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Abstract
This paper proposes a method for the automatic transcrip-

tion of singing melodies in polyphonic music. The method

is based on multiple-F0 estimation followed by acoustic and

musicological modeling. The acoustic model consists of

separate models for singing notes and for no-melody seg-

ments. The musicological model uses key estimation and

note bigrams to determine the transition probabilities be-

tween notes. Viterbi decoding produces a sequence of notes

and rests as a transcription of the singing melody. The per-

formance of the method is evaluated using the RWC popular

music database for which the recall rate was 63% and pre-

cision rate 46%. A significant improvement was achieved

compared to a baseline method from MIREX05 evaluations.

Keywords: singing transcription, acoustic modeling, musi-

cological modeling, key estimation, HMM

1. Introduction

Singing melody transcription refers to the automatic extrac-

tion of a parametric representation (e.g., a MIDI file) of the

singing performance within a polyphonic music excerpt. A

melody is an organized sequence of consecutive notes and

rests, where a note has a single pitch (a note name), a begin-

ning (onset) time, and an ending (offset) time. Automatic

transcription of singing melodies provides an important tool

for MIR applications, since a compact MIDI file of a singing

melody can be efficiently used to identify the song.

Recently, melody transcription has become an active re-

search topic. The conventional approach is to estimate the

fundamental frequency (F0) trajectory of the melody within

polyphonic music, such as in [1], [2], [3], [4]. Another class

of transcribers produce discrete notes as a representation of

the melody [5], [6]. The proposed method belongs to the

latter category.

The proposed method resembles our polyphonic music

transcription method [7] but here it has been tailored for

singing melody transcription and includes improvements,

such as an acoustic model for rest segments in singing. As

a baseline in our simulations, we use an early version of
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Figure 1. The block diagram of the transcription method.

the proposed method which was evaluated second best in

the Music Information Retrieval Evaluation eXchange 2005

(MIREX05) 1 audio-melody extraction contest. Ten state-

of-the-art melody transcription methods were evaluated in

this contest where the goal was to estimate the F0 trajectory

of the melody within polyphonic music. Our related work

includes monophonic singing transcription [8].

Figure 1 shows a block diagram of the proposed method.

First, an audio signal is frame-wise processed with two fea-

ture extractors, including a multiple-F0 estimator and an ac-

cent estimator. The acoustic modeling uses these features

to derive a hidden Markov model (HMM) for note events

and a Gaussian mixture model (GMM) for singing rest seg-

ments. The musicological model uses the F0s to determine

the note range of the melody, to estimate the musical key,

and to choose between-note transition probabilities. A stan-

dard Viterbi decoding finds the optimal path through the

models, thus producing the transcribed sequence of notes

and rests. The decoding simultaneously resolves the note

onsets, the note offsets, and the note pitch labels.

For training and testing our transcription system, we use

the RWC (Real World Computing) Popular Music Database

which consists of 100 acoustic recordings of typical pop

songs [9]. For each recording, the database includes a ref-

erence MIDI file which contains a manual annotation of the

singing-melody notes. The annotated melody notes are here

referred to as the reference notes. Since there exist slight

1 The evaluation results and extended abstracts are available at

www.music-ir.org/evaluation/mirex-results/audio-melody



time deviations between the recordings and the reference

notes, all the notes within one reference file are collectively

time-scaled to synchronize them with the acoustic signal.

The synchronization could be performed reliably for 96 of

the songs and the first 60 seconds of each song are used. On

the average, each song excerpt contains approximately 84

reference melody notes.

2. Feature Extraction

The front-end of the method consists of two frame-wise fea-

ture extractors: a multiple-F0 estimator and an accent esti-

mator. The input for the extractors is a monophonic audio

signal. For stereophonic input audio, the two channels are

summed together and divided by two, prior to the feature

extraction.

2.1. Multiple-F0 Estimation

We use the multiple-F0 estimator proposed in [10] in a fash-

ion similar to [7]. The estimator applies an auditory model

where an input signal is passed through a 70-channel band-

pass filterbank and the subband signals are compressed, half-

wave rectified, and lowpass filtered. STFTs are computed

within the bands and the magnitude spectra are summed

across channels to obtain a summary spectrum for subse-

quent processing. Periodicity analysis is then carried out by

simulating a bank of comb filters in the frequency domain.

F0s are estimated one at a time, the found sounds are can-

celed from the mixture, and the estimation is repeated for

the residual.

We use the estimator to analyze audio signal in overlap-

ping 92.9 ms frames with 23.2 ms interval between the be-

ginnings of successive frames. As an output, the estima-

tor produces four feature matrices X , S, Y , and D of size

6 × tmax (tmax is the number of analysis frames):

• F0 estimates in matrix X and their salience values in

matrix S. For a F0 estimate xit = [X]it, the salience

value sit = [S]it roughly expresses how prominent

xit is in the analysis frame t.

• Onsetting F0 estimates in matrix Y and their onset

strengths in matrix D. If a sound with F0 estimate

yit = [Y ]it sets on in frame t, the onset strength value

dit = [D]it is high.

The F0 values in both X and Y are expressed as unrounded

MIDI note numbers by 69+12 log
2
(F0/440). Logarithm is

taken from the elements of S and D to compress their dy-

namic range, and the values in these matrices are normalized

over all elements to zero mean and unit variance.

2.2. Accent Signal for Note Onsets

The accent signal at indicates the degree of phenomenal ac-

cent in frame t, and it is here used to indicate the poten-

tial note onsets. There was room for improvement in the

note-onset transcription of [7], and the task is even more
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Figure 2. The features extracted from a segment of song RWC-

MDB-P-2001 No. 14. See text for details.

challenging for singing voice. Therefore, we add the accent

signal feature which has been successfully used in singing

transcription [8]. The accent estimation method proposed

in [11] is used to produce accent signals at four frequency

channels. The bandwise accent signals are then summed

across the channels to obtain the accent signal at which is

decimated by factor 4 to match the frame rate of the multiple-

F0 estimator. Again, logarithm is applied to the accent sig-

nal and the signal is normalized to zero mean and unit vari-

ance.

Figure 2 shows an example of the features compared to

reference notes. Panels a) and b) show the F0 estimates xit

and the onsetting F0s yit with the reference notes, respec-

tively. The gray level indicates the salience values sit in

panel a) and the onset strengths dit in panel b). Panel c)

shows the accent signal at and the note onsets in the refer-

ence melody.

3. Acoustic and Musicological Modeling

Our method uses two different abstraction levels to model

singing melodies: low-level acoustic modeling and high-

level musicological modeling. The acoustic modeling aims

at capturing the acoustic content of singing whereas the mu-

sicological model employs information about typical me-

lodic intervals. This approach is analogous to speech recog-

nition systems where the acoustic model corresponds to a

word model and the musicological model to a “language

model”, for example.



3.1. Note Event Model

Note events are modeled with a 3-state left-to-right HMM.

The note HMM state qi, 1 ≤ i ≤ 3, represents the typical

values of the features in the i:th temporal segment of note

events. The model allocates one note HMM for each MIDI

note in the estimated note range (explained in Section 3.3).

Given the extracted features X , S, Y , D, and at, the ob-

servation vector on,t ∈ R
5 is defined for a note HMM with

nominal pitch n in frame t as

on,t = (∆xn,t, sjt, ∆yn,t, dkt, at) , (1)

where

∆xn,t = xjt − n , (2)

∆yn,t = ykt − n . (3)

Index j is obtained using

m = arg max
i

{sit} , (4)

j =

{

m , if |xmt − n| ≤ 1
arg mini {|xit − n|} , otherwise.

(5)

Index k is chosen similarly to (4)–(5) by substituting k, yit,

and dit in place of j, xit, and sit, respectively.

An observation vector thus consists of five features: (i)

the F0 difference ∆xn,t between the measured F0 and the

nominal pitch n of the modeled note and (ii) its correspond-

ing salience value sjt; (iii) the onsetting F0 difference ∆yn,t

and (iv) its strength dkt; and (v) the accent signal value at.

For a note model n, the maximum-salience F0 estimate and

its salience value are associated with the note if the absolute

F0 difference is less or equal to one semitone (see (4)–(5)),

otherwise the nearest F0 estimate is used. A similar selec-

tion is performed to choose index k for the onsetting F0s.

We use the F0 difference as a feature instead of the abso-

lute F0 value so that only one set of note-HMM parameters

needs to be trained. In other words, we have a distinct note

HMM for each nominal pitch n but they all share the same

trained parameters. This can be done since the observation

vector (1) is tailored to be different for each note model n.

Since the F0 difference varies a lot for singing voice, we

use the maximum-salience F0 in contrast to the nearest F0

used in [7]. For the same reason, the onset strength values

are slightly increased during singing notes, and therefore,

we decided to use the onsetting F0s and their strengths sim-

ilarly to normal F0 measurements.

The note model is trained as follows. For the time region

of a reference note with nominal pitch n, the observation

vectors (1) constitute a training sequence. Since for some

reference notes there are no reliable F0 measurements avail-

able, the observation sequence is accepted for the training

only if the median of the absolute F0 differences |∆xn,t|
during the note is less than one semitone. The note HMM

parameters are then obtained using the Baum-Welch algo-

rithm. The observation likelihood distributions are modeled

with a four-component GMM.

3.2. Rest Model

We use a GMM for modeling the time segments where no

singing-melody notes are sounding, that is, rests. Rests are

clearly defined for monophonic singing melodies, and there-

fore, we can now train an acoustic rest model instead of us-

ing artificial rest-state probabilities derived from note-model

probabilities as in [7]. The observation vector or,t for rest

consists of the maximum salience and onset strength in each

frame t, i.e.,

or,t = (max
i

{sit}, max
j

{djt}) . (6)

The model itself is a four-component GMM (analogous to a

1-state HMM) trained on the frames of the no-melody seg-

ments. The logarithmic observation likelihoods of the rest

model are scaled to the same dynamic range with those of

the note model by multiplying with an experimentally-found

constant.

3.3. Note Range Estimation

The note range estimation aims at constraining the possible

pitch range of the transcribed notes. Since singing melodies

usually lie within narrow note ranges, the selection makes

the system more robust against spurious too-high notes and

the interference of prominent bass line notes. This also re-

duces the computational load due to the smaller amount of

note models that need to be evaluated. If the note range esti-

mation is disabled, we use a note range from MIDI note 44

to 84.

The proposed procedure takes the maximum-salience F0

estimate in each frame. If an estimate is on MIDI note

range 50–74 and its salience value is above a threshold 1.0,

the estimate is considered as valid. Then we calculate the

salience-weighted mean of the valid F0s to obtain the note-

range mean, i.e., nmean = 〈(
∑

i xisi)/(
∑

i si)〉, where op-

erator 〈·〉 is the nearest integer function, xi is a valid F0

estimate, and si its salience. The note range is then set to

be nmean ± 12, i.e., a two octave range centered around the

mean.

In 95% of the songs, all reference notes are covered by

the estimated ranges, and even in the worst case over 80%

of notes are covered. Averaged over all songs, the estimated

note ranges cover over 99.5% of the reference notes.

3.4. Key Estimation and Note Bigrams

The musicological model controls transitions between the

note models and the rest model in a manner similar to that

used in [7]. The musicological model is based on the fact

that some note sequences are more common than others in a

certain musical key. A musical key is roughly defined by the

basic note scale used in a song. A major key and a minor key
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Figure 3. Musicological transition probabilities over one octave

for the relative-key pair C major / A minor.

are called a relative-key pair if they consist of scales with the

same notes (e.g., the C major and the A minor).

The musicological model first finds the most probable

relative-key pair using a musical key estimation method [8].

The method produces likelihoods for different major and

minor keys from those F0 estimates xit (rounded to the near-

est MIDI note numbers) for which salience value is larger

than a fixed threshold (here we use zero). The most prob-

able relative-key pair is estimated for the whole recording

and this key pair is then used to choose transition probabil-

ities between note models and the rest model. The current

method assumes that the key is not changed during the mu-

sic excerpt. In general, this is an unrealistic assumption,

however, acceptable for short excerpts of popular music.

Time-adaptive key estimation is left for future work.

The transition probabilities between note HMMs are de-

fined by note bigrams which were estimated from a large

database of monophonic melodies, as reported in [12]. As a

result, given the previous note and the most probable relative-

key pair r, the note bigram probability P (nt = j|nt−1 =
i, r) gives a transition probability to move from note i to

note j.

The musicological model assumes that it is more prob-

able both to start and to end a note sequence with a note

which is frequently occurring in the musical key. A rest-
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Figure 4. The network of note models and the rest model.

to-note transition corresponds to starting a note sequence

and a note-to-rest transition corresponds to ending a note

sequence. Krumhansl reported the occurrence probabilities

of different notes with respect to the musical key, estimated

from a large amount of classical music [13, p. 67]. The

musicological model applies these distributions as proba-

bilities for the note-to-rest and the rest-to-note transitions

so that the most probable relative-key pair is taken into ac-

count. Figure 3 shows the musicological transition proba-

bilities for between-note, note-to-rest, and rest-to-note tran-

sitions in the relative-key pair C major / A minor. If the

musicological model is disabled, uniform distributions over

all transitions are used.

3.5. Finding the Optimal Path and Post-processing

The note event models and the rest model form a network of

models where the note and rest transitions are controlled by

the musicological model. This is illustrated in Figure 4. We

use the Viterbi algorithm to find the optimal path through

the network to produce a sequence of notes and rests, i.e.,

the transcribed melody. Notice that this simultaneously pro-

duces the note pitch labels, the note onsets, and the note

offsets. A note sets on when the optimal path enters the

first state of a model and sets off when the path exits the

last state. The note pitch label is determined by the MIDI

note number of the note model. Figure 5 shows an example

transcription after finding the path.

As an optional post-processing step, we may use a simple

rule-based glissando correction. The term glissando refers

to a fundamental-frequency slide to the nominal note pitch.

Glissando is usually employed at the beginning of long notes

which often begin flat (too low) and the fundamental fre-

quency is matched to the note pitch during the first 200 ms

of a note [14, p. 203].

If a transcribed note shorter than 180 ms is immediately

followed by a longer note with +1 or +2 interval between

the notes, these two notes are merged as one which starts at
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Table 1. Simulation results summary (%).

Method R P F M

MIREX05 method (baseline) 56 28 37 51

Acoustic models (notes, rest) 60 42 48 54

+ Note-range estimation 61 43 49 54

+ Key estimation and note bigrams 63 45 51 53

+ Glissando correction 63 48 53 54

the first note onset, and has the MIDI note number and the

offset of the latter note.

4. Simulation Results

The melody transcription method was evaluated using three-

fold cross-validation on the 96 songs in RWC popular mu-

sic database. We used the performance criteria proposed

in [7], including the recall rate (R), the precision rate (P ),

and mean overlap ratio (M ). The recall rate denotes how

many of the reference notes were correctly transcribed and

the precision rate how many of the transcribed notes are cor-

rect. A reference note is correctly transcribed by a note in

the transcription if their MIDI note numbers are equal, the

absolute difference between their onset times is less than

150 ms, and the transcribed note is not already associated

with another reference note. The mean overlap ratio mea-

sures the average temporal overlap between transcribed and

reference notes. In addition, we report the f-measure F =
2RP/(R + P ) to give an overall measure of performance.

The recall rate, the precision rate, the f-measure, and the

mean overlap ratio are calculated separately for the tran-

scriptions of each recording, and the average over all the

transcriptions for each criterion are reported.

4.1. Transcription Results

Table 1 summarizes the melody transcription results for dif-

ferent simulation setups. As a baseline method, we use our

Table 2. Results with perfect note range, perfect key, and worst

case key (%).

Method R P F M

Perfect note range estimation 64 47 53 53

Perfect key estimation 63 45 51 53

Worst-case key estimation 37 29 32 57

melody-transcription method in the MIREX05 evaluations.

The baseline method is a slight modification of the poly-

phonic music transcription method proposed in [7], and it

uses multiple-F0 estimation (two F0s per frame), note event

modeling, and note bigrams with key estimation.

The proposed transcription method reached recall rate

63%, precision rate 48%, f-measure 53%, and mean over-

lap ratio 54% when for the baseline method the correspond-

ing results were 56%, 28%, 37%, and 51%. The rest model

significantly improves the precision compared to the base-

line method. By adding note-range estimation, the recall

and precision rates are slightly increased. Using key esti-

mation with note bigrams further improves both recall and

precision rates. Finally, using simple post-processing to cor-

rect glissandi, precision rate is increased, since it reduces the

number of incorrectly transcribed notes. The balance of re-

call and precision rates can be adjusted with the weighting

of the rest model.

We studied the influence of imperfections in the note

range estimation and in the key estimation to the overall

performance of the method. The results are summarized

in Table 2. We used the method with all the other com-

ponents but the post processing (the results on the second

last line in Table 1). By using this method but setting the

note range limits according to the minimum and maximum

of the reference notes, the recall and precision rates increase

by one and two percentage units, respectively. However,

no improvement is obtained from using manually annotated

key signatures instead of the estimated keys (see key esti-

mation results in Sec. 4.2). This suggests that small errors

in key-estimation are not crucial to the overall performance.

We also simulated the worst-case scenario of key estimation

by converting every reference key into a worst-case key by

shifting its tonic by a tritone (e.g., C major key is shifted

to F♯ major). This dropped the recall and precision rates

to 37% and 29%, respectively, thus indicating that the key

estimation plays a major role in the method.

The perceived quality of the transcriptions is rather good.

Due to the expressive nature of singing, the transcriptions

include additional notes resulting from glissandi and vibrato.

The additional notes sound rather natural although they are

erroneous according to the evaluation criteria. Demonstra-

tions of the singing melody transcriptions done with the pro-

posed method are available at http://www.cs.tut.fi/sgn/

arg/matti/demos/melofrompoly.



Table 3. Key estimation results.

Distance on the

circle of fifths

0 1 2 3 ≥ 3

% of songs 76.6 12.8 4.26 4.26 2.13

4.2. Key Estimation Results

We also evaluated the performance of the key estimation

method. We manually annotated key signatures for 94 songs

of the dataset (for two songs, the key was considered too am-

biguous). As an evaluation criterion, we use the key signa-

ture distance on the circle of fifths between the reference key

and the estimated relative-key pair. This distance is equal to

the absolute difference in the number of accidentals (sharps

♯ and flats ♭). For example, if the reference key is A ma-

jor and the key estimator correctly produces a relative-key

pair A major / F♯ minor, the distance is zero (three sharps

for both keys). If the reference key is E minor (one sharp)

and the estimated relative-key pair is F major / D minor (one

flat), the distance is two.

Table 3 shows the evaluation results for the key estima-

tion method by using the introduced distance. The method

correctly estimates the relative-key pair (distance zero) for

over 76% of the songs. For approximately 90% of the songs,

the key estimation method produces correct or a perfect fifth

key (i.e., distance one).

5. Conclusions and Future Work

This paper described a method for the automatic transcrip-

tion of singing melodies in polyphonic music. The method

was evaluated with realistic popular music and showed a sig-

nificant improvement in transcription accuracy compared to

our previous method. This was mainly due to the acoustic

modeling of no-melody (i.e., rest) segments.

There is still room for improvement. One possible ap-

proach to enhance the transcription accuracy would be to

elaborate timbre information to discriminate singing notes

from notes played with other instruments. We did some pre-

liminary tests to include sound source separation in our tran-

scription system. Briefly, we first generated a large set of

note candidates by iteratively decoding several possible note

paths. The note candidates covered approximately 80% of

the reference notes. We then run a sound-source separation

algorithm on these notes, calculate MFCCs on the separated

notes, model the MFCCs of the correctly transcribed candi-

dates with a GMM to derive a timbre model, and then run the

Viterbi decoding again with the timbre model. Yet this ap-

proach did not perform any better than the proposed system

in the preliminary simulations. However, we believe that us-

ing timbre in singing melody transcription from polyphonic

music is worth further study and has the potential of improv-

ing the results in instrument specific transcription tasks.
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