X, M+2 extremal points of the resulting
ED(w) = W(w)[GO(w) — D(w)] where |EW(w)| >
eV|. If there are more than M + 2 extremal
points, retain M +2 extrema such that the largest
absolute values are included with the condition
that the sign of the error function E®¥(w) alter-
nate at the selected points. Store the abscissae of

the extrema into QU+D) = {w® LT w](\lj;_lg .

4. If lw,(f) —w,(cl+1)| <afork=1,2,.... M+2 (ais a
small number), then go to the next step. Other-
wise, set [ =141 and go to Step 2.

5. Calculate the filter coefficients.
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EXAMPLE ON HOW THE REMEZ ALGO-
RITHM WORKS

e As an example, we consider the design of a low-
pass filter of order 12 having the passband and
stopband edges at 0.46m and 0.567, respectively.
The weighting in the passband is 1 and in the
stopband 2. |

e These are the same criteria as those for the

filter in transparency 199.

e The three transparencies following the next
one illustrate the responses after the first, sec-

ond, and third iterations.

e After the third iteration, we arrive at the de-

sired optimum solution.

(@)
k

e The trial extremal points w;’ are denoted by

circles, whereas the true extremal points w,(f“)

by asterisks.
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o As seen from the figures, the Remez multiple ex-

1)
2)

4)

change algorithm works in a simplified form as

follows:
Select M + 2 trial extremal points.

Determine the M + 1 unknowns of G(w) as well
as € such that at all the trial extremal points the
absolute value of E(w) is |¢| and the sign alter-

nates.
Find M + 2 true extremal points of E(w).

If the trial and true extremal points are the
same, the optimum solution has been found.
Otherwise, use as new trial extremal points the
true extremal points obtained at Step 3 and go
to Step 2.
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AFTER THE FIRST

ITERA-

Response after the first iteration
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RESPONSES AFTER THE SECOND ITER-
ATION

Response after the second iteration
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RESPONSES AFTER THE THIRD ITERA-
TION: OPTIMUM SOLUTION

Response after the third iteration: Final Result
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Some Detalils

e The set of linear equations at Step 2 of the Re-
mez algorithm described in transparency 205 can
be solved conveniently by first calculating ¢ an-
alytically as

. blﬁ(w§l)) + bQﬁ(wg)) +...+ bM+25(w§\l4)+2)

b1 /W (@) = b/ W (@) + 4 ()M /() )
where

M+-2

1
b = | I .
=1 (cos w,(f) — Ccos wj)
i

e After calculating ¢!}, G"(w) achieves the value
=0 (.
Cr = D(w)) = (=D W (W),

at the kth extremal point. To get around the nu-
merical sensitivity problems, the Lagrange inter-
polation formula in the barycentric form is used

to express G)(w) as
M+1 M+1

GOw) =3 (oS (—

where
M1 1

Pr = H 0 Oy
i1 (cosw,’ — cosw;’)
1#k
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More details

e In the MPR algorithm, G(w) is expressed in the
above form. This is because the actual coefficient
values a[n| are not needed in intermediate calcu-

lations.

o After the convergence of the above algorithm, the
a[n]’s are determined by evaluating G(w) at 27
equally-spaced frequency points (2! > 2M) and
then applying the inverse discrete Fourier trans-

formation.

e From the a[n]’s the impulse-response coefficients
gln] of G(z) for n = 0,1,...,2M can be de-
termined as g[M] = a[0], g[M £ n] = a[n|/2
for n = 1,2,..., M (see transparency 49). From
these coefficients, the impulse-response coefficients
of H(z) can then be obtained according to di-
cussion of transparency 44 in all the linear-phase

cases.

e In the practical implementation of the MPR algo-
rithm, the extrema of F(w) at Step 3 are located

by evaluating F(w) over a dense set of frequen-
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cies spanning the approximation region X.

As a rule of thumb, a good selection of the num-

ber of grid points is 16M.

The matlab routine remez.m uses this number of
grid points. If a larger number of grid points is
desired to be used, remez.m can be modified by
changing the integer lgrid = 16.

Typically, four to eight iterations of the above al-
gorithm are required to arrive at the optimum

solution in the lowpass cases.

In designing filters having several passband and
stopband regions, the number of iterations is typ-
ically two or three times that required for design-

ing lowpass filters.
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Properties of the Optimum Filters

In the lowpass case, the filter design parameters
are the passband edge w,, the stopband edge w;,
the passband ripple d,, and the stopband ripple
0.

The remaining parameter to be determined is the
minimum filter order N to meet the given crite-
ria.

If N is prescribed, then the ripple ratio
k — P/58>

instead of 0, and d;, is usually specified.

In the latter case, the desired optimum result is
obtained by using the following desired response
and weighting function
1 for we |0,w
0 for w € |ws, ]

1 for w e [0,w,)
[

W) = {
k  for w € |wg, 7]
in the MPR algorithm.

In this case, X = [0,w,| U [ws, 7].
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Example

e As an example, the following figure gives an op-
timized response for N = 108 (M = 54), w, =
0.057, ws = 0.17, and k = 10.

e The resulting ripples are given by 6, = 0.00955
and 05 = 0.000955.

e N = 108 is the minimum filter order to meet the

ripple requirements ¢, < 0.01 and d, < 0.001.
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Order Estimation

Except for the case of the Chebyshev solutions
there exits no analytic relations between the low-

pass filter parameters N, wpy, ws, dp, and ds.

e Rather accurate estimates, based on empirical

data, have been reported.

o The simple formula due to Kaiser is given by

N —20 logo(1/0p0s) — 13
T 14.6[(ws — wp)/(27)]

e This formula gives rather accurate values when

both 0, and ¢s are realtively small.

e For large values of 4, and J,, the above formula
1s not so accurate; for very large values, it may

even give negative values for N!!
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e A somewhat more accurate formula due to Her-

rmann, Rabiner, and Chan is given by

Doo(3p, 8s) = F(8p, 0)[(ws — wyp)/(2m)]”
(ws — wp)/(2m) 7

N =~

where
Do (6p, 65) =[a1(logyy 0,)* + azlogyo b, + as) logyg 6
— [as(logy 6p)* + a5 logyg 3, + ag
F(6p,05) = b1 + bollog; 0, — logy, 0]
with

a; = 0.005309, as = 0.07114, a3 = —0.4761,

as = 0.00266, as = 0.5941, ag = 0.4278
by = 11.01217, by = 0.51244.

e This formula has been developed for é, < 6, If
ds > J,, then the estimate is obtained by inter-

changing 9, and Js in the formula.

e Lor this formula, the estimation error is typically
less than two percent except for rather narrow-
band and wideband filters. The lowpass filter
design considered above belongs to these excep-

tional cases.
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e I'rom the above formulas, it is seen that the
required filter order is roughly inversely propor-

tional to the transition bandwidth.
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Formulas for Highpass, Bandpass, and Band-

stop Cases

e For the highpass case, the above formulas ap-
ply by interchaning w, and w,. In order to
avoid the zero at z = —1 that is in the
passband of the highpass filter, use only an

even value of N.

e In bandpass and bandstop cases, rather good es-
timates are obtained by relacing in the previ-
ous formulas w; — w, with the narrower transi-
tion bandwidth. Like for highpass ﬁlters,.use only

even values of N for bandstop filters.
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Example

In the case of the specifications of the previous
example (w, = 0.057, ws, = 0.1m, 6, = 0.01, and
0s = 0.001) both of the formulas give N = 101.

For the optimized filter designed using the MPR
algorithm, the ripples are given by 6, = 0.0157
and 0, = 0.00157, showing that the filter order

has to be increased.

When determining the actual minimum filter or-
der, it must be taken into consideration that
sometimes a filter of order N — 1 has lower rip-

ple values than a filter of order N.

For instance, for the case w, = 0.68567, w; =

0.832367, and k = 1, the Type I filter of order

N = 10 achieves 0, = ds = 0.1282, whereas the
Type II filter of order N = 9 achieves 0, = 0; =
0.1.

Based on this, it is advantageous to determine
separately the minimum orders for both Type 1

filters (N is even) and Type II filters (N is odd),

and, then, to select the lower order.
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e Lor the above specifications, the minimum orders
of Type I and Type II filters to meet the rip-
ple requirements of ¢, = 0.01 and d; = 0.001 are
108 and 109, respectively, so that N = 108 is the

minimum order.
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Different Types of Optimum Solutions

e An informative way to study the various types
of optimum lowpass filter solutions is to plot the

transition bandwidth
Aw = ws — wp

of the filter versus w, for fixed values of N, d,,

and 9.

e The next transparency shows such plots for Type
I optimum filters with N =14 (M =7), N = 16
(M =8), and N =18 (M =9) for §,=6s=0.1.

e As seen from this figure, all the three curves

alternate between sharp minima and flat-topped

maxima.
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Transition Bandwith (w; —w,) as a Function of
the Passband Edge w, for J, = §; = 0.1 for Fil-
ters with N =14 (M =7), N =16 (M = 8),
and N =18 (M =9).
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We consider in greater detail the filters corre-
sponding to the six points, denoted by the letters
A, B, C, D, E, and F, in the curve for N = 16
(M =28).

The responses of these filters are are given in the

figure of the next transparency.

Filters C and F correspond to the points where
the local minimum of Aw occurs with respect to
Wp-

These are special extraripple or maximal rip-
ple solutions whose error function exhibits M +

3 = 11 extrema with equal amplitude;

This is one more than that required by the char-

acterization theorem.

Furthermore, it follows from this theorem that
these extraripple solutions are also optimum solu-
tions for M = M -+ 1, or equivalently for N = 18.
This is because the number of extrema is M -+ 2

for this filter.
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Responses for six of the filters of the figure

of transparency 223
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e The explanation to this is that the first and
last impulse response coefficients h[n| of the fil-
ter with higher order become exactly zero when
the filter with lower order has the extraripple so-

lution.

e If the transfer functions of the filters with higher
and lower orders are denoted by H(z) and H(z),

then these are related trough the equation
H(z) = z"'H(2),

that is the impulse response of H(z) is obtained
from that of H (z) by shifting the center of sym-

‘metry by one sample.

e When w, corresponding to the extraripple solu-
tion is made smaller, the resulting filter has M +
2 equal amplitude extrema, as well as one smaller

amplitude extremum at w =0 (Filter B).

e When w, is further increased, the extra ex-

tremum disappears (Filter A).

e On the other hand, if w, is made larger, then the
resulting filter (Filter D) has one smaller ripple

at w = T.
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e Also this ripple disappears when w, is further in-

creased.

o IMlter EE in the figure of transparency 225 cor-
responds to the case where the filter with N =

14 has the same solution (extraripple solution for
the filter with N = 14).

e Hence, for Type I filters there are three kinds of

optimum solutions:

e Solutions having M + 2 equal amplitude ex-

trema

e Special solutions having M +3 equal amplitude

extrema

e Solutions having, in addition to M + 2 equal

amplitude extrema, one smaller extremum.

e For Type II filters, the properties are quite simi-
lar. The basic difference is that the Type II fil-
ters have an odd order (N = 2M + 1) and they

have a fixed zero at z = —1 (w = m).



- 228 -

Some Useful Properties of Type I Filters

e Consider a Type I transfer function of the form
2M
H(z) =) h[n]z™, h[2M —n] = h[n].
n=0

e The corresponding zero-phase frequency response

H(w) is given by
M
H(w) = h[M] + Z 2h{M — n] cos nw.
n=1

e On the basis of H(z), the following three transfer

functions can be generated:

(z™M — H(2) for Case A
G(z) =3 (-1)MH(-2) for Case B
Lz — (=1)™H(-=2) for Case C.

e The zero-phase frequency responses of these three

filters can be written as
(1 — H(w) for Case A

Gw)=< H(r —w) for Case B

1 — H(r —w) for Case C.

e In Case A, the impulse response coefficients of
G(z) are related to the coefficients of H(z) via
glM] = 1 — h[M] and g[n] = —h[n] for n =
0,1,--- M —1and forn=M+1,M+2,---,2M.




- 229 -

By substituting these values into
M
G(w) = g[M] + Z 2g9|M — n| cosnw
n=1

we end up with G(w) as shown above.

In Case B, the coefficients g[n] are related to the
hin]’s via g[M — n] = h[M — n] for n even and
g|M — n] = —h[M — n] for n odd.

Using the facts that cosnw = cosn(m — w) for n
even and — cosnw = cos(m — w) for n odd, we can

write G(w) in the above form.

The fact that G(w) is expressible in Case C as
shown above follows directly from the properties
of the Case A and Case B filters.
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Properties of Case A, Case B, and Case C

Transfer Functions

e In Case A, the filter pair H(z) and G(z) is called
a complementary filter pair since the sum of
their zero-phase frequency responses is unity, that
18,

H(w) + G(w) = 1.

e This means that if H(z) is a lowpass design with
H(w) oscillating within 146, on [0,w,] and within
+4, on |ws, ], then G(z) is a highpass filter with
G(w) oscillating within +4§, on [0, w,)] and within
1+ 065 on |ws, 7| (compare figures (a) and (b) in
the next transparency).

e An implemetation of G(z) is shown in trans-

M can be shared

parency 232. The delay term z~
with H(z) in this implementation after proper ar-

rangements.

e Hence, at the expense of one additional adder, a

complementary filter pair can be implemented.
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Responses for the Protype Filter (a), the
Case A Filter (b), the Case B Filter (c¢), and
the Case C Filter (d)
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Implementations for Case A and C Filters
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If H(w) is as shown in figure (a) in transparency
231, then the Case B filter is a highpass design
with G(w) oscillating within +d, on [0, 7 —w,] and
within 1+6, on [1 —w,, 7] [see figure (c¢) in trans-
parency 231].

G(w) for the Case C filter, in turn, varies within
1+, on [0,m — w,] and within +§, on [1 — w,, 7]
see figure (d) in transparency 231].

An implementation of the Case C filter is de-

picted in transparency 232.

This implementation is very important in many
cases as it allows us to implement a wideband fil-
ter G(z) using a delay term and a transfer func-
tion which is obtained from a narrowband filter
H(z) by simply changing the sign of every second
coefficient value.

This is because there are computationally effi-
clent implementations for narrowband filters, as
will be seen Section 10 (not included in the ba-

sic course).
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The Use of the MPR Algorithm

There exists a matlab routine remez.m that im-

plements the MPR algorithm.

When designing conventional filters, the use first
specifies the filter order N as well as K bands
Wik, wyi] for B = 1,2,--. K., where Wik > Wik
and wyp41 > wy k-

The above edges are normally given as fractions

of 7 (half the sampling rate).
The desired function in each band is specified by

giving two constants a; and b;. The desired func-
tion is then a line taking on the values a; and by
at the lower and upper edges, respectively. For a
normal passband, a; = by = 1 and for a normal
stopband, a; = b, = 0.

The weighting function in each band is specified
by given one constants w; that is then directly
the weight in this band.

Ii arbitrary desired and weighting functions are
desired to be used, then remez.m must be mod-

ified, as we shall show later.
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e On how to use remez.m for designing differentia-
tors and Hilbert transformers see transparencies

71-82 considered earlier.
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Example 1

e Design a lowpass filter with passband and stop-
band regions [0,0.3#] and [0.4#,#], respectively.

e The passband ripple 4, is restricted to be at
most 0.002 on [0,0.157] and at most 0.01 in the
remaing region.

e The stopband ripple §; is at most 0.0001 (80 dB
attenuation) on [0.47,0.67] and at most 0.001 (60

dB attenuation) on [0.6m, 7.

e Futhermore, it is desired to implement the overall

filter in the form
Hve(2) = Hax(2)H(2)

where the fixed term Hygy(z) has zero pairs on
the unit circle at the frequencies w; = 0.47m, wy =
0.45m, w3y = 0.5m, wy = 0.557, ws = 0.6m, ws =

0.657.

e H,.(z) can thus be expressed as

6

Hg(2) = H[l + 27 — 2 cos(wi)z Y.
k=1
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How to design?

For the overall filter, the weighted error function

i1s given by

E(w) = W(w)[Hove(w) — D(w)],

where
1, we€]0,0.37]
D(w) =
0, we|[0.4m, ]
and )
5, w € [0,0.157]
1, w € |0.157,0.3m
W(w) = | ]
100, w € [0.47,0.67]
10,  w € [0.6m,7].

The given criteria are met if the peak absolute
value of the above error function on [0,0.37] U
0.47, 1] becomes less than or equal to 0.01.
This is the maximum allowable deviation on
[0.157,0.37], where the weighting is unity.

Using the substitution Hyye(w) = Hex(w)H (w), the

above error function is expressible as
E(w) = W(w)Hax(w)[H(w) — D(w)/Hx(w)].

Therefore, the desired overall filter can be ob-

tained by designing H(z) using the following de-
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sired and weighting functions:

D(w) = { 1/|Hgg(w)|, w € [0,0.37]

0, w € [0.47, 7]
[ 5|Hpx(w)|,  w €[0,0.157]
Hgy (w)], w € [0.15m,0.37
W) = | 1) | |

100| Hex(w)|, w € [0.47,0.67]
10| H(w)|,  w € [0.6m,7].

In the above, absolute values of Hg(w) are used

in order to make the weighting function positive.

Since the weighting function has to be positive,
instead |Hgx(w)| a small value must be used at

the points where |Hgx(w)| becomes zero.

Appendix E in the end of this chapter shows how
to actually perform the design of H(z) by slightly
modifying remez.m

The given criteria are met when the peak abso-
lute value of the resulting error function becomes

smaller than or equal to 0.01.

The minimum order of H(z) to meet the criteria
1S 95.

The amplitude response of the resulting overall

filter is depicted in the next transparency.
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Optimized Filter of Example 1
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Example 2

o Let the bandpass filter specifications be: wy =
0.27, wpr = 0.257, wye = 0.67, wg = 0.7, 05 =
0.001, 0, = d52 = 0.01.

e The desired response is obtained when the weight-
ing is 10 in the first stopband and 1 in both the
passband and the second stopband.

¢ The minimum order to meet the above specifica-

tions 1s 102.

e Figure (a) in the next transparency shows the re-

sulting response.
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Amplitude Responpses for Bandpass Filters.
(a) Filter Designed Without Transition Band
Constraints. (b) Filter Designed With Tran-

sition Band Constraints.
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Transition band ripples

e This response is optimal according to the char-
acterization theorem even though it has an unac-

ceptable transition band peak of 15 dB.

e This is possible because the approximation is re-
stricted to the passband and stopband regions
only and the transition bands are considered as

don’t-care bands.

e For designs with a single transition band there

are no unacceptable transition band ripples.

e However, for filters having more than one tran-
sition band, this phenomenon of large transition
band peaks occurs when the widths of the transi-
tion bands are different; the larger the difference,

the greater the problem.
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How to avoid the transition band ripple?

e The transition band peak can be easily atten-
uated by including the transition bands in the
overall approximation interval and requiring that
the response stays within the limits —&,; and 1 +
Op in the first transition band and within the lim-

its —ds2 and 146, in the second transition band.

e This can be done by selecting the desired func-
tion to be (1/2)(1+0,—6s1) and (1/2)(1+46,— 6s)
in the first and second transition bands, respec-
tively. |

e If the weighting in the passband is unity, then
the weighting functions in the transition bands
are selected to be 4,/[(1/2)(1 + 6, + d51)] and
Op/[(1/2)(1 + 0, + ds2)], respectively.
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Overall Weighted Error Function

To guarantee the continuity of the desired func-
tion, 1t is worth having very small transition
bands between the intervals and to select the ap-

proximation interval to be
X =XgUXy U X, U X U X,
where
X =10, wal], Xy = [wa +a, wpy —af,

Xp — [wph pr]a Xt2 — [wpl + a, Ws2 —AOZL

and

Xp = [wsz, 7T].

Here, o is a small positive number.

The desired function and the weighting functions

are, respectively, given by

(0, w € Xg
(1 + 5p — 531)/2, w € Xy
D(w) =< 1, w e X,

1
(146, —6:)/2, weE Xi
0 CUGXSQ

\ Y
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and

( 5p/531, w € X
28,/(1+ 8, + 601), w € X
W(w) = 1’ w € Xp

20p/(L+ 0, + ds2), w € Xy
\ 5])/5827 w E XS2
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What do we achieve?

o These selections guarantee that if the passband
ripple of the resulting filter is less than or equal
to the specified d,, then the response stays within

the desired limits in the transition bands.

e When including the transition bands in the ap-
proximation problem, the minimum filter order to
meet the resulting specifications has be increased
only by one (to 103).

o Iigure (b) in transparency 241 shows this re-

sponse.
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Another alternative

e The desired function and the weighting functions

can also be selected to be

(0, we Xg

0, we Xy

Dw)=4¢1, welX,

0, we X

L0, we Xy

and

( 0,/01, w € X1
0p/ (L4 9,), we Xy
Ww)=4¢1, we X,
0p/(1+6,), we Xy
L 0p/ 052, w € Xqo.

e In this case, it is guaranteed that if the response
meets the criteria in the passband and in the
stopbands, then in the transition bands the re-

sponse is between the limits £(1 + J,).

e The amplitude response of the resulting filter is

shown in the next transparency.
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Resulting Optimized Response
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Other Examples

e Transparencies 71 to 82 show how to design dif-
ferentiators and Hilbert transformers using the

Remez algorithm.

e Appendix F in the end of this FIR filter design
chapter gives a general-purpose matlab-program,

called firgen.m, for designing multiband Type 1
and Type II filters.

e Given the band edges as well as the allowable
ripples, it automatically designs a filter with the

minimum order.

e If desired, it also takes care of the transition
band ripples according to the two above-mentioned

- techniques.

e It should be pointed out that this program does
not always give the optimum solution since the
author of this FIR chapter noticed that there

1S an error in the Remez algorithm written by
Parks and McClellan!!! |

e People have been using this algorithm for twenty

years and there is still an error.
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e The next step is to locate this error in the rou-

tine.

o If firgen.m does not work, please try firgenni.m,
which works better with a plenty of extra print-

Ings, since it is at present a test version.

e In the future, the corrected file will also be called

firgenni.m.



