
MBT’04 Preliminary Version

Heuristics for Faster Error Detection with
Automated Black Box Testing

Antti Kervinen 1 and Pablo Virolainen 2

Tampere University of Technology
Institute of Software Systems

PO Box 553, FIN-33101 Tampere, FINLAND

Abstract

Three building blocks for test guidance algorithms, the step evaluation, the state
evaluation and the evaluation order, are proposed in this paper. We show how a
simple family of coverage criteria can be used to evaluate individual testing steps,
and how the nondeterministic behaviour of the tested system can be handled and
longer term test step plans created with the state evaluation. We use the evaluation
order to define which and when states are evaluated. Six heuristic algorithms based
on these ideas are implemented. Four of them use a game-like approach to black
box testing. In addition, three other test guidance algorithms are implemented for
comparison. The algorithms are compared by measuring the number of testing steps
required for detecting errors that are infiltrated to the conference protocol systems
of two different sizes.

Key words: Conformance testing,testing automation,test
selection heuristics

1 Introduction

To find errors by testing under given constraints on time and cost, the key
issue is: “What subset of all possible test cases has the highest probability of
detecting the most errors” [12].

Fault detection is more likely when the system under test (SUT) is guided
to states that have not been visited before. To help guide the system into
these unexplored areas various coverage metrics, such as statement, decision,
and condition coverage, can be used in white box testing [12].

In black box testing we do not have information on the internal structure
of the SUT. In this paper we show that several simple coverage metrics can

1 ask@cs.tut.fi
2 pablo@cs.tut.fi

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kervinen and Virolainen

still be helpful to reveal errors. Since the coverage of the states of the system
cannot be measured, the coverage of the specified behaviour (that is, the
interaction with the environment) of the system is measured.

In this paper we will use a labelled transition system (LTS) to model a
SUT’s behaviour. Although our model is a single “flat” LTS, our algorithms
and results apply to several other formalisms also. For example, parallel com-
position of several LTSs, LOTOS, SDL, Petri nets or any other formalism that
can be unwinded into a flat state space can be considered. Yet this leads easily
to the state explosion problem, there are methods that can be used to cope
with it. The state space can be constructed compositionally [17], or if it can
not be constructed at once, it can be generated on-the-fly [7] by calculating
the next states to a bounded depth [14]. Not all the algorithms of this paper
are applicable with the last method, but the best performers are.

Exploration testing [9], as we call our testing method, is automated. When
the expected behaviour of the system (in the form of a deterministic LTS) is
given to a test engine, it explores the LTS beginning from its initial state. In
each state the engine decides whether to send an input, listen to an output, or
reset the system and restart the testing. Only those inputs and outputs that
are possible in the current state of the LTS may be sent to or accepted from
the SUT.

The problem is how to make decisions which reveal errors, that is, make
the system give an unexpected output or remain silent when it should give an
output, without exploring the LTS for too long.

The main objective and contribution of this paper is to introduce and
compare heuristic algorithms which aim revealing errors quickly; and show
how the problem of designing a specification coverage aided test selection
algorithm can be split in parts. The introduced algorithms are compared by
running tests against conference protocol systems consisting of two and three
conference protocol entities. (The conference protocol basically provides a
chat service with multiple chat rooms.) The number of test steps needed
for finding an error is measured and compared. Errors are infiltrated to the
systems by replacing one correct protocol peer by a mutated one.

Correct and mutated protocol entities were implemented at the University
of Twente [4]. The implementations have been tested before in [1,14], but
with a different test setup. While in the mentioned publications a single
conference protocol entity is tested, we test the service provided by systems
of two and three clients. With this setup we aim to capture the nature of a
truly concurrent and reactive system: the system is often able to read inputs
and give several correct responses at the same time.

Numerous papers have been published on automated test generation. In [2]
Chow presented an automata theoretic testing strategy. A generalised version
of his W-method [3], was further developed by Luo and v. Bochmann [11] to
suit better for testing concurrent systems. These methods, among the methods
based on distinguishing sequences and unique input/output sequences [15],

2

Kervinen and Virolainen

aim to find “transfer faults”. They check, transition by transition, that after
the transition the SUT and the specification enter identical states. Often these
methods provide very strong (or complete) fault coverage, but also the price
is high. Required tests are extremely long and, to ensure the fault coverage,
assumptions on the specification and the size of the state space of the SUT
have to be made.

The transition tour method [13] tries to execute every transition in the
specification at least once. This approach is more practical (for example,
incomplete specifications are allowed) than the methods mentioned earlier,
although it tests less. Our approach resembles this method, but in addition
to covering transitions we can use simultaneously coarser coverage criteria to
guide test runs. In [10] Lee et.al. introduced transition tours for communi-
cating finite state machines. They presented a guidance method that tries
to execute every transition in each state machine separately, instead of the
full state space of the specification. This is an interesting and justified cover-
age criteria which, unfortunately, can not be handled by the coverage classes
presented in this paper.

Our ideas on test guidance are somewhat similar to Pyhälä and Hel-
janko [14]. They proposed a heuristic which may precalculate some future
steps in the specification to make the choice of the next step. We have imple-
mented also their algorithm for comparison.

In Section 2 the LTSs and coverage criteria are formalised. The test engine
architecture is presented in Section 3 to show the context in which the test
guidance algorithms operate. Section 4 contains the main issue of the paper.
Firstly, the concepts of step evaluation, state evaluation and evaluation order,
which are the basic building blocks of our heuristic algorithms, are presented.
The rest of the section is dedicated to the description of the heuristic algo-
rithms to be compared. The test setup for the comparison and the results are
presented in Section 5.

2 Background

We will use labelled transition systems (LTS) to represent the behaviour of
the system under test (SUT).

Definition 2.1 [LTS] A labelled transition system, abbreviated LTS, is a
quadruple (S, Σ, ∆, ŝ) where S is a set of states, Σ is a set of visible actions

(alphabet), ∆ ⊆ S × (Σ ∪ {τ}) × S is a set of transitions where τ /∈ Σ is an
invisible action, and ŝ ∈ S is an initial state.

Every visible action is either input or output (response). A transition is
called an input (output) transition if it is labelled by an input (output) action.

Definition 2.2 Let L = (S, Σ, ∆, ŝ), be an LTS s ∈ S, ΣI ⊆ Σ the set of
input actions and ΣO = Σ \ΣI the set of output actions. TI(s) = { (s, a, s′) ∈
∆ | a ∈ ΣI } is the set of input transitions leaving state s. Correspondingly

3

Kervinen and Virolainen

TO(s) = { (s, a, s′) ∈ ∆ | a ∈ ΣO } is the set of output transitions leaving state
s.

The test engine, which is the entity testing the SUT, is given a single,
deterministic (that is, there are no transitions labelled by invisible actions
and two transitions leaving the same state never share the same label) LTS as
an input for a test run. At each point of the test run the engine keeps track of
the current state of the LTS, starting from the initial state. The transitions
leaving the current state specify what actions are allowed in the next testing
step.

Execution of a transition means that the current state is updated to the
destination state of the transition. Because only the transitions leaving the
current state can be executed, and because the LTS is deterministic, we may
as well talk about executing an action without confusion. The determinism is
required because we want to measure the coverage of the transitions.

The transitions of an LTS (S, Σ, ∆, ŝ) that are executed during a test run
are stored in a multiset ∆exec ∈ N

∆. As well, ∆exec can be thought as a
map from transitions to natural numbers. If a transition t ∈ ∆ has not been
executed, then ∆exec(t) = 0 and we denote t /∈ ∆exec. If t has been executed
n > 0 times, ∆exec(t) = n and we also say that t ∈ ∆exec. Adding elements
T ⊆ ∆ to the multiset is defined naturally: ∆′

exec = ∆exec +T , where for every
t in T it holds ∆′

exec(t) = ∆exec(t) + 1 and for the other t′ ∈ ∆, t′ /∈ T it holds
∆′

exec(t
′) = ∆exec(t

′).

Our test engine is able to measure eight coverage classes which are identi-
fied by triplets of zeroes and ones.

Definition 2.3 Transition t = (s, a, s′) is b1b2b3-covered by transition te =
(se, ae, s

′

e) iff ((b1 = 1) ⇒ (s = se)) ∧ ((b2 = 1) ⇒ (a = ae)) ∧ ((b3 = 1) ⇒
(s′ = s′

e
)).

Definition 2.4 Let L = (S, Σ, ∆, ŝ) and ∆exec be a multiset of executed
transitions. ∆b1b2b3(∆exec) = { t ∈ ∆ | ¬∃t′ ∈ ∆exec : t′ b1b2b3-covers t } is the
set of uncovered transitions in the sense of coverage class b1b2b3.

In this paper we use three coverage classes: 111, 001 and 010. Intuitively,
to cover an LTS according to the coverage 111 every transition of the LTS
must be executed. The coverage 001 demands that every state be arrived in,
and 010 that every action appearing in the transitions of the LTS appears also
in the executed transitions.

3 Test engine

The explorer is the heart of the test engine (see Figure 1). It runs in a loop,
asking the heuristics module for the next testing step. If the heuristics sug-
gests sending an input to the SUT, the explorer forwards it to the adapter
module. The adapter converts input actions to commands and sends them to

4

Kervinen and Virolainen

step suggestion

Trace information

LTS

validation
step

Spec

Coverage

Heuristics

action
names

Recorder

Explorer Adapter-

6

possible

System under test

UI CPE

CPEUI

commands &
responses

Discipline

Input map

Test Engine

executed transition

transition
executed

cov. info

actions 6

?

?

Q
Q

Q
QQk

?

-

� �

?

-
�

�
�	

@
@

@R

-

Fig. 1. Testing architecture

the appropriate receiver in the SUT. In our case the receivers are the user in-
terface processes (UI) of the actual implementations of the conference protocol
entities (CPE).

If the input action is accepted, which in our setup means that sending the
command to the stdin pipe of the UI process was successful, the explorer
executes the corresponding transition in the specification. Executions change
the current state of the specification, coverage values, and get recorded in the
executed trace. If the input action is refused, the explorer executes the refused
input action in the specification, if possible. The ability to detect the refusal of
inputs makes the tested relation between specification and the implementation
more extensive than the ioco [16] relation. However, we actually are testing
the ioco relation in this paper because in our test runs the input refusals
neither occur nor are taken into account in the specification.

If the heuristics suggests listening to the output, the explorer tries to read
and remove the first element in the response queue of the adapter module.
The queue is filled by the discipline module which reads responses from the
stdout pipes of the UIs and converts them into actions. The discipline module
decides the order in which the responses of the processes are queued, in case
the responses become readable simultaneously. We use “random discipline”:
when more than one response is readable, they can be queued in any order.

If the queue is empty, the explorer waits until an action becomes readable
from the queue or a timeout occurs. The timeout causes the explorer to receive
a special δ (quiescence) action (δ belongs to the alphabet of the specification
LTS and is considered an output action).

When an output action is received from the adapter module, the explorer
verifies from the specification module that the received action can be executed
in the current state. If not, it announces an illegal response error and stops
testing. Otherwise, the action is executed similarly to an input transition
execution.

If the heuristics module decides that testing should not be continued from
the current state, it returns “deadlock” to the test engine. Our current im-

5

Kervinen and Virolainen

plementation of the test engine stops testing after the deadlock.

4 Heuristics

We divide the problem of building a test guidance algorithm in three parts.
The first part, step evaluation, gives values to single input and output transi-
tions. The value describes the desirability of their execution. In addition to
the transition data, the multiset of executed transitions may affect the values.

Definition 4.1 [Step evaluation function] For an LTS L = (S, Σ, ∆, ŝ) a step
evaluation function is a function eval : ∆ × N

∆ → R.

Test guidance would be more straightforward if there were at most one
possible output transition in every state. Then we could, given an appro-
priate step evaluation function, precalculate the shortest possible sequence of
transitions after which the step evaluation function is non-positive for every
transition. Of course, this would not be very practical because finding such a
sequence is easily an NP-hard problem.

However, the guidance becomes even more complicated when there are
several alternative correct outputs at the same time. With state evaluation,
which is the second part of the problem, we try to estimate the best step
sequences by making assumptions on the behaviour of the SUT when it is
allowed to respond in several different ways.

State evaluation associates a value with a state, based on the values of
the transitions leaving the state (given by step evaluation), the values of their
destination states (by previous state evaluations), and according to its expec-
tations on next outputs.

We have implemented two state evaluation heuristics. In the first one, used
in the “pessimistic player” algorithms, the SUT is expected to output actions
so that it minimises the desirability of the possible futures.

In the other state evaluation method, the probabilities of responses in
each state are estimated during the test run, based on the responses that are
actually received in the state from the SUT. The average of the desirabilities of
the responses weighted with their probabilities is used for the evaluation of the
state. This is applied in the “adaptive player” and “state space evaluation”
algorithms.

The third and the last part of the process is the evaluation order : which
states and transitions should be evaluated and when. The algorithms imple-
ment two evaluation orders. In the player algorithms a limited number of steps
beginning from the current state is calculated. The names of the algorithms
are inspired by the game-like approach to a test run. In every turn the test
engine decides if it makes a move (sends an input to the SUT) or lets the SUT
make a move (listens to the response of the SUT). The move is the execution
of a transition: each move increases the score by the value of the transition
(given by the step evaluation function). The player algorithms are greedy:

6

Kervinen and Virolainen

they try to gather as big a score as possible during the steps they calculate.

In the evaluation order of the “state space evaluation” algorithm values
for every state of the LTS are calculated at the beginning of a test run. The
values are recalculated when necessary during the test. Thereby, all parts of
the state space, even far away from the current state, affect the decision of
the next testing step.

We have implemented the following nine test guidance algorithms and
evaluated their error detection performance in test runs. The first two are
simple random algorithms which are implemented just for sparring with the
other seven.

4.1 Random

The random heuristic selects randomly one transition leaving the current state.
If the selected transition is labelled by an output action, the test engine waits
for an output. Otherwise the input action of the transition is sent to the SUT.

4.2 Greedy random

This is a slightly enhanced random heuristic. In each state a decision about
the next step is made according to the following rules. Output is listened to
if there are no inputs or if a correct output certainly causes a new transition
to be covered. Otherwise, if a new transition is covered by executing an input
action, then the input is sent. If not, then if it is possible that the SUT gives
output that covers a new transition, then output is listened to in a state s
with the probability |{ t ∈ TO(s) | t /∈ ∆exec }| / |TO(s)|. If the output were
not listened to due to the previous rule, and if both inputs and outputs are
possible in the state, then output is listened to with probability 0.5. Otherwise,
a random input is chosen.

4.3 Pessimistic player

There are two versions of the pessimistic player algorithm that have different
step evaluation functions. Both use the same prediction heuristic in the state
evaluation: the SUT is assumed to choose its responses so that it minimises
the sum of the evaluation function values of executed transitions.

The skeleton of the state evaluation parts of the player algorithms is pre-
sented as Algorithm 1. It returns a value that describes how desirable is the
state that is given as the first parameter.

The algorithm is recursive. As the bottom of the recursion, it returns
the value 0 to the states for which it is called with the (search) depth 0. If
depth > 0, the best input value and the value for listening to outputs are
calculated. The desirability of an input transition t ∈ TI(s) is the sum of
eval(t, ∆exec) (a step evaluation function, we will get back to this soon) and
the value of its destination state. The latter is calculated by calling recursively

7

Kervinen and Virolainen

function player(s : state,depth : integer,∆exec : multiset of transitions)
if depth = 0 or (TO(s) = ∅ and TI(s) = ∅) then return 0 end if

desirability and P are local associative maps, initially empty.
action is a global associative map.
best input is a structure consisting of a transition and a value

Evaluate inputs, store a transition–value pair with the greatest value
best input :=

t∈TI (s)
MAX [eval(t,∆exec)+player(dest state(t),depth−1,∆exec+{t})]

Evaluate outputs, calculate expected output value
for each t ∈ TO(s) do

desirability [t] := eval(t,∆exec)+player(dest state(t),depth−1,∆exec+{t})
end for

P := estimate probabilities of outputs(TO(s),∆exec,desirability)

ovalue :=
∑

t∈TO(s)

P[t] · desirability [t]

Return the best choice, prefer output when input and output are equally
good
if TO(s) = ∅ or (TI(s) 6= ∅ and best input.value > ovalue) then

action[s] := best input.transition

return best input.value

else

action[s] := listen to output
return ovalue

end if

Algorithm 1. The state evaluation skeleton of the player algorithms

the algorithm for the destination state with depth decreased by one and with
t added to the multiset of the executed transitions. The input transition that
has the greatest desirability value is stored with the value to the best input

structure. Our implementation of the MAX function is deterministic in the
player algorithms: if there are many equally desirable input transitions, it
always returns the same. The desirabilities of outputs TO(s) are calculated
similarly to the inputs.

In the pessimistic player algorithm the probability estimation returns a
map P where P[t] = 1 for the output transition t which has the minimal
desirability. For the other output transitions t′, P[t′] = 0. Thus the minimal
desirability of the available output transitions is stored in ovalue.

Finally, the greater of the values of best input.value and ovalue is asso-
ciated with the state s by returning it as the value of the function. The
algorithm stores the best action in the state (either listen to output or the
best input) in the global action table.

The evaluation order in the player algorithms is the same. The player

function is called before every testing step with the following parameters:

8

Kervinen and Virolainen

• s = the current state of the specification

• depth = 5

• ∆exec the multiset of the executed transitions during the test run so far.

When the algorithm stops, the action of the next testing step is stored in
action[current state].

In the simple version of the algorithm only the transition coverage (111)
is taken into account in the step evaluation function, see equation (2) below.
Thus all transitions that are not executed are considered equally desirable. To
avoid trying to execute the same sequence of transitions unsuccessfully over
and over again the execution count of a transition decreases the value of the
step evaluation function. We use the decrement of 1/10 of the value of an
unexecuted transition per execution.

mem(t, T)=

0 if t /∈ T

1 if t ∈ T
(1)

eval-simple(t, ∆exec)= 10 · mem(t, ∆111(∆exec)) − ∆exec(t)(2)

eval-comp(t, ∆exec)= 10 · mem(t, ∆111(∆exec)) + 50 · mem(t, ∆001(∆exec))(3)

+250 · mem(t, ∆010(∆exec)) − ∆exec(t)

The heuristic idea behind the complex evaluation function (3) is that send-
ing an input that has not been sent before as well as requesting an unseen
output are the easiest ways to find errors. Therefore, new input and output
actions should be tested with high priority compared to new input and output
transitions. Likewise, visiting unvisited states is appreciated.

The factors 10, 50 and 250 in the complex evaluation function are fixed
with the assumption that the algorithm is called with search depth 5. In
this case the existence of an unexecuted action in one search branch makes
it superior to branches which include only actions that have been executed.
If the best branches contain equal number of unexecuted actions, then the
branches containing unvisited states are superior to those with none.

4.4 Adaptive player

Similarly to the pessimistic player, there are two versions of the adaptive
player algorithm. One uses the step evaluation function (2) and the other the
function (3). The only difference between the adaptive and the pessimistic
player is the way they estimate probabilities of outputs that are available at
the same time.

Whereas the pessimistic player gives the output listening the minimal value
of the branches beginning with output actions, the adaptive player uses a
weighted average of the output branches. The idea is to try to estimate the
probabilities of the output actions based on the responses that have been
received previously in the same state.

9

Kervinen and Virolainen

function sseval((S,Σ,∆, ŝ) : LTS,∆exec : multiset)
for each s ∈ S: value[s] := 0 end for

Calc := S

while Calc 6= ∅
choose s ∈ Calc, Calc := Calc \ {s}
best input :=

t∈TI (s)
MAX [dec(value[dest state(t)]) + eval(t,∆exec)]

oval :=
∑

t∈TO(s)

P [t] · [dec(value[dest state(t)]) + eval(t,∆exec)]

new value := max(best input.value, oval)
if new value 6= value[s] then

Calc := Calc ∪ previous states(s)
value[s] := new value

end if

if best input.value > oval or (best input.value = oval and rand() < 0.5)
then

choose[s] := choose randomly among the best input transitions
action[s] := best input.transition

else

action[s] := listen to output
end if

end while

Algorithm 2. State space evaluation

The function estimate probabilities of outputs(TO(s)) in Algorithm 1 re-
turns the following mapping from output transitions to probabilities:

P[t] =
1 + ∆exec(t)

∑

t′∈TO(s)

(1 + ∆exec(t
′))

(4)

If none of the output transitions has been executed, their probabilities are
equal. The probability of a transition grows when it becomes executed. Thus
the player algorithm tries to adapt to the behaviour of the SUT.

4.5 State space evaluation

The state space evaluation algorithm associates desirability values with both
states and transitions. Unlike players, it evaluates the values for every state
in the state space. Thus the algorithm is able to make very long plans for
execution sequences. The price to pay is that calculating the values may
be expensive in big state spaces. The state space evaluation algorithm is
presented as Algorithm 2.

The algorithm stores values evaluated for each state in the value table,
which initially contains zeroes. In the beginning, every state belongs to the
Calc set, which is the set of the states to be (re)evaluated. The algorithm
runs in a loop until the Calc set is empty.

In the loop, one state at a time is removed from the Calc set and evaluated

10

Kervinen and Virolainen

as follows; let the chosen state be s. The value for sending an input is stored
into the best input structure, with a transition that gives the value. The
transition is chosen randomly among the equally good ones. The value is the
greatest of the sums of eval(t, ∆exec) and the decreased value of the destination
state of t, where t ∈ TI(s).

In our test runs we chose the decrement to be roughly 10 % (with a small
constant decrement) and used 8-bit fixed point arithmetic. Thus dec(a) =
max(0, b230a−1

256
c).

The step evaluation function in the implementation is

eval-sspace(t, ∆exec) = 256 · mem(t, ∆111(∆exec))(5)

where mem is as defined in equation (1). The effect of the decrement is that
the shorter the sequence required for reaching the state from the state s,
the more desirable the state can be. With our decrement function and the
step evaluation function (5), the desirability of the state s is affected by the
desirabilities of the states at most 56 steps away from s. This is because
the value of a state can be at most 2511 (consider a state s having an input
transition t = (s, a, s) to itself, where eval-sspace(t, ∆exec) = 256).

In evaluation of listening to the output the probability of outputs is esti-
mated similarly to the adaptive player algorithm: P [t] is defined in the equa-
tion (4). The value for output listening, stored into variable oval, is a weighted
average of sums of eval(t, ∆exec) and decreased values of the destination states
of transitions t.

The value of the chosen state s is the greater of the values best input.value

and oval. If the value is different from value[s], the new value is stored to the
value table. All states from which there is a transition to the state s are added
to the Calc set because their values may be affected by change of value[s].

To avoid looping eternally, the dec function should be chosen in a way that
the values of states do not grow without limit. To make the algorithm stop
faster, we use coarse fixed point arithmetic: the value of the mem function is
multiplied by 256 in the evaluation function and dec uses only integer part of
the fraction.

In the test runs with the step evaluation function (5) the state space eval-
uation algorithm performed badly. The problem is that the algorithm rates
a looping unexecuted transition equally good to a very long sequence of un-
executed transitions that leads to new states. We wrote the following step
evaluation function to enhance the performance, although it does not solve
the problem.

eval-ss2(t, ∆exec) = 256 ·mem(t, ∆111(∆exec)) + 512 · mem(t, ∆010(∆exec))(6)

11

Kervinen and Virolainen

4.6 Pyhälä-Heljanko

This algorithm has been implemented like presented in [14]. The algorithm
aims to cover all transitions of the LTS.

Before every testing step the algorithm calls a GreedyTestMove subroutine
with probability 0.75. If the subroutine is not called or it could not make the
decision of the next step, the decision is made randomly. If there are input
actions available, the random selection decides to send a random input (from
TI(current state)) with probability 0.5. Otherwise, the test engine listens to
the output.

The GreedyTestMove checks first the transitions leaving the current state.
If there are uncovered input and output transitions, then a random action of
the uncovered input transitions is chosen with probability 0.5 and output is
listened to with probability 0.5.

If there are uncovered input transitions but not uncovered output actions
then a random uncovered input is selected. If there are uncovered output
transitions but not uncovered input transitions then output is listened to.

If there are neither uncovered input transitions nor uncovered output tran-
sitions, then a bounded search in the LTS is made. The algorithm constructs
as short sequence of actions σ ∈ Σ∗ as possible so that executing it takes LTS
into a state s, from which uncovered transitions can be executed. The search
is bounded so that the length of σ is at most ten actions. If a desired state is
not found within the bound, GreedyTestMove could not make a decision and
a random choice is made as described in the first place.

This algorithm resembles the player algorithms: both are greedy and use a
bounded lookahead to the LTS to make decisions. There are still remarkable
differences. This algorithm looks ahead only when there are no uncovered
transitions in the current state and the look ahead is no deeper than the
number of steps to the nearest desired state. The players look ahead before
every step and always to the same depth. Furthermore, this algorithm is
optimistic: when there is an uncovered output in the current state, the output
is always listened to if there are no uncovered input transitions. The players
are optimistic only when input actions are considered. During the test run, the
adaptive player becomes more and more pessimistic about the output actions
which have not been executed. The pessimistic player always expects the least
desirable output to be received. Lastly, this algorithm is nondeterministic,
whereas the players are deterministic.

5 Experiments

5.1 Implementation

The tested conference protocol implementation was downloaded from [5]. We
tested the protocol in the service level through the UI included in the pack-
age [5]. The protocol provides a chatting service. A user can join a conference,

12

Kervinen and Virolainen

Command/
“Response”

Meaning

“Conference
Protocol”

Response when a UI process is started

j me cf Join conference cf with nickname me

s m Send message m to current conference

l Leave conference

“>” Prompt; the user is not in any conference

“me>” Prompt; the user is in a conference with nickname me

“se> m” The user received a message m from user with nickname se.

Table 1
Commands and responses

send messages to the conference it participates in (which causes all other users
in the same conference to receive the messages), leave the conference, and start
from the beginning. The commands and responses are listed in Table 1.

The implementation allows each user to participate in at most one confer-
ence at a time. The communication is not promised to be reliable (messages
may be lost) but the messages should not be delivered to clients in other
conferences.

We had five setups for SUTs. Two of them contained two client processes
and the rest three client processes. Every setup contained one mutated client
process, the other clients were correct implementations. The setups containing
equal number of clients differed by the place in which the mutated client was
running: sometimes client 1, sometimes client 2 or 3 was the broken one. With
these setups we could get more variation into the results of the deterministic
algorithms and thus make them more comparable with the nondeterministic
ones.

All client processes and the test engine ran on the same machine (Ultra-
SPARC IIe, 500 MHz, 512 MB of memory running Solaris 8 operating system).
Client processes communicated through sockets (of datagram type), that pro-
vide connectionless and unreliable service.

5.2 Specification

We modelled the behaviour of the systems where two or three users communi-
cate via the conference protocol. In the systems there are two conferences for
the users to participate in. The users are called CL1, CL2 and CL3, which
they use as their nicknames when joining conferences. Users can send only
one message, M1, to their conferences.

For simplicity it is specified that messages sent to conferences are never
lost. That is, everyone present in the conference, except for the sender itself,

13

Kervinen and Virolainen

10

100

1000

10000

adaptive (3) pessimistic (3) pessimistic (2) adaptive (2) greedy random P-H SSeval (6) random SSeval (5)

min
median

mean
max

Fig. 2. The number of test steps before error was detected in the two client system

receives the sent messages. Therefore, sending messages is limited so that we
can be sure whether or not each user should receive them. For example, when
a user starts joining a conference, nobody can send messages to the conference
before the user has received his prompt. Otherwise, we would not know if the
user should receive the messages sent during the joining or not.

The systems of two and three clients were modelled with TVT (Tampere
Verification Tool) [8]. The specifications are deterministic LTSs without τ
transitions. The model with two clients 3 has 671 states, 24 visible actions
and 1784 transitions. The other model 4 with three clients has 191995 states,
45 visible actions and 853218 transitions.

5.3 Results

We used nine different mutants of the client processes in the test setups. Every
mutant was tested 32 times with each nondeterministic and once with each
deterministic heuristic algorithm. The mutants are identified by the numbers
explained in [5]. The mutants used in the results are 14, 17, 19, 21, 22, 24, 27,
28 and 60. Without going into the details of the mutated behaviours, their
errors ranged from inability to receive certain PDUs to errors in updating
internal data structures and errors in sending. The mutants were chosen
so that they produce erroneous service. Some other mutants satisfied the
specification.

The heuristic algorithms were compared by measuring the number of steps
required to detect an error in the mutated systems. The results are presented
in Figures 2 and 3. The algorithms are sorted by the median number of steps.
Also the minimum, the maximum and the average number of steps are shown.

3 http://www.cs.tut.fi/˜ask/MBT04/CL2 CF2 MSG1.lsts.gz
4 http://www.cs.tut.fi/˜ask/MBT04/CL3 CF2 MSG1.lsts.gz

14

http://www.cs.tut.fi/~ask/MBT04/CL2_CF2_MSG1.lsts.gz
http://www.cs.tut.fi/~ask/MBT04/CL3_CF2_MSG1.lsts.gz

Kervinen and Virolainen

10

100

1000

10000

pessimistic (3) adaptive (3) greedy random pessimistic (2) adaptive (2) random P-H

min
median

mean
max

Fig. 3. The number of test steps before error was detected in the three client system

The test runs do not give means to estimate the differences of the state
evaluation functions: the adaptive and the pessimistic players perform roughly
equally well with the same step evaluation functions. We believe the reason
was that the errors were detected too quickly. The adaptation to the SUT’s
behaviour in the states did not really take place.

Algorithms with step evaluation functions that included the coverage of
action names (010) performed better than algorithms with simpler functions.
Player algorithms with the function (3) were always better than with the
function (2). The performance of the state space evaluation algorithm was also
enhanced when its step evaluation function was switched from (5) to (6). But
even with the enhancement, the state space evaluation algorithm performed
poorly.

With the LTS of 671 states the state space evaluation algorithm runs faster
than the player algorithms. With the LTS of 191995 states the implementation
of the state space evaluation algorithm was too slow to be used. The algorithm
was optimised so that only the states that are directly affected by the execution
of a test step are recalculated, that is, put into the Calc set in the beginning of
Algorithm 2. With step evaluation function (5) the only state that is added to
Calc is the source state of the executed transition. With evaluation function
(6) all the source states of transitions labelled by the executed action are
inserted into Calc.

The effects of the determinism of the player algorithms can be seen in the
figures. The gap between the minimal and the maximal values is relatively
small and the median is very close to the other end (which happened to be the
minimum in the test runs). The results would probably change if the players
chose randomly the input action to be sent among equally good ones.

The greedy random algorithm worked surprisingly well. Even if it monitors
only the transition coverage and does not calculate future steps, it worked

15

Kervinen and Virolainen

better than the players with equally simple step evaluation function in the
three client system. Probably nondeterminism would have helped the players
in this case.

The greedy random outperformed the Pyhälä-Heljanko algorithm in both
test runs. This may be due to the greedy random’s eagerness to listen to
the output whenever it is guaranteed to increase the coverage. Furthermore,
when there is no such guarantee, the greedy randomly prefers sending inputs
which are ensured to increase the coverage to listening to the outputs which
does not necessary affect the coverage. Again, there was a clear gap between
Pyhälä-Heljanko and pure random walk in the test setups with two clients, as
it was also in [14].

6 Conclusions

We have presented how automatic guidance of testing can be based on covering
the specification of the SUT.

The main test guidance algorithms presented in this paper include sep-
arate step and state evaluation parts. Heuristics like “prefer the untested
input/output to the tested ones”, “visit the unvisited states of the specifica-
tion”, “execute the unexecuted transitions” and “avoid executing the same
transition too many times” can be implemented in the step evaluation part.
The heuristics which predict the responses of the SUT belong to the state
evaluation part.

In some cases, a finer step evaluation function could be useful in the heuris-
tics. In [6] a distance between actions is proposed. The problem is that, given
that action datareq!CL1!CF1!M1 (client CL1 sends message M1 to conference
CF1) is executed, unseen actions datareq!CL1!CF1!M2 and leave!CL1!CF1

(client 1 leaves conference 1) are considered equally interesting. Yet in this
case it could be more interesting to leave the conference for the first time than
send another message. Distances between actions would help estimating “How
new an action is this?” If very similar actions have been already executed,
then some other action (with greater distance) would be preferred.

In our test runs the distances between actions would not probably have
much effect. There were only 24 or 45 actions. For example, clients can send
only one kind of messages to conferences. Therefore executing new actions was
equally interesting no matter what actions had been executed before. This
may be often the case when the specification is written specifically for testing
purposes. The situation is different if more data is bound in actions: a user
could send, say, three messages instead of one and join five conferences instead
of the two.

The test runs showed that when the errors are simple, the evaluation func-
tion that measures action name coverage in addition to the transition coverage
detects errors faster.

16

Kervinen and Virolainen

Acknowledgements

Thanks for Jaco Geldenhuys and Antti Valmari for their valuable comments.
This work is part of the SASOKE project funded by TEKES, Conformiq
Software Oy Ltd and Nokia Research Center.

References

[1] Belinfante, A., Feenstra, J., de Vries, R. G., Tretmans, J., Goga, N.,
Feijs, L., Mauw, S. & Heerink, L.: “Formal Test Automation: A Simple
Experiment”. International Workshop on Testing of Communication Systems,
Kluwer Academic, 1999, pp. 179–196.

[2] Chow, T. S.: “Testing Software Design Modeled by Finite-state Machines”.
IEEE Transactions on Software Engineering, SE-4(3), 1978, pp. 178–187.

[3] Fujivara, S.,v. Bochmann, G., Khendek, F., Amalou, M. & Ghedamsi, A.:
“Test Selection Based on Finite State Models”. IEEE Transaction on Software
Engineering, Vol. 17(6), 1991, pp. 591–603.

[4] Conference Protocol Case Study, http://fmt.cs.utwente.nl/ConfCase/. Last
updated by Jan Feenstra on 1999-11-19.

[5] Conference protocol implementation source code, http://fmt.cs.utwente.nl/
ConfCase/v1.00/implementations/confprotv3c2.tgz. Files in the package are
dated 25–28 Feb 2002.

[6] Feijs, L. M. G., Goga, N., Mauw, S. & Tretmans, J.: “Test Selection, Trace
Distance and Heuristics”. Proc. TestCom 2002, 14th International Conference
on Testing of Communicating Systems, Kluwer Academic Publishers 2002,
pp. 267–282.

[7] de Vries, R.G. & Tretmans, J.: “On-the-fly conformance testing using SPIN”.
International Journal on Software Tools for Technology Transfer, 2(4): pp. 382–
393, 2000.

[8] Hansen, H., Virtanen, H. & Valmari, A.: “Merging State-Based and Action-
Based Verification”. Proc. ACSD 2003, 3rd International Conference on
Application of Concurrency to System Design, IEEE Computer Society 2003,
pp. 150–156.

[9] Helovuo, J. & Leppänen, S.: “Exploration Testing”. Proc. ICACSD 2001,
2nd IEEE International Conference on Application of Concurrency to System
Design, IEEE Computer Society 2001, pp. 201–210.

[10] Lee, D., Sabnani, K. K., Kristol, D. M. & Paul, S.: “Conformance Testing
of Protocols Specified as Communicating Finite State Machines—A Guided
Random Walk Based Approach”. IEEE Transactions on Communications, Vol.
44(5), 1996, pp. 631–640.

17

Kervinen and Virolainen

[11] Luo, G., v. Bochmann, G.: “Test Selection Based on Communicating
Nondeterministic Finite-State Machines Using a Generalized Wp-Method”.
IEEE Transactions on Software Engineering, Vol. 20(2), 1994, pp. 149–161.

[12] Myers, G. J.: The Art of Software Testing. John Wiley & Sons, Inc, 1979.

[13] Naito, S. & Tsunoyama, M.: “Fault Detection for Sequential Machines by
Transition Tour”. Proc. FTCS, Fault Tolerant Computer Systems, 1981,
pp. 238–243.

[14] Pyhälä, T. & Heljanko, K.: “Specification Coverage Aided Test Selection”. Proc.
ACSD’2003, Third International Conference on Application of Concurrency to
System Design, IEEE 2003, pp. 187–195.

[15] Sabnani, K. K. & Dahbura, A.: “A Protocol Test Generation Procedure”.
Computer Networks and ISDN Systems, Vol. 15, 1988, pp. 285–297.

[16] Tretmans, J.: “Test Generation with Inputs, Outputs and Repetitive
Quiescence”. Software—Concepts and Tools, Vol. 17(3), Springer-Verlag 1996,
pp. 103–120.

[17] Valmari, A.: “Composition and Abstraction”. Modelling and Verification of
Parallel Processes, Lecture Notes in Computer Science 2067, Springer-Verlag
2001, pp. 58–99.

18

	Introduction
	Background
	Test engine
	Heuristics
	Random
	Greedy random
	Pessimistic player
	Adaptive player
	State space evaluation
	Pyhälä-Heljanko

	Experiments
	Implementation
	Specification
	Results

	Conclusions
	References

