80509 LINEAR DIGITAL FILTERING |

PART V: Finite word length effects in digital filters

1) Output noise due to the multiplication roundoff errors.

2) Filter scaling: various scaling norms.

3) Coefficient quantization errors.

4) Various kinds of oscillations.

® What to read for the examination ?:

1) How to scale a digital filter; the basic scaling norms

and their differences in practice?

2) How to estimate output noise due to the multiplication

roundoff errors?

3) Itis very likely that in the examination there is a simple
filter which must be scaled (according to some norm)
and then the output noise must be estimated.

Please study carefully exercises in Appendix B.




FINITE WORD LENGTH EFFECTS IN DIG-
ITAL FILTERS

o Digital filters are implemented using finite word
lengths for both the data and the filter coefficients.

e The main errors caused by the use of finite word
length are as follows:

e Noise generated in the analog-to-digital conver-
sion, resulting from representing the samples of

the input data by only a few bits;

o Coefficient quantization errors, caused by repre-
senting the filter coefficients by a finite number
of bits;

e Various kinds of oscillations, such as parasitic os-

cillations, overflow oscillations, and limit cycles;

e Output noise due to multiplication roundoff er-
rors, resulting from the rounding or truncation of

multiplication products within the filter.
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FIXED-POINT ARITHMETIC

e We consider only filters where both the coefficients and
data samples are given using a fixed-point representa-
tion.

e In this case, each data sample is represented by a sign
bit and b decimal bits and it is required that inside the
filter all the data samples are within the range [—1, 1].

e For the coefficients, some integer bits are sometimes
required. |

e The following table shows several number systems for
the (1+3)-bit representation.

Interpretation

Binary Number  Sign and Magnitude Two’s-Complement One’s-Complement

| 0,111 78 . 7/8 7/8
0,110 6/8 6/8 6/8
0,101 5/8 5/8 5/8
0,100 4/8 4/8 4/8
0,011 3/8 3/8 3/8
0,010 2/8 2/8 2/8
0,001 1/8 1/8 1/8
0,000 0 0 0
1,000 —0 —1 —7/8
1,001 —1/8 —7/8 —6/8
1,010 —2/8 —6/8 —5/8
1,011 —3/8 —5/8 —4/8
1,100 —4/8 —4/8 —3/8
1,101 —5/8 —3/8 —2/8

- 1,110 —6/8 —2/8 —1/8

1,111 —7/8 —1/8 —0
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TWO’S COMPLEMENT ARITHMETIC

e This arithmetic has several attractive properties:

¢ When numbers are added, the sign bit is treated in
the same manner as the other bits.

e When several numbers are added, overflows (jumps
outside the range [—1,1) are allowed provided that
the final result is within the desired range.

e The following circle illustrates how additions are
- performed in the case of two’s complement arith-
metic for the (14-3)-bit representation. The fol-

lowing transparency gives an example.

AL
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TWO’S COMPLEMENT ARITHMETIC

e When a positive number is added with amplitude

equal to a/8, we travel counterclockwise along the
circle (a/8) - 180 degrees.

e When a negative number is added with magnitude

equal to a/8, we travel clockwise along the circle
(a/8) - 180 degrees.

e As an example, consider the case —0.75—0.75+0.5+ |
0.5.

e When adding —0.75 and —0.75, we travel twice
clockwise 135 degrees, arriving at the angle of —270
degrees or 90 degrees. This corresponds to 0.5,
instead of —1.5 (an overflow happened!!). When
adding twice 0.5, we travel counterclockwise twise 90
degrees, arriving at the angle of 170 degree. The cor-
responding number is —0.5 that is the desired correct
result, even though an overflow took place earlier.

e Note that for two’s complement arithmetic ‘the
largest positive number is 1 — 27° with b being the
number of fractional bits. Thus, +1 does not exist!

e In practice, in the case where b is large enough, for
example, b = 15, it can be required that the numbers
must stay within [+1, —1], intead of [1 — 27% —1].
For simplicity, this assumption is used for the filter
scaling to be described later.
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ROUNDING AND TRUNCATION

e If a (1+b)-bit data sample is multiplied by a (14 a)-
bit coefficient, then the result, denoted by z, is a
(1 4+ a + b)-bit number, which must be represented
again by a (1 + b)-bit number.

e This operation can be performed either using a
rounding or a truncation.

e In order to explain these operations, we express a
(14 a + b)-bit number as
T = sadids....dgyp,

where s is the sign bit (s = 0 and s = 1 for positive
and negative numbers, respectively) and d}.’s for k =
1,2,---,a + b have either the value of zero or unity.

e We concentrate only on two’s complement arith-
metic for which (see transparency 2 for a (143)-bit
representation):

r = —S+ x4,

where

Ti=» dp27, (A)
k=1

e In other words, for positive numbers (s = 0),
T = x4, (B)
whereas for negative numbers (s = 1), |
r=—1+ x4 (C)
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e As a matter of fact, the term “two’s complement
arithmetic” comes from the following properties:

1) First s is interpreted as an integer bit so that
z =1°+ 4. 7 is thus in the range [0, 2 — 277,

2) Then, for s = 0, z = 7, whereas for s = 1, z =

2 —1.

e Hence, the resulting numbers stay within the range
[—1, 1 —27*)] when a + b decimal bits are in use
(see again transparency 2).



TRUNCATION IN TWO’S COMPLEMENT
ARITHMETIC

e In the case of truncation, a (1 + a + b)-bit number is
expressed as the following (1 4 b)-bit number:

EIZ\ = Q[CB] — Q[SAdldg....db+a] = SAdldQ....db,
that is, the dy’s for k = b+ 1,04 2,---,b+ a are
simply disregarded.

e In the above, Q[ | stands for the quantization oper-
ation.

e This means that
e = ZE\d — X,
where
Tg = Oadids....dy

and x4 is given by equation (A) of transparency 5,
satisfies
—A <e<0,

where

A =27b
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e Because of equations (B) and (C) of transparency 5,
the following is valid for truncation in two’s comple-
ment arithmetic:

r=Qz]=x+e¢
where

~A=-2"<¢<0.

e The following transparency shows the relation be-
tween ¥ = Q[z] and x for b = 3.
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TRUNCATION IN TWO’S COMPLEMENT
ARITHMETIC FOR b =3: —A<Z—z = Q[z] —
r<0, A=2"

A
X4= Q[x]
A} _
6A |-
sAf
Al
3AF A=2"3
28}
A 6A -4A -9A AT
l | | | | | | | | | | | ] ] —
A 5o 3A A_| A 2A3A4A 3K 6A 7A >
- -2A
- 34
- —4A
- 54
- -6A
L 74
— - -8A




ROUNDING IN TWO’S COMPLEMENT ARITH-
METIC

e In the case of rounding, a (1 + a + b)-bit number is
expressed as the following (1 + b)-bit number:

T = Q[JZ] = Q[SAdld2....db+a] = SAdldQ....db"l"OAClCQ...Cb,
where ¢, =0 for k=1,2,--- b —1 and

o — 1, for db_|_1 =1

*7 0, for dyq = 0.

e In other words, rounding is performed to (1 — b)-bits
using the following two steps:

Perform truncation to (1 — b)-bits.

Add 27" to the result of Step 1 if dyr1 = 1. Other-
wise, keep the truncated result of Step 1.

e For rounding in two’s complement arithmetic the fol-
lowing is thus valid:

T=Qx] =z +e,
where
~A2<e<A/2,
with
A=2"

e The following transparency shows the relation be-
tween z = Q[z] and z for b = 3.
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ROUNDING IN TWO’S COMPLEMENT ARITH-
METIC FOR b =3: —A/2<Z—2=Q[z] —z <
Af2, A =27P

;(\:Q[x]
TA| —
6A |-
5A 1
4A
3A A=2"38
24| |
L1 _II%A 1_9%&-7%-5? 32A T
I I T TS TTNEr i e
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- -3A
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- -5A
- -6A
- ~7A
— - -8A
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QUANTIZATION IN SAMPLING ANALOG

SIGNALS
x(n)=xq4(nT)
~| S | > i >
xg(1) amprer Quantizer [ = Q Tx(n) ]
x(n) = xq4(nT)
~| Sample ~(H)- A -
Xq (1) et N x(n) = x(n) + e(n)
e(n)

Consider the above figure, where it is assumed that
the unquantized samples z,(n) are within the range
the (1+b)-bit number, that is, for two’s complement
arithmetic, they satisfy

—1 < zo(nT) < (1 —279).

This corresponds to a proper scaling of the input
signal to the A/D-converter. For instance, if the
input varies between %5 volts, we can scale the signal
in such a manner, that 5 volts corresponds to unity
and —5 volts to minus unity.

Before feeding the samples z(n) = z,(nT) to a digi-
tal filter they must be quantized to (1 + b)-bit num-
bers Z(n), as indicated in Figure (a) above.

For the quantized (1 + b)-bit samples in the case of
two’s complement arithmetic, it is valid

z(n) = Qlz(n)] = z(n) + e(n),
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where

~A/2 <e(n) <A/2

for rounding and
—-A<e(n) <0
for truncation with

A =270

e The quantization process can be modeled by repre-
senting the quantization effect by including an addi-
tive noise sourse e(n) as shown in Figure (b) of the
previous transparency.
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QUANTIZATION ERROR

e It is common to make the following assumptions:

1. The sequence of the error samples e(n) is a sam-
ple sequence of a stationary random process.

2. The error sequence is uncorrelated with the se-
quence of exact samples xz(n).

3. The random variables of the error process are un-
correlated, that is, the error is a white-noise pro-
cess.

4. The probability distribution of the error process
is uniform over the range of quantization error.

e The following figure shows the probability distribu-
tions for both rounding and truncation.
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PROBABILITY DENSITY FUNCTIONS FOR
ROUNDING AND TRUNCATION

Pe, (€) (a)
1
A A =2""
-A A e
2 2
(b)
Pe_(e)
A
A
A e

Fig. 9.4 Probability density functions for (a) rounding; (b) truncation.
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QUANTIZATION NOISE

e Based on the above assumptions, the following is
valid (see Appendix A: Discete-Time Random Sig-
nals in the end of this pile):

e bor rounding, the mean and variance of the quan-
tization noise are given by

me = 0
and Ao
- 1 / ) B AQ B 2—21)
o, = — e“de = = .
ANy YN 12 12
e For truncation, the corresponding quantities are
2—6
Me= Ty
and o
o2 = 27 :
c 12

e In both cases, the autocovariance sequence satisfies
Cee(n) = 025(n),

indicating that there is no correlation between e(n)
and e(n + 1) for [ # 0.

o At the output of a filter output with the impulse re-
ponse h(n) and the transfer function H(z), the effect
of e(n) can be seen as a random process f(n) (see
Appendix A for details) with the mean and variance
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(power), respectively, given by

mys = meZh(n H (e°)

and

O

2 U
OJ% = o? Z h*(n) = —;—;/_W | H (e7*)|?dw.

n=0
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SIGNAL-TO-NOISE RATIO

o If the power of the incoming signal is o2, then the
signal-to-noise ratio (SNR) is

2
s — (12 2%)02,

o2
e On the logarithmic scale,

2
SNR = 10logyy(“Z) = 6.02b + 10.79 + 10 log;o(02).

+2
06

e The signal entering the A /D-conveter must be scaled
such that with high probability |z(n)| < 1.

o Often the scaling is performed such that 40, = 1,
giving

SNR = 6b — 1.24 dB.

e SNR > 80 requires b = 14 bits.

e To increase SNR by 6 dB, we need one more bit.
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MULTIPLICATION ROUNDOFF ERROR: SIM-
PLE EXAMPLE

e Consider a simple first-order filter with transfer func-
tion H(z) = 1/(1 — az™!). The following figure gives
several flow graphs for this system. (If two signals en-
ter a dot, it means that we add those signals. An arrow
and o means multiplication by «.)

o—» > 0

x(n) y(n)
(a)

O - > -O

x(n) w(n)=y(n)+f(n)
(b)

O O

x(n) w(n)=y(n)+f(n)

(c)

Fig. 9.7 Flow graphs for a first-order IIR system: (a) ideal linear system;
(b). nonlinear system; (c) statistical model for fixed-point roundoff
noise.
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DIFFERENT MODELS

o Figure (a) depicts the ideal system described by the
difference equation y(n) = z(n) + ay(n — 1).

e IMigure (b) shows the practical system. If the data
sample w(n — 1) has a (1 + b)-bit representation and
a has a (1 + a)-bit representation, then aw(n — 1)
has a (1 + b + a)-bit representation. This number
must be rounded or truncated to a (1 + b)-bit num-
ber in order to avoid the number of bits for the data
representation from growing. Q| ] denotes this op-
eration and has the same meaning as in the case of
the A /D-conversion considered earlier.

e In Figure (c), the same system is depicted with the
effect of quantizer being represented by the additive
noise source

e(n) = Qlaw(n —1)] — aw(n — 1).
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ASSUMPTIONS

e Again the following assumptions are made:
1. The error sequence e(n) is a white-noise sequence.

2. The error sequence has a uniform distribution
over one quantization interval (see transparency

15).

3. The error sequence is uncorrelated with the input
z(n) and aw(n — 1).

o These assumptions are valid when the input signal
as well as w(n — 1) vary from sample to sample in a
sufficiently complex manner.

e It has been experimentally observed that in the case
where the input signal x(n) itself is a white-noise
process, these assumptions apply extremely well.
However, if z(n) is a sinusoidal or a sum of sinu-
soldals these assumtions are not valid. In this case,
e(n) is also a sum of sinusoidals.

e These facts are considered in more details in the
course “System Level DSP Algorithms”.



MULTIPLICATION ROUNDOFF ERROR AT
THE FILTER OUTPUT

e For rounding, e(n) satisfies —327" < e(n) < 2270,
m. = 0, and 02 = 2720/12.

e For truncation, e(n) satisfies 27° < e(n) < 0, m, =
527", and o = 27%/12.

o If y(n) denotes the output signal of the ideal system,
then the actual output is w(n) = y(n) + f(n), where
f(n) represents the output error due to the noise
source e(n). If h.(n) is the impulse response from
the input of e(n) to the overall filter output, then the

mean and variance (power) of f(n) are, respectively,
given by

/"
,r"/

M = M, Z he(n)
n=0
and .
JJ% = o? Z h%(n).
n=0

o he(n) is the same as the impulse response of the over-
all filter, that is, h.(n) = a™u(n), giving

1
2 2 2 —2b : 2
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MULTIPLICATION ROUNDOFF ERROR:
SECOND-ORDER FILTER

e Consider a second-order filter with one complex pole
pair at z = re*?. This system is represented by the
following diffrerence equation:

y(n) = xz(n) + 2rcosOy(n — 1) — r’y(n — 2).

e With rounding of products, we obtain the nonlinear
difference equation

w(n) = z(n) + Q[2r cos hw(n — 1)] — Q[r*y(n — 2)].

e Since there are two multiplications, two noise sources
are introduced as depicted in the following figure,
denoted by e;(n) and ey(n). Since e;(n) and ez(n)
are uncorrelated, there are two output errors due to
these noise sources, denoted by f1(n) and fa(n).

w(n) =y(n)+fi(n)+fx(n)

0
Y
>
Y
<

x(n)

w(n-2)

Fig. 9.8 Statistical model for fixed-point roundoff noise in a second-order
IR system. :
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e As a consequence of this fact, the overall output
noise variance is

where
O
=0t R
n=0
and

o
0?2 = o2 Z h3(n)
n=0

with hi(n) and he(n) denoting the unit sample re-
sponse from the noise source inputs.

e For this example,

1
hi(n) = ho(n) = " sin[(n + 1)0]u(n),
giving
- - 1+ 72 1
20\ _ 200 —
nZ:o i) = nZ:O ha(n) = [1 — 7“2][7“4 + 1 —2r2cos 29]'

e Based on the above facts, we finally arrive at

2 1 —|—7“2 1
2 —2b
— —2
/ 12 [l—Tz][T4+1—2T2C0829]
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GENERAL FILTER STRUCTURE

e Add after each multiplier an error source e(n).

e If he(n) is the impulse response from the input of e(n)
to the overall filter output, then the output noise vari-
ance due to the error source e(n) is given by

(0.
a}% = o? Z h%(n).
n=0

e The overall output noise is the direct sum of the output
noise variances caused by the individual error sources.

e Direct-form structure:
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CASCADE-FORM STRUCTURE

eo(n)

eo(n) eq4(n) egl(n) egin)
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DIRECT-FORM FIR FILTER

e The following figures depict both the infinite-precision
model and linear noise model for a direct-form FIR

filter of order M.

h(O] h(1]

y[n] =y[n] + f[n]

o 05 =(M+1)27%/12

e If a double length accumulator is available, then
there is only a single error source at the filter output
and o3 = 272°/12. In this case, the multiplication re-
sults are added using the double precision arithmetic
and the final result is rounded or truncated. This is
true for most signal processors.
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FILTER SCALING

e The purpose of scaling a digital filter in proper man-
ner is two-fold.

e First, in order to avoid overflows (jumps over the
range [—1, 1 — 27%), it is required that the data
samples inside the filter are in this range before
multipliers for two’s complement arithmetic.

e Second, in order to reduce the output noise due to
the multiplication roundoff errors, it is desired to

keep the signal values inside the filter as high as pos-
sible.

e There exist several scaling norms making compro-
mizes between the probability of overflows and the
value of the output noise.

e We start by the definitions of these scaling norms.

e Then, several examples are included illustrating the
fact that keeping the signal levels high inside the
filter results in a small output noise level.

e We concentrate on cascade-form structures since for
them the output noise is significantly lower than for
the direct-form structures considered in Part I of
these lecture notes.
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SIMPLE EXAMPLE

e Consider the following filter structure, where the scal-
ing multiplier 1/s is added at the filter input, whereas
the feedforward coefficients are multiplied by s in order
to keep the overall transfer function the same.

e The role of the scaling multiplier is to keep w(n) within
the range [—1,1) with high probability (no overflows)
when the input signal z(n) is also in this range.

e The transfer function from the input to w(n) is F(z) =
(1/s)F(z), where F(z) = 1/(1 + byz™! + byz™2). For
by = —2rcosf and by, = r? (pole pair is located at
z = rexp(£j0)), the unit sample response is e(n) =

(1/s)f(n), where f(n) = {r"sin[(n + 1)0]/sin0}u(n).

e The relation between z(n) and w(n) is given by

= (1/s) Zf Jx(n — k) Ze(k)x(n— k)
k=0 % k=0 «,‘
\ r , L DA
x(n) Q/‘ ~ w(n) \ 2’ \LKQ(
T va y(n)
Vv il o
v Ly
—b, 5 a
1)) 7 - U9
A B
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WORST-CASE SCALING

e It is required that |w(n)| < 1 for all n and for all
inputs, that is,

w(n)| = (1/s) Y |f(k)lla(n — k)| < 1.

e Since |x(n—k)| < 1, this implies that s has to satisfy
s=> If(k).
k=0

e In other words, the overall impulse response e(n) =

(1/s)f(n) satisfies
> le(k) =1
k=0

e w(n) achieves the value > - |e(k)| if for e(k) =
f(k)/s positive, the corresponding z(n — k) = 1 and
for e(k) negative, the corresponding z(n — k) = —1.

e Similarly, w(n) achieves the value — 7~ |e(k)] if for
e(k) positive, x(n — k) = —1 and for e(k) negative,
r(n—k)=1.

e In this case, there are no overflows at all provided
that |z(n)| < 1.

e In many cases, this is too pessimistic and the output
SNR can be increased by increasing the probability
of overflows.
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L, NORM

e In this case, it is required that

max |E(e)] = max (1/5)|F(e”)] = 1

wel0, 7] wel0, |

= s= max |F(e)]
we(0, ]

o We know that the response of a filter with trans-
fer function F(z) to a sinusoidal exitation x(n) =
A cos(nwy + @) is given by

y(n) = A|E(e)| cos([n — 7,(wo)]wo + ). |

o Therefore, if |x(n)| < 1, that is, A < 1, then the
oscillation amplitude of the output signal satisfies
A|E(e/*0)| < 1 for 0 < wy < .

e This means that for the L., norm scaling or the so-
called peak scaling, a single sinusoidal signal causes
no overflows. |

e In many cases, L., norm is a good selection espe-
cially for IIR filters.
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Ly, NORM

e In this case, it is required that

k) = (1/s2 Y fk) =1
k=0 k=0
s= |0 (k)
S \Z

o This scaling can be used when x(n) is a random sig-
nal.

e The probability of overflows is the highest among
the three scaling norms.
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SIMPLE EXAMPLE: SECOND-ORDER EL-
LIPTIC FILTER

Amplitude response for the overall filter H(z)
10 T T ¥ T T T ¥ T T

Passband details
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-5 2 4
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—40 i 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi

Pole-zero plot for the overall filter H(z)
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SIMPLE EXAMPLE: SECOND-ORDER EL-
LIPTIC FILTER

o by = —1.4410226, by = 0.69785000, a; = a3 =
0.12391452, ay = —0.06600919.

e The pole pair is located at z = rexp(£j6) with r =
0.83537416 and € = 0.16889666, whereas the zeros
lie on the unit circle at w = +0.41418240.

e In this case (see the figures of the next page),

8.0602364 for worst-case
s = < 6.5400301 for L
2.6401636 for L.

e Pages 28, 29, and 30 show the the amplitude and
impulse responses for the resulting (1/s)F'(z) in the
three cases.

e Pages 42 and 43 show the matlab code for generating
the figures.
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AMPLITUDE AND IMPULSE RESPONSES
FOR F(z)

Amplitude response for F(z): no scaling
8 T . T I I T T I I T

max=6.5400301 -

Amplitude
N

0 | I | 1 ] 1 [ i 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Angular frequency omega/pi

Impulse response for F(z): no scaling

T T T T T T i
1.5 .
? o  sum of the absolute values of f(n)s = 8.0602364

1 square root of the sum of the f(n)"2s = 2.6401636 ]

< o5 .
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n in samples



f(n)/s

AMPLITUDE AND IMPULSE RESPONSES
FOR (1/s)F(z): WORST-CASE SCALING

Amplitude response for (1/s)F(z): worst-case scaling

1 T - T T T T T T T T
0.8f .
max=0.81139432
(]
'5 0.6 .
._é__
g 04
0.2 i
0 i | 1 | 1 | 1 t |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi .
Impulse response for (1/s)F(z): worst-case scaling
02 [ T T T T T T T i
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0 1(_ square root of the sum of the (f(n)/s)A2s = 0.32755412 |
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AMPLITUDE AND IMPULSE RESPONSES
FOR (1/s)F(z): Lo-norm SCALING

Amplitude response for (1/s)F(z): L_infinite—norm scaling

0.8 i
§ 0.6 max=1.0000000 .
é—
Z 0.4r
0.2F i
O - 1 1 | 1 i i { | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi :
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AMPLITUDE AND IMPULSE RESPONSES

FOR (1/s)F(z): Ly-norm SCALING

Amplitude response for (1/s)F(z): L_2-norm scaling
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OUTPUT NOISE VARIANCE DUE TO THE
MULTIPLICATION ROUNDOFF ERRORS

e Assuming that after each multiplier there is an error
source with variance o = 2720/12, the output noise
variance for the filter of page 29 is given by

UJ% = 02[3 ZQQ(R) + 3].
n=0

o Here, g(n) is the impulse response from the outputs
of the multipliers 1/s, —b;, and —by to the filter out-
put. After multipliers sag, sa;, and sas, the impulse
response is simply an impulse.

e The transfer function corresponding to the impulse
response 18

G(z) = s(ag+ a1zt + asz™3) /(1 + bzt + baz?).

o For by = —2rcosf and by = r? (pole pair is located
at z = exp(440)),
g(n) = saof(n) +aif(n —1) + azf(n - 2)

where

f(n) = {r"sin[(n 4+ 1)0]/sin 0}u(n).
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e For the three scaling norms (see the figures on the
next page), |

34.826276210° for worst-case
07 =14 23.9531708302 for Ly,
6.4146953702  for L.

e As expected, the noise is the highest for the worst-
case scaling and the lowest for the Ls-norm scaling,
whereas the L.,-norm scaling is between these two
cases.
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IMPULSE RESPONSES g(n) FOR THE THREE
SCALING NORMS

Impulse response for G(z): worst-case scaling
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%Simple example on scaling : Elliptic filter with 3-dB passband ripple and 20-dB stopband
%ripple. Passband edge=0.2pi, whereas the stopband edge is as narrow as possible to meet the
%stopband criteria

%Tapio Saram”aki 2.2.1996

%Can be found in SUN’s: ~ts/matlab/dsp/scasim.m

%

[B,A] = ellip(2,3.,20.,.2);

[HH,w]=freqz(B,A,8*1024);

figure(1)

plot(w/pi,20*log10(abs(HH)));axis([0 1 -40 10]);

title(‘ Amplitude response for the overall filter H(z)’)

ylabel(‘Amplitude in dB’);xlabel(‘Angular frequency omega/pi’); hold on;

axes(‘position’, [.5 .55 .3 .3]);plot(w/pi,20*log10(abs(HH)));axis([0 .2 -3. 0]);
title(‘Passband details’):ylabel(‘ Amplitude in dB’); ~

xlabel(‘ Angular frequency omega/pi’);hold off

figure(2)

zplane(B,A);title(‘Pole-zero plot for the overall filter H(z)’)

%Scaling transfer functions

FN1(1)=1;FD1=A;[H1,w]=freqz(FN1,FD1,8*1024);
%L_infinite-norm: s=

inff=max(abs(H1(1:8192)))
[hh1,t]=impz(FN1,FD1,501);

% Worst-case: s=

worf=sum(abs(hh1))

%1._2-norm: s=

12f=sqrt(sum(hh1.*hh1))

% Amplitude and impulse responses; no scaling

figure(3)

subplot(2,1,1);plot(w/pi,abs(H1));title(‘ Amplitude response for F(z): no scaling”)
ylabel(‘ Amplitude’);xlabel(‘Angular frequency omega/pi’);text(0.5,6.,’max=6.5400301)
subplot(2,1,2);impz(hh1);title(‘Impulse response for F(z): no scaling’);

axis([0 40 -.7 1.7]);ylabel(‘f(n)’);xlabel(‘n in samples’);

text(4,.8*%1.7,’sum of the absolute values of f(n)s = 0.80602364");

text(4,.55%1.7,’square root of the sum of the f(n)"2s = 2.6401636’)

%Scaled filters: divide the responses by the corresponding value of s
figure(4)

subplot(2,1,1);plot(w/pi,abs(H1/worf));

title(‘ Amplitude response for (1/s)F(z): worst-case scaling’)

ylabel(‘ Amplitude’);xlabel(‘ Angular frequency omea/pi’);
text(0.5,6./worf,’max=0.81139432")
subplot(2,1,2);impz(hh1/worf);title(‘Impulse response for (1/s)F(z): worst-case scaling’);
axis([0 40 -.7/worf 1.7/worf]);ylabel(‘f(n)/s’);xlabel(‘n in samples’);
text(4,.8*1.7/worf,’sum of the absolute values of (f(n)/s)s = 1.0000000’);
text(4,.55*1.7/worf,’square root of the sum of the (f(n)/s)"2s = 0.32755412")
figure(5)

subplot(2,1,1);plot(w/pi,abs(H1/inff));
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title(‘ Amplitude response for (1/s)F(z): L_infinite-norm scaling’)

ylabel(‘ Amplitude’);xlabel(‘ Angular frequency omega/pi’);

text(0.5,4./inff,” max=1.0000000")

subplot(2,1,2);impz(hh1/inff);title(‘Impulse response for (1/s)F(z): L_infinite-norm scaling’);
axis([0 40 -.7/inff 1.7/inff]);ylabel(‘f(n)/s’);xlabel(‘n in samples’);
text(4,.8*%1.7/inff,’sum of the absolute values of (f(n)/s)s = 1.23244638");
text(4,.55*1.7/inff,’square root of the sum of the (f(n)/s)*2s = 0.40369290°)

figure(6)

subplot(2,1,1);plot(w/pi,abs(H1/12f));

title(‘ Amplitude response for (1/s)F(z): L_2-norm scaling’)
ylabel(‘Amplitude’);xlabel(‘ Angular frequency omega/pi’);

text(0.5,6./12f,’ max=2.47713054")

subplot(2,1,2);impz(hh1/12f);title(‘Impulse response for (1/s)F(z): L_2-norm scaling’);
axis([0 40 -.7/12f 1.7/12f]);ylabel(‘f(n)/s’);xlabel(‘n in samples’);
text(4,.8*1.7/12f,’sum of the absolute values of (f(n)/s)s = 3.05293059’);
text(4,.55*1.7/12f,’square root of the sum of the (f(n)/s)*2s = 1.000000")

%Noise
%First impulse response for the overall filter

GN1=B;GD1=A;
[gg,t]=impz(GN1,GD1,501);
sqg=(sum(gg.*gg))

%For each scaling norm, g(n) is obtained by multiplying gg by the corresponding
%value of s

figure(7)

subplot(2,1,1);impz(gg*worf);title(‘Impulse response for G(z): worst-case scaling °);
ylabel(‘g(n)’);xlabel(‘n in samples’);axis([0 40 -1. 2.]);

text(6,1.,’sum of the g(n)"2s = 10.608759’);
subplot(2,1,2);impz(gg*inff);title(‘Impulse response for G(z): L_infinite-norm scaling’)
ylabel(‘g(n)’);xlabel(‘n in samples’);axis([0 40 -1.*inff/worf 2.*inff/worf]);
text(6,1.*inff/worf,’sum of the g(n)"2s = 6.9843902°);

figure(8)

subplot(2,1,1);impz(gg*12f);title(‘Impulse response for G(z): L_2-norm scaling’);
ylabel(‘g(n)’);xlabel(‘n in samples’);axis([0 40 -1.*12f/worf 2.*12f/worf]);
text(6,1.*12f/worf,’sum of the g(n)"2s = 1.1382317912408’);

%Output noise variances: multiply sqg by s*2

Joworst-case
noworst=3*(1+worf*worf*sqg)

%]._infinte-norm
noinfinite=3*(1+inff*inff*sqg)

%L_infinte-norm
no2=3*(1+12*12f*sqg)
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SATURATION ARITHMETIC

e The effect of a possible overflow can be killed in a finite
time using the saturation arithmetic (see the following
figure). 2= Qlx]

011 011

010 010

001 001

110 110

101 101

100 100

o1

010

001

101

100

(b)

Figure 6.44 Two’s-complement rounding. (a) Natural overflow. (b) Saturation.
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- ILLUSTRATIVE EXAMPLE ON SCALING:
A CASCADE OF THREE SECOND-ORDER
SECTIONS; A lowpass filter with w, = 0.4,
ws = 0.6, A, =0.5 dB, A, =80 dB

293 y(n)

a3

3

e Coeflicients of the unscaled filter:

S = 0.00811165

bi1 = 1.165885, b1 = 0.814467 b3 = 0.564167
bo1 = —0.417533, bos = —0.640952 byog = —0.883560
ar =agr =1, £k=1,2,3
a;; = 1.842348, a9 = 1.111859 a3 = 0.671013

e The amplitude response and the pole-zero plot for this
filter are shown on the next page.

e For two’s complement arithmetic, the variables w(n),
wy(n), and ws(n) must be kept in the range [—1,1).
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EXAMPLE ELLIPTIC FILTER

Amplitude response for the overall filter H(z)
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FILTER WITHOUT SCALING

e We denote by Fi(z) and fi(n), k =1,2,3 the trans-
fer functions and impulse responses from the input
to the variables w;(n), we(n), and ws(n). The over-
all transfer function and the impulse response is de-
noted by H(z) and h(n), respectively.

Fi(z) = 5/Bi(z)
Fy(z) = [SA1(2)]/[B1(2) Ba(2)]
I3(z) = [SA1(2)As(2)]/[Bi(2) Ba(2) Bs(z)]
H(z) = [SAi(2)As(2) A3(2)]/[B1(2) B2(z) Bs(2)],
where for £k =1,2,3

AN TN

1 2
Ap(z) = aop + a1z” + agz

and
Bk(z) =1- blkz_l — bzkz—z.

e The following two pages show the amplitude and im-
pulse responses for the Fi(z)’s and H(z).
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UNSCALED FILTER

Amplitude response for F1(z): no scaling
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UNSCALED FILTER

x 107 Impulse response for F1(z): no scaling
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WORST-CASE SCALING

e Lor the unscaled filter,

dy =) | fi(k)| = 0.035377
k=0

dy =) | fa(k)| = 0.21723
k=0 :

ds =) " |f3(k)| = 1.3549
k=0

dy =) |h(k)| = 2.3617.

e Lor the filter scaled according to the worst-case scal-
ing, 1t is required that that dy = dy = d3 = 1.

e The scaling is performed by changing the filter coef-
ficients as follows:

S*=SCy
a};l = Cgakl, k = O, 1, 2
CLZQ = Cgakg, k’ = 0, 1, 2

ar3
k=0,1,2,
C,C,C5’
where the C}’s are selected such that Cidy = 1,

01C2d2 = 1, and 010203d3 = 1.

* —
Ar3 =



That is, C] = 1/d1, Cy = 1/(d201), and C3 =
1/(C1Cads).

Note that the change of the a3’s in the above man-
ner guarantees that the transfer function remains the

same even though at the overall filter output an over-
flow may occur (dy = 2.3617).

To properly treat the possible overflow at the filter
output, extra integer bits are needed. If this is not
possible and no overflows are allowed, the coefficient
a3 values must be further divided by dy = 2.3617, re-
sulting in a filter with the passband maximum equal
to 1/d4. This problem has not been considered
in the literature!! |

For the scaled filter,
S* = 5C) = 0.229288
ag, = ay; = 0.162853, a3, = 0.300032
Apy = Gae = 0.160329, aj, = 0.178264
Qg3 = Ay3 = 1.354926, aj; = 0.909173.

The following two pages show the amplitude and im-
pulse responses for the resulting Fj(z)’s and H(z).
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SCAL-

Amplitude response for F1(z): worst—case scaling

—
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Impulse response for F1(z): worst-case scaling
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L-NORM SCALING

e For the unscaled filter,

d; = max IFl(eJ“’)| = 0.032281

wel0,

dy = max IFQ(eJ“’)l = (0.15789

welo, ]

d3 = nﬁx | F3(e’*)| = 0.75169
we 7T

dy = max |H(e'*)| = 1.000.
wel0,

For the filter scaled according to the L.,-norm, it is
desired that d1 — dz = dg = 1.

e The scaling is performed by changing the filter coef-
ficients as follows:

S* = SC;
ar; = Coapy, k=0,1,2
a;, = Csaxs, k=0,1,2

ar3
k3 = , k=0,1,2,
U T 01CyC
where the C}’s are selected such that Cid; = 1,

Clczdz = 1, and 0102C3d3 = 1.
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e That 18, C, = 1/d1, Cy = 1/(d201)7 and C3 =
1/(CyCods).

e For the scaled filter,
S* = 5C; =0.251285

Qe = Qg = 0.2100524, a7, = 0.233549
als = als = 0.751689, a’y = 0.504393.

e The following two pages show the amplitude and im-
pulse responses for the resulting Fy(z)’s and H(z).
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FILTER WITH THE L, -NORM SCALING

Amplitude response for F1(z): L_infinite scaling
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FILTER WITH THE L, .-NORM SACLING

impulse response for F1(z): L_infinite scaling
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Lo-NORM SCALING

e For the unscaled filter,

-

F2(k) = 0.015694

f2(k) = 0.087515

S
—
e | L2 | I[)e

F2(k) = 0.31551
0

|
-
i

> B2 (k) = 0.62488.

|2

For the filter scaled according to the Lo-norm scal-
ing, it is desired that d; = dy = d3 = 1.

e The scaling is performed by changing the filter coef-
ficients as follows:

St =S50,
a;;l — CQCLkl, k = 0, 1, 2
CLZ2 — Cgakg, k = O, 1, 2

ak3
: — ? k — O? 17 27
U8 = 01 CoCs
where the C}’s are selected such that Cid; = 1,

Cngdz = 1, and 01C203d3 = 1.




e That iS, Cl = 1/d1, Cz = 1/(d201>> and C?) —
1/(C1Cqd3).

e Ior the scaled filter,
S*=5C] =0.516848

ay, = a}; = 0.179334, a}, = 0.330396
agy = a3, = 0.277379, aj, = 0.308406
a5y = aj; = 0.315508, aly = 0.211710.

e The following two pages show the amplitude and im-
pulse responses for the resulting Fj(z)’s and H(z).
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FILTER WITH THE L,-NORM SCALING

Amplitude response for F1(z): L_2 scaling

25 T T T T T T T T T
2F _
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'g 1.5+ .
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< ' 1
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0 1 i i} 1 i 1 ] 1 I
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Angular frequency omega/pi
Amplitude response for F2(z): L_2 scaling
2 T T L T 1 T 1 T ¥
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3 1" .
1S
<
0.5r i
0 1 1 ] 1 1 Il 1 1
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Angular frequency omega/pi
Amplitude response for F3(z): L_2 scaling
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Ampilitude response for H(z): no scaling
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Angular frequency omega/pi



FILTER WITH THE L,-NORM SACLING
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Impulse response for F1(z): L_2 scaling

O 6 O j T T T T T T T T ]
Po sum of the absolute values of f1(n)s = 2.2541
0.4H .
. square root of the sum of the f1(n)A2s = 1.0000
c
= 0.2H
0
! 1 i 1 i 1 1 1 ]
0 10 20 30 40 50 60 70 80 90 100
n in samples ‘
Impulse response for F2(z): L_2 scaling
0.8 T T I T T T T T T
0.6 a
sum of the absolute values of f2(n)s = 2.4823
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Impulse response for F3(z): L_2 scaling
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Impulse response for H(z)
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h(n)
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OUTPUT NOISE VARIANCES DUE TO THE
MULTIPLICATION ROUNDOFF ERRORS

e It is assumed that after each multiplier there is an
error source with variance o2 = 272°/12.

e For the unscaled filter, the output noise variance
(apr = 1 and a9 = 1 for k = 1,2, 3 cause no noise)
is given by

UJ% = 30'1201 + 30?2 + 30]%3 + 102,

where

0]2% = o’ Zgz(n), k=1,2,3.

e Here, g1(n) is the impulse response to the output
after the multipliers S, b1, and by;. ¢o(n) is the
impulse response to the output after the multipliers
b12, baz, and ay1. g3(n) is the impulse response to the
output after the multipliers b3, bos, and aj;9. The
impulse after the multiplier a3 is an impulse.

e The corresponding transfer functions are
G1(z) = [A1(2) Ax(2) A3(2)]/[B1(2) Ba(2) Bs(2)]
G2(z) = [A2(2)A3(2)]/[Ba(2) Bs(2))]
G3(z) = As(z)/Bs(2),

where for kK = 1,2, 3

-1 9
Ar(z) = aor + a1xz” " + a2



and
Bi(z) =1 — bipz ! — bz ™2

For the scaled filter, the output noise variance is
given by

OJ% = (30?1 + 50%2 + 50§3 + 302,

gr(n)’s for the unscaled filter as well as for the scaled
filters are given on pages 65, 66, 67, and 68.

The output noise variances are

(1839002  for unscaled

o2 — 4 153.1602 for worst-case
/ 70.60402 for Lo

\ 19.07106% for Ls.

€

In terms of the quantity
NOISE GAIN = 10logyo(c}/0?),

the results are

(42.6 dB for unscaled
21.9 dB for worst-case
18.5dB for L

L 12.8 dB  for Lo.

NOISE GAIN = <
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It is seen that the noise gain is 21 - 31 dB less for
the scaled filters. This corresponds to 3 to 5 bit
improvement in the computation accuracy.

This means that required number of bits for the data
representation is 3 to 5 bits less to achieve the same
output noise level.

A 6-dB reduction in the noise gain means that one
bit less is required for the data representatio in order
to achieve the same output noise level.

In many cases, it is desired to increase the number
of bits at the filter input for internal calculations.

The purpose is to select the number of extra bits
in such a way that when at the output of the filter
the data sequence is rounded back to the original
number of bits, the overall system corresponds to an
ideal filter with one additive noise sourse at the filter
output.

The rule of thumb for the number of extra bits is the
noise gain divided by 6.

The file generating the above figures is
ts/matlab/dsp/ellisca.m.



IMPULSE RESPONSES OF NOISE SOURCES:
UNSCALED FILTER

Impulse response for G1(z): no scaling

T T T T T T T T T
o]
40 .
sum of the g1(n)"2s = 5934.3
< 20 .
=3
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[%%%WWW
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n in samples
Impulse response for G2(z): no scaling
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Impulse response for G3(z): no scaling
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IMPULSE RESPONSES OF NOISE SOURCES:

FILTER WITH THE WORST-CASE SCAL-
ING

Impulse response for G1(z): Worst-case scaling

T T T T T T T T T
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Impulse response for G2(z): Worst-case scaling

T T T T T T T T T

1 sum of the g2(n)A2s = 8.7931 i
< OOTT (JT V(f TCI) O?Q r\% SR R 0 S0 PEE e PEEPEEEEEEPREEREEEE
S &ll ll g &% @

1 ! [ 1 1 ] i f 1

0 10 20 30 40 50 60 70 80 90 100
n in samples

-1F

Impulse response for G3(z): Worst-case scaling
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IMPULSE RESPONSES OF NOISE SOURCES:
FILTER WITH THE L,.-NORM SCALING

Impulse response for G1(z): L_infinity scaling

T
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Impulse response for G2(z): L_infinity scaling
T T T T T T T T T
1r i
sum of the g2(n)"\2s = 4.6452
A5 ‘
g 0< T ncl)cp r\% r\% r‘Q\ fQ\MWM»wMWMM'
(9] V D
® ol Ul &
BLILE _
-1+ -
1 1 | 1 1 1 i i 1
0 10 20 30 40 50 60 70 80 90 100
n in samples
Impulse response for G3(z): L_infinity scaling
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IMPULSE RESPONSES OF NOISE SOURCES:
FILTER WITH THE L,-NORM SCALING

Impulse response for G1(z): L_2 scaling
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Impulse response for G2(z): L_2 scaling
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Impulse response for G3(z): L_2 scaling
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CASCADE OF SECOND-ORDER TRANSPOSED
DIRECT-FORM II SECTIONS

utr) ES [:am% wy(n) [:aoz; wa(n) ans; v

z—1 z—1 z—1

aqq b4 aq, bys ayg bys

z—1 z—1 z—1

a5 by, ay boo a3 bys

e The above figure shows an implementation of our filter
as a cascade of transposed direct-form II sections.

o Coefficients of the unscaled filter:
S = 0.00811165

bi1 = 1.165885, by = 0.814467 b3 = 0.564167
by = —0.417533, bgy = —0.640952 by3 = —0.883560
aop =ay =1, k=1,2,3
a;; = 1.842348, ajy = 1.111859, ay3 = 0.671013.

e For L.,-norm scaling, it is required that the maximum
amplitude value of the transfer functions from the in-
put to the variables wi(n) and ws(n), denoted by Fi(z)
and Fs(z), is less than or equal to unity.

e Since the maximum of the overall amplitude response
1s unity, the filter output is automatically L.,-norm
scaled.
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FILTER SCALING

e The two scaling transfer function as well as the over-
all transfer function are given by

Fi(z) = [SA1(2)]/Bi(2)
Fy(z) = [SA1(2)A2(2)]/[B1(2) Ba2(2)]
H(z) = [SA1(2)Aa(2)A3(2)]/[B1(2) Ba2(2) B3(2)],

where for £k =1,2,3

-1 —2
Ak(z) = Qo + A1x2 = + a9z

and
Bip(z)=1-— bipz ' — bopz 2.

e As seen from the following page, the maximum am-
plitude values of Fi(z), F3(z), and H(z) are di =

0.12385489, dy = 0.47436880, and d3 = 1.0000000,
respectively.

o By selecting 51 = 1, SaOk/dl = ag, dlalk/dz = a1k,
and dyag;/ — ag for k = 1,2, 3, the a;;’s in the figure
of the previous page become

apgl — 91 = 0065493181, ailp — 0.120661225

apg2 = A99 = 0261094093, a9 — 0.290299894
ap3 — Q93 — 0474368802, a1z — 0.474368802.

e As seen from the figure on page 71, the filter is in
this case L.,-norm scaled.
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SCALING TRANSFER FUNCTIONS:
SCALED FILTER |

Amplitude response for F1(z): no scaling
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Amplitude response for F2(z): no scaling
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Amplitude response for H(z): no scaling
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SCALING TRANSFER FUNCTIONS: SCALED
FILTER

Amplitude response for F1(z): L_infinite scaling
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Amplitude response for F2(z): L_infinite scaling
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Amplitude response for H(z): L_infinite scaling
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OUTPUT NOISE VARIANCES DUE TO THE
MULTIPLICATION ROUNDOFF ERRORS

e It is assumed that after each multiplier there is an
error source with variance o? = 2720/12

e Ior the unscaled filter, the scaling constant is in-
cluded in the multipliers ag;, a1, and a9 by multi-
plying them by S.

e For this filter, the output noise variance (ag, = 1
and agp =1 for k = 2,3 cause no noise) is given by

2 2 2 2
Of:50f1+30f2+30f37

where

oh =0y gin), k=1,2,3.

e Here, g1(n) is the impulse response to the output af-
ter the multipliers by1, bo1, ag1, ai1, and as;. go(n) is
the impulse response to the output after the multi-
pliers bys, bz, and ajo. g3(n) is the impulse response
to the output after the multipliers b;3, be3, and aqs.

e The corresponding transfer functions are (S = 1)
G1(z) = [A2(2) As3(2)]/[B1(2) B2(2) B3(2)]
Go(2) = [As3(2)]/[Ba(2) Bs(2)]
Gs(z) = 1/Bs(z),
where for k =1,2,3
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-1 9
Ap(2) = aop + a1p2™" + agi2

and
Bi(2) =1 — bzt — bypz 2.

e For the scaled filter, the output noise variance is
given by
ajzc = 5(0?1 + 0;2 + a]%g)az.

gr(n)’s for the unscaled filter as well as for the scaled
filter are given on pages 75 and 76.

e The output noise variances are

52 1873.0296802 for unscaled
771 122.5828402  for L.
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NOISE TRANSFER FUNCTIONS: UNSCALED
FILTER

Impulse response for G1(z): no scaling
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Impulse response for G2(z): no scaling
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Impulse response for G3(z): no scaling
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NOISE TRANSFER FUNCTIONS: SCALED
FILTER

Impuise response for G1(z): L_infinite scaling
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Impulse response for G2(z): L_infinite scaling
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Impulse response for G3(z): L_infinite scaling
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COMMENTS

e There are several ways of forming second-order
blocks for the cascade realization.

e It has been observed experimentally that a low out-
put noise variance is obtained by applying rules of
the following form:

. The pole pair that is closest to the unit circle should
be paired with the zero pair that is closest to it in
the z-plane.

. Rule 1 should be repeatedly applied until all the
poles and zeros have been paired.

. The resulting second-order sections should be or-
dered according to the closeness of the poles to the
unit circle, either in order of increasing closeness to
the unit circle or decreasing closeness to the unit
circle.

e For our filter, the second-order sections have been
selected as shown on the next page.



Imaginary part
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POLE-ZERO PLOT FOR OUR SIXTH-ORDER

FILTER SHOWING PAIRING OF THE POLES
AND ZEROS

The zeros are located at z = exp(£;0.6089075807),
z = exp(£j0.687637617), and z = exp(£;0.87276841),

whereas the poles are located at
z = 0.93997874 exp(+50.402981417),
z = 0.80059474 exp(=£30.330139707), and

z = 0.64616766 exp(+50.141985457).

Pole-zero plot for the overall filter H(z)

Real part
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%This file illustrates the scaling of a casced structure with 3 second-order sections
%transposed direct-form II sections. Passband ripple is 0.5dB, stopband attenuation
%80 dB and passband and stopband edges at 0.4pi and 0.6pi.

%Can be found in SUN’s: ~ts/matlab/dsp/sca.m

%Matlab likes to make the stopband edge as small

%as possible!!

[N, Wn] = ellipord(4, .6, 0.5, 80.24234);

[B,A] = ellip(N,.5,80.24234,Wn);

[HH,w]=freqz(B,A,8*1024);

figure(1);plot(w/pi,20*log10(abs(HH)));axis([0 1 -140 10]);

title(‘ Amplitude response for the overall filter H(z)’)

ylabel(‘ Amplitude in dB’);xlabel(‘Angular freqeuncy omega/pi’);

hold on;

axes(‘position’, [.24 .24 .3 .3]);plot(w/pi,20*log10(abs(HH)));

axis([0 .4 -0.5 0]);title(‘Passband details’)

ylabel(‘ Amplitude in dB’);xlabel(‘Angular freqeuncy omega/pi’);hold off
figure(2);zplane(B,A);title( ‘Pole-zero plot for the overall filter H(z)’)

%Poles and zeros
zer=roots(B);pol=roots(A);

% Three numerator terms

%Note that zer(1) and zer(2) are complex conjugates
%The same is true for zer(3) and zer(4); and for
Y%zer(5) and zer(6)
al(1)=1;al1(3)=1;al(2)=-2*real(zer(1));
a2(1)=1;a2(3)=1;a2(2)=-2*real(zer(3));
a3(1)=1;a3(3)=1;a3(2)=-2*real(zer(5));

%Three denominator terms
b1(1)=1;b1(2)=-2*real(pol(5));b1(3)=real(pol(5))*2+imag(pol(5))"2;
b2(1)=1;b2(2)=-2*real(pol(3));b2(3)=real (pol(3))*2+imag(pol(3))"2;
b3(1)=1;b3(2)=-2*real(pol(1));b3(3)=real(pol(1))*2+imag(pol(1))*2;
S=B(1);

%Scaling transfer functions

FN1=S*al;FD1i=bl;
FN2=conv(FN1,a2);FD2=conv(FD1,b2);
FN3=conv(FN2,a3);FD3=conv(FD2,b3);

[H1,w]=freqz(FN1,FD1,8*1024);[H2,w]=freqz(FN2,FD2,8*%1024);
[H3,w]=freqz(FN3,FD3,8*1024);

inff1=max(abs(H1(1:8192)));inff2=max(abs(H2(1:8192)));inff3=max(abs(H3(1:8192)));

figure(3);subplot(2,1,1);plot(w/pi,abs(H1));

axis([0 1 0 .15]);

title(‘ Amplitude response for F1(z): no scaling’)

ylabel(‘ Amplitude’);xlabel(‘Angular freqeuncy omega/pi’);
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text(0.5,.075,’max=0.12385489")
subplot(2,1,2);plot(w/pi,abs(H2));axis([0 1 0 .5]);
title(‘Amplitude response for F2(z): no scaling’)
ylabel(‘Amplitude’);xlabel(‘Angular freqeuncy omega/pi’);
text(0.6,.25,’max=0.47436880")

figure(4);subplot(2,1,1);plot(w/pi,abs(H3));axis([0 1 0 1.1]);
title(‘ Amplitude response for H(z): no scaling’)
ylabel(‘Amplitude’);xlabel(‘ Angular freqeuncy omega/pi’);
text(0.6,.5,”max=1.00000000")

9%Noise when a_il --> Sa_il, i=1,2,3
GN3(1)=1;GD3=b3;
GN2=conv(GN3,a3);GD2=conv(GD3,b2);
GNI=conv(GN2,a2);GD1=conv(GD2,b1);

%Corresponding impulse responses

[ggl,t]l=impz(GN1,GD1,501);[gg2,t]=impz(GN2,GD2,501);
[gg3,t]=impz(GN3,GD3,501);

%Sum of the squared responses
sqg1=(sum(ggl.*ggl));sqg2=(sum(gg2.*gg2));sqg3=(sum(gg3.*gg3));

%Overall noise
noise1=5*sqgl+3*sqg2+3*sqg3

9 Noise

%Impulse responses: no scaling

figure(5);subplot(2,1,1);impz(gg1);title(‘Impulse response for G1(z): no scaling’);
ylabel(‘g1(n)’);xlabel(‘n in samples’);axis([0 100 -10 15]);

text(35,8,’sum of the gl(n)*2s = 571.61015’);
subplot(2,1,2);impz(gg2);title(‘Impulse response for G2(z): no scaling’)
ylabel(‘g2(n)’);xlabel(‘n in samples’);axis([0 100 -3 3]);

text(35,1.8,’sum of the g2(n)"2s = 47.724204’);

figure(6);subplot(2,1,1);impz(gg3);title(‘Impulse response for G3(z): no scaling’);
ylabel(‘g3(n)’);xlabel(‘n in samples’);axis([0 100 -1.1 1.1]);
text(35,.75,’sum of the g3(n)"2s = 5.0088751");

%Filter scaling
al=S*al/inff1;a2=inff1*a2/inff2;a3=inff2*a3;S=1

%Scaling transfer functions
FN1=S*al;FD1=bl;

FN2=conv(FN1,a2);FD2=conv(FD1,b2);
FN3=conv(FN2,a3);FD3=conv(FD2,b3);
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[H1,w]=freqz(FN1,FD1,8*1024);[H2,w]=freqz(FN2,FD2,8*1024);
[H3,w]=freqz(FN3,FD3,8*1024);

figure(7);subplot(2,1,1);plot(w/pi,abs(H1));axis([0 1 0 1.1]);
‘title(‘ Amplitude response for F1(z): L_infinite scaling’)
ylabel(‘ Amplitude’ );xlabel(‘ Angular freqeuncy omega/pi’);
text(0.6,.5,”max=1.00000000")
subplot(2,1,2);plot(w/pi,abs(H2));axis([0 1 0 1.1]);

title(‘ Amplitude response for F2(z): L_infinite scaling’)
ylabel(‘ Amplitude’);xlabel(‘ Angular freqeuncy omega/pi’);
text(0.6,.5,’max=1.00000000")

figure(8);subplot(2,1,1);plot(w/pi,abs(H3));axis([0 1 0 1.1]);
title(‘ Amplitude response for H(z): L_infinite scaling’)
ylabel(‘ Amplitude’ );xlabel(‘ Angular freqeuncy omega/pi’);
text(0.6,.5,”’max=1.00000000")

GN3(1)=1;GD3=b3;
GN2=conv(GN3,a3);GD2=conv(GD3,b2);
GN1=conv(GN2,a2);GD1=conv(GD2,bl);

%Corresponding impulse responses

[ggl,t]l=impz(GN1,GD1,501);[gg2,t]=impz(GN2,GD2,501);
[gg3,t]=impz(GN3,GD3,501);

%Sum of the squared responses
sqg1=(sum(ggl.*gg1));sqg2=(sum(gg2.*gg2));sqg3=(sum(gg3.*gg3));

%Qverall noise
noise2=5%(sqg1+sqg2+sqg3);

%Noise

%Impulse responses: L_infinite-norm scaling
figure(9);subplot(2,1,1);impz(gg1);title(‘Impulse response for G1(z): L_infinite scaling’);
ylabel(‘g1(n)’);xlabel(‘n in samples’);axis([0 100 -2 2]);

text(35,1.2,’sum of the gl(n)*2s = 8.7685193");

subplot(2,1,2);impz(gg2);title(‘Impulse response for G2(z): L_infinite scaling’)
ylabel(‘g2(n)’);xlabel(‘n in samples’);axis([0 100 -2 2]);

text(35,1.2,’sum of the g2(n)*2s = 10.739175’);

figure(10);subplot(2,1,1);impz(gg3);

title(‘Impulse response for G3(z): L_infinite scaling’);
ylabel(‘g3(n)’);xlabel(‘n in samples’);axis([0 100 -1.1 1.1]);
text(35,.75,’sum of the g3(n)*2s = 5.00887517);
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SCALING IN THE PARALLEL-FORM STRUC-
TURE

x(n)

y(n)
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LIMIT CYCLES

o —Q O > O
x(n)

(o]

e Consider a first-order system (see Figure (a)) described
by the difference equation

y(n) = ay(n — 1) + 2(n).

e In practical implementation, we use a (1+3)-bit repre-
sentation for o, (n), and y(n). In this case, ay(n —1)
must be rounded to a (1+43)-bit representation, before
addition to z(n).

e The actual implementation is depicted in Figure (b),
where the actual output w(n) satisfies

w(n) = Qlaw(n — 1)] + z(n),

where )| | represents the rounding operation.



Assume that z(n) = 7/85(n) = 0A1116(n), a =
1/2 = 0100, and w(—1) = 0. Then, w(0) =
2(0) = 7/8 = 05111 and aw(0) = 04011100 = 7/16.
Since z(1) = 0, w(1) = Qlaw(0)] = 0,100 = 1/2.
Continuing, w(2) = Qaw(1)] = 0010 = 1/4 and
w(3) = 0,001 = 1/8.

To obtain w(4), we must round a seven-bit number
aw(3) = 04000100 to 0A001 = 1/8. The same result
is obtained for n > 3 (see the figure of the next

page).

For a = —1/2, the same procedure can be carried
out and finally the output oscillates between 1/8 and
—1/8 (see the figure of the next page). Note that for
a = —1/2, this result is obtained by rounding the
magnitude, that is, for rounding for the sign and
magnitude arithmetic (see transparency 2).

These oscillations occuring at the filter output for
ever when the exitation remains to be zero are called
limit cycle oscillations.
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RESULTING RESPONSES FOR o = 1/2 and

a=-1/2
7w(n)
g
(a)
1 a=%
2]
1
Y
i1 111
TTTTL
2% o0 1 2 3 4 5 6 7 n
wi(n)
4
8
1 (b)
a=—§
1
2
1 1 1
8 8 8
1 3 I 5 I 7 I
—* 2 l 4 l 6 1 8 n
1 _1 _1
K] 8 8

Fig. 9.6 Response of a first-order quantized system to a unit sample: (a)

o« =% (b)a = —4.



— 86—

LIMIT CYCLES DUE TO OVERFLOW

e Consider a second-order system characterized by the
difference equation

w(n) = Qlajw(n — 1)] + Qlasw(n — 2)] + z(n),
where )| | represents two’s complement rounding
with a (143)-bit wordlength. It is assumed that for
negative numbers rounding is performed such that

the magnitude is rounded. (This is not always the
casel!!)

e a; = 3/4 = 05110, as
3/4 = 0110, w(—2)
0, n>0.

—3/4 = 1,010, w(—1)
—3/4 = 1,010, z(n) =

e Now, the output is

w(0) =Q[9/16] + Q[9/16]
=Q[0A100100] + Q[0A100100]
=04101 4+ 04101 = 17010 = —-3/4

w(1) =Q[~9/16] + Q[~9/16
=Q[1A011100] + Q[1A01110]
=1A011+ 14011 = 02110 = +3/4

e The output will continue oscillating between —3/4
and 3/4, that is, between very high amplitude values,
until an input is applied.

e The oscillations of the above kinds can be avoided
by using more complicated filter structures, using
the saturation arithmetic, and using more bits for
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internal calculations (one topic of the course “Sys-
tem Level DSP Algorithms”).
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COMMENTS

e The above examples on limit cycles were for very
simple filters.

e IFor more complicated filters, they can be more se-
vere.

e The most severe are huge overflow oscillations which
may occur in badly scaled filters. In this case, the
filter output is useless and in many cases these os-
cillations can be killed only by resetting the state
variables (data samples in delays).

e In addition to limit cycles, there are parasitic oscil-
lations inside the filter.

e These are extra oscillations due to the finite word
length effects, but they are not usually visible at the
filter output in the normal operation.

e They can be found out by simulations and are con-

sidered in more details in the course “System Level
DSP Algorithms”. |



COEFFICIENT ROUNDING EFFECTS IN
CASCADE-FORM IIR FILTERS

e Several examples are given in the couse ”System
Level DSP Algorithms”.

e Here we consider the filter of transparency 45 that is
scaled according to the L, norm (see transparency

55).

e For the infinite-precision filter, the passband and
stopband ripples are A, = 0.5 dB and A; = 80.24
dB, respectively.

e A satisfactory result is obtained by using 6 decimal
bits for the coefficients. The resulting values are

S =272
aor = a9y = 13-27% a3, =24-275
Qog = G99 = 13-27% a1 =15-275
apg3 = Q93 = 48 - 2”‘6, aig = 32 - 2_6,
b =75-2"5 by =—-27-27°
bio="52-2"0 by =—41-27°

and
biz=236-270 byg=—57-275

e As seen from the next transparency, in the passband
the resulting response varies between 0.05 dB and

—0.83 dB, and the minimum stopband attenuation
is 79.2 dB.
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RESPONSES FOR QUANTIZED (SOLID LINE)

AND UNQUANTIZED (DASHED LINE) IIR
FILTERS

Solid and dashed lines for quantized and ideal filters

Amplitude in dB

0.4 0.5 0.6
Angular frequency omega/pi

Passband: Solid and dashed lines for quantized and ideal filters
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COMMENTS

e The above filter had a rather wide passband region.
This is why the number of decimal bits was rather
small to achieve a satisfactory overall response.

e For very narrowband cases, significantly more bits
are required.

e It should also be pointed out that the direct-form
structures require significantly more bits for the co-
efficient representations, and due to the fact that
some coefficient values are very large, several integer
bits are required.



COEFFICIENT ROUNDING EFFECTS IN
LINEAR-PHASE FIR FILTERS

e In the course “System Level DSP Algorithms” it
is shown that a filter with b decimal bits for the
rounded coefficient values can be designed in most
cases as follows:

Step 1: Determine
5. = 27 UTV[(N + 1) log (N + 1)/3]"/2,
where NV is the filter order.

Step 2: Design the minimum-order linear phase FIR
filter for the passband and stopband ripples of 4, — .
and 05 — d., respectively.

Step 3: Round the coefficients of this filter to b dec-
imal bits and check whether the resulting filter meets
the original ripple requirements of 9, and J;.

e It is desired to design a lowpass filter with edges at
wp = 0.4m and w, = 0.457 and ripples of 4, = 0.01
and 0, = 0.001. The minimum order to meet these
criteria is N = 104

e Ior b = 14, the above formula gives approximately
0 = 0.0004 so that the passband and stopband rip-
ples for the infinite-precision filter are 0.0096 and
0.006, respectively. The minimum order to meet
these criteria is 110.

e The following two transparencies show the responses
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for the quantized and unquantized filter and indicate
that the quantized filter meets the given criteria.

viill
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RESPONSES FOR QUANTIZED (SOLID LINE)
AND UNQUANTIZED (DASHED LINE) FIR

FILTERS

Solid and dashed lines for quantized and ideal filters
T
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RESPONSES FOR QUANTIZED (SOLID LINE)
AND UNQUANTIZED (DASHED LINE) FIR
FILTERS

Passband: Solid and dashed lines for quantized and ideal filters
1 01 T T T T T T 1
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APPENDIX A: DISCRETE-TIME RANDOM
SIGNALS

e Up to now, we have assumed that the discrete-time
signals have been determisitic, that is, each value of
the sequence under consideration is uniquely deter-
mined by a mathematical expression, a table of data,
or a rule of some type.

e However, there are several situations, such as the
error signal resulting after truncation or rounding a
signal to a fewer number of bits than the original
signal, where the signal is not at all deterministic.

e The purpose of this appendix is to give a short re-
view on how to treat mathematically signals that are
random, that is, they do not obey any strict mathe-
matical expression.

e It should be pointed out that the purpose of this ap-
pendix is not to give a deep mathematical frameform
on how to model discrete-time random signals.

e We just concentrate on the basics on how to model
the error signal resulting when quantizing the sig-
nal obtained by multiplying it by a coefficient. In
addition, it is considered what happens to this er-
ror signal when it travels to the output through a
filter with a transfer function H.(z) or an impulse
response he(n).
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RANDOM SIGNALS

e Consider a random signal e(n). There exist several
ways of modeling this signal.

e The mean value m, of the signal e(n) is the follow-
ing quantity

me = Ele(n)],
where F/[z| stands for the expected value of z.

e The covariance sequence c..(l) and the autocor-
relation sequence ¢..(l) of our signal are defined

by
Cee(l) = E[{e(n) —meH{e(n +1) — me}]‘
and
bec(l) = Ele(n)e(n + 1)),
respectively.

e The variance (power) o2 of the signal e(n) is the
following quantity:

02 = Cee(0) = E[{e(n) — me}2]'

e The power density spectrum of our signal e(n) is
defined by

oo

Dee(w) = Y (L),

[=—o0

o If .. (w) is known, then

Pee(l) = 517;/7? Deo(w)e?“dw.

-7
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o If e(n) is filtered with a filter with the transfer func-
tion H(z), then the power density spectrum of the
output random signal, denoted by f(n), is given by

Crp(w) = |H () Pee(w).




ROUNDING AND TRUNCATION IN TWO’S

COMPLEMENT ARITHMETIC: OUTPUT
NOISE

e When (1+b)-bit data samples w(n) are multiplied by
a (14a)-bit coefficient o, then the resulting sequence
~ aw(n) consists of (14 a 4 b)-bit numbers.

e If this number is rounded back to a (1 + b)-bit data
sample in two’s complement arithemetic, then it is
common to assume that we generate an error se-
quence e(n) satisfying

me = 0,
ol =2"2/12,
and
cee(l) = a25(1),
indicating that there is no correlation between e(n)
and e(n + 1) for [ # 1.

e For truncation the same is valid except that

me = —270/2.

e For the above two cases, the autocorrelation se-
quency is given by

Pee(l) = a25(1) +m?.

e In the frequency domain, our error sequence e(n)
consists of the following two parts:
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1) It has a DC-component equal to m..

2) The autocorrelation sequence of e(n) — m, is

Beee(l) = a28(1),

so that the corresponding power density spec-
trum is given by

@ee(w) Z q?ee(l)e_ﬂ“’ = ag.

I

e We next consider the properties of a signal f(n)
which is related to e(n) through

ihe kle(n — k),

k=0

that is, our random signal goes trough a filter with
an impulse response h.(n)u(n) or a transfer function

given by
=) he(k)z7".
k=0

e The mean value of f(n) is given by

E[f(n)] Zh k)
k=0
=) he(k)Ele(n — k)].
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e Since FEle(n — k)] = me we obtain

myg = Me Z h(k) = m.H.(e").

e The covariance sequence of f(n) is given by

cerp(l) = E[{f(n) —meH{ f(n+1) —my}]
=E[) > he(k)he(r){e(n — k) —meHe(n +1—1) — m.}]

° lSince} El{e(n—k)—m{e(n+1—7r)—m.}] = ¢ee(k+

crp(l) =) he(k) Y he(r)ece(k +1—1)
k=0 r=0

- e By makmg the Substltutlon s =r — k, we obtain

crs(l Z Cee(l—s Zh(k)h s+k) = Z Cee(l—5)C(s),

s=—k
where

o Since cee(l — s) = 026(l — s), cf¢(l) can be expressed
as

crr(l) = a2 > 8(1—s)C(s) = a2C(1).




- 102 -

o This shows that there is a correlation between f(n)

and f(n +1).
e The autocorrelation sequence of f(n) is then

drr(l) = m$ + cpp(l) = mf + o2C(1).

e The variance of f(n) is thus given by
of = c7(0) = 07 Y h2(K).
k=0

e In the frequency domain, the output error sequence
f(n) consists of following two parts:

1) It has a DC-component equal to m f-

2) The power density spectrum of f(n)—m; is given
by

O (W) = |Ho(e™)PBee(w) = |Ho(e7))%02.

(&

o If desired, then the variance JJ% of f(n) can be eval-
uated from

2 T 00
O'ch = 2276; ; |H.(e’*)|*dw = o2 Z hZ(n).

e The equivalence

[ e Pas =3 K
i n=0

1s the Parseval theorem for the discrete-time signals.
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PART V: Finite word length effects in digital filters:
APPENDIX B

Two simple exercises on scaling a filter and evaluating

the output noise due to the multiplication roundoff errors
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Example 1:  The filter shown below is implemented using (8+1)-bit fixed-

point arithmetic.
(a) Evaluate the output noise variance due to the multiplication roundoff errors.

(b) The input signal is z[n] = Asin(n7/10). Determine the highest value of A
for which there are no overflows. For this value of A, determine the signal-

to-noise ratio at the filter output.

ACAVE

x[n] y[n]
‘ g I S N

e,[n]

D>——0

1(a):

€,[n]

x(n] ' [n]
- ;1 >(%)———>y

5 2—26 2—16
0’61 — 0’62 = =

12 12
The output noise variance due to the multiplication roundoff errors is

o 270 /&S o = 9
o7 = T3 ( D ik + Y m3lK]),
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where hq[k] ja ho[k] are the impulse responses from the noise sources ej[n] ja

eo[n] to the filter output.
hi[n] = 6[n] = thn]—l

holn] = (8/10)" 'uln — 1]

= h3n] = ((8/10)2)" ufn — 1]
1

= Y hjn] = ———— = 2.778.
>l =
The output noise variance is thus given by
9-16 92— 16

of = (1+2.778) = = 3.T18=—.

1(b):
z[n] = Asin( il n)
IRRRST) |
There are no overflows if |w[n]| < 1 and |y[n]| < 1 for all n (see the following
- figure). 0.6

N
l/

0.8
N

w[n]
] yin]
— e L >é >

w[n] and y[n] are given by

wln] = A[H'(ej”/10)| sin(%n + argH'(ej“/w))

and

i argH(ejW/lO)),

y[n] = AJH (/1) sin( T




respectively, where

H'(2) = _c
(2) = T4
and X .
z~ —0.6 + 1.482~
H(z)= —>  _ _06=
(2) =105 1—0.82-1

are the transfer functions from the filter input to w[n] and y[n], respectively.

Therefore, it is required that

AIH'(ejW/10)| <1 and AlH(ejW/lo)l <1,

that is,
A < min{1/|H'(e™/10)|, 1/|H (eS7/10)]3.
IH/(ejﬂ'/lO), _ ICOS(?T/].O) - jSiIl(’/T/].O)I
|1 — 0.8[cos(7/10) — j sin(7/10)]]
1
= 02392 1 jo.2arz] 007
and
|H(ej7r/10)| _ | — 0.6 + 1.48[cos(7/10) — j sin(w/10)]|

{1 —0.8[cos(7/10) — j sin(7/10)]]
_ |0.8076 — j0.4573|

= = 2.698.
0.2392 + j0.2472] — 2%

= There are no overflows if Ap.x < 1/2.907 = 0.3440.

At the filter output, the amplitude of the response of the exitation z[n] =
Amax sin({gn) is given by

Amaz|H(e™/1%)| = 0.3440 - 2.698 = 0.9281.

The power of this signal is
A?/2 = 0.4307,




whereas the output noise power is

9-16
Therefore, the signal-to-noise ratio is given by
4307
S/N [4B] = 10 logjg — U — 49.5 aB.
3.778 - S5

Example 2: It is desired to implement the transfer function
0.02

(1-0.92-1)(1 - 0.82-1)

using the fixed-point arithmetic.

H(z)=

(a) The filter is desired to be implemented as a cascade of two first-order
blocks. Scale the filter using the worst-case scaling and select the order
of the blocks to minimize the output noise variance. Repeat the problem

using L.- and Lo-norm scalings.

(b) The filter is implemented directly as a single second-order block. Scale

the filter and evaluate the output noise variance.
2(a)

The scaling constants as well as the noise sources are shown in the figure of
the next page. hi[n] ja hg[n] are the impulse responses of the scaling transfer
functions, whereas g1[n] ja go[n] are the impulse responses of the noise transfer

functions. Note that also the scaling coefficients cause noise.

Consider first the scaling transfer functions which are exploited later.

hi(n) = S1a"u[n]




gl [n]

)\

5159
(1-az"1)(1 - bz-1
5159 1 S1.59 1
1-a/bl—bzl " 1-b/al—az]

Z(haln]) = Hy(z) =

518,

holn] = —

(bn+1u[n] — an+1u[n]).

When determining the output noise variance it is observed that the impulse
response from the noise sources e;[n] ja eg[n] to the filter output are the same

(91[n]). Also, e3[n] and e4[n] have the same impulse response (g2[n]).

The overall output noise variance is given by

7t =202 3" (g3l + g3in]).

n=0

g1[n] = ha[n]/S

> ot = (525) 2 (1 -at)’

n=0 n=0
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(o]

= (b‘iQ )2 Z((b2)n+1 + (a2)n+1 _ 2(ab)"+1)2

@ n=0
:<52 )2[ b? + a? 3 2ab].
b—a/ 11 -2 1—-a2 1-—ab
For both a = 0.8, b =0.9 and a = 0.9, b = 0.8,

) " giln] = 89.8252.

n=>0

ga(n) = b"ufn)

> gdnl = 307" = .
n=0 n=0

The overall output noise variance is thus given by

2
2 _ 2 2
0% =0 (179.6252 + T bz).

Consider first the worst-case scaling, where the coefficients 9] ja S9 are de-

termined such that
o0 o0

o Innll =" |holn]| = 1.

n=0 n=0

In this case there are no overflows at all.

Case a =0.9 and b =0.8:

e o]

1
— n _ — —
> lfn]]= 51> 0.9 =S17 55 = 1051 =1

Sy =0.1.
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o0

n=0 n=(
= 10515y ) (0.9"*! —0.8"T1)
n=0
0.9 0.8
= S — =58
2(1 —09 1 —0.8) 052
=
So = 0.2.
We get

0}2{ = 12.7402.

Case a =0.8 and b= 0.9:

> I[r]| =55
n=0

=
S1=0.2.
> lho[n]| = 10518, - 5 = 108,
n=0
=
So = 0.1.
We get

0} =12.3202.

Y Ihofn]l =10818, Y [0.87F! — 097

Case a = 0.8 and b = 0.9 is thus slightly better. Note that since in both of

the above cases 5159 = 0.02 no additional scaling coefficient is needed at the

filter output to make the numerator of the overall transfer function equal to

0.02.
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Consider next the L-norm scaling, where S ja Sy are determined such that

max |H; (/%) = 1

wel0, 7]

and
max_|Hy(el*)| = 1,

wel0, ]

where
S1
H = —
1(2) (1 —az"1)
and
Hy(z) = 5152

(1—az"1)(1 - bz"1)

In this case, no single sinusoidal signal causes overflows. The maxima of both
|H1(e’*)| and |Hy(e“)| occur at w = 0. Therefore, it is required that Hi(1) =
51/(1 — a) and Hy(1) = S1S2/[(1 — a)(1 - b)], yielding S} = (1 — a) and Sy =
(1 —b). These are the same scaling constants as for the worst-case scaling.
Therefore, in this example, the scaling for both the worst-case and L..-norm
scalings is the same and the above results apply also to the L..-norm scaling. The
explanation to this is that the worst-case input signal is z[n] = 1 or z[n] = -1

which are also sinusoidal signals of frequency w = 0.

Consider finally the Ly-norm scaling, where S| ja Sy are determined such

that o -
> Kl =) hiln] = 1.
n=>0 n=0

In this case, overflows are possible. However, if the input signal is random

enough, overflows are not likely to occur.




Case a =0.9 and b= 0.8:

- 1
> hin] 512092" 511 5 5 = 5.26357 = 1
= n=0

$] = 0.4359.

According to the previous considerations,
ho[n] = S1g1[n] and Z giln] = 89.815%.

Hence,
o0

3[n] = $75%89.81 = 17.0652 = 1
2 2

n=0
So = 0.2421.
In order to guarantee that the overall transfer has the desired constant 0.02

in the numerator, there is a need to have at the output an additional coefficient

as shown in the following figure.

S

3
yln] l A y'n]

e 5[n]

S3 is determined such that S75955 = 0.02.
= S5 = 0.1895.

The output noise variance is now given by

(af) =02+ S3af = o2(1 + S3(179. 6252 +t1 e 2 )) = 1.57802.
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Case a = 0.8 and b =0.9:
We obtain S7 = 0.6, S9 = 0.1759, S3 = 0.1895, and

(07)* = 1.57802.

Both of the above two cases give thus the same output noise variance.

It is observed that with the Lo-norm scaling the output noise variance is
approximately 8 dB lower than with the worst-case or L,-norm scaling at the

expense of possible overflows.

2(b):
> gl[n]
5 hym] N
: o O f
; [ ;1: yln+fin]
i

e_[n] z_l
e,
e [n]ﬂ
3
0.02 0.02

H(z)

T (1=09:)(1—08:1)  1-1.7:-1+40.722-2
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Scaling;:

S
H =
() =G 0.92-1)(1 — 0.82-1)
=
h[n] — g%(bn—i-l _ an-l—l)u[n]
1
= BE_S—;(O.S)RH — 0.8"Huln].

Consider first the worst-case scaling, where ] is determined to give

> |hfn]| = 1.
n=0

> |h[n]] = 508; = 1.
n=0

Sy = 0.02.

51599 = 0.02 = Sy = 1. Since Sy = 1, this multiplier as well as eq4[n] = 0 are

absent.

Consider next the Ly -norm scaling, where S is determined such that

max |H(e/)| = H(1) = —>

=1
wel0, 7] 0.1-0.2

Sy = 0.02.

Again, the scaling for the worst-case and the L.,-norm scalings is the same.

Consider finally the Lo-norm scaling, where S; is determined such that

i h2[n] = 1.
n=0
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> " B[] = 9087 = 1.
n=0

S1 =0.1111, S9=0.18

Output noise:

_ 52
~ (1-0.9271)(1 —-0.8271)

Z ¢?[n] = 9053.
n=0

G(2)

The output noise variance for both the worst-case scaling and the L.,-norm

scaling is given by (S =1 as well as e4[n] = 0 are absent) is given by

0} =307 - 9053 = 27002

The corresponding variance for the Lo-norm scaling is

0} =307 - 9083 + 02 = 9.74802.

It is seen that for all the scaling norms, the cascade-form realization gives
a lower output noise variance. For the worst-case and L.,-norm scalings, the
output noise variance is 10 - log;;270/12.32 = 13.4 dB lower for the cascade-
form realization. Since a 6-dB reduction means a one-bit saving in the number

of data bits, the cascade-form realization requires two bits less.




