
M. Balda LMFnlsq2– Nonlinear least squares 2013-04-15

Let us have a measured values (column vector) y dependent on operational variables
x. We try to make a regression of y(x) by some function f(x, c), where c is a vector of
unknown parameters of the model. The difference

f(x, c) − y(x) = r(x, c) (1)

is a column vector of so called residuals r(x,c), which should be zero vector, provided our
model f(x,c) is physically perfect and y(x) is also without any measurement deviations.

The method of least squares of residuals searches such vector c, for which sum of
squares S = rT r becomes minimum. It follows from the condition of minimum that

∂S(c)/∂c = 2JTr = 2v, (2)

where ∂ is a symbol for partial differential, J is a matrix of partial derivatives of S due
to c, so called Jacobi’s matrix (Jacobian matrix), and r is a vector of residuals.

It is clear that v, r and J are functions of unknown parameters c. In general case,
c may not be obtained in closed form, it is necessary to solve it in iterations. Let c in
(k+1)st step of iteration has the simplest form

c(k+1) = c(k) + ∆c(k). (3)

It is possible to assume that the vector of residuals in (k+1)st iteration, provided r is
continuous in c, will have the form given by Taylor’s expansion

r(k+1) = r(k) + ∂r(k)/∂c(k) ∆c(k) + ... (4)

After multiplication of the equation by a matrix J (k)T from left, we get the following
equation:

J (k)T r(k+1) = J (k)T r(k) + J (k)T J (k) ∆c(k), (5)

which after introducing

A(k) = J (k)T J (k) (6)

takes the form
A(k) ∆c(k) − J (k)T r(k+1) = −v(k). (7)

This equation (7) is the starting point for a series of methods:

Newton-Raphson:

It assumes that norms or residual vectors are dropping so fast, that the second term
in eqn. (7) may be neglected. Hence,

A(k) ∆c(k) = −v(k) (8)

may be used to obtain ∆c(k) and then

c(k+1) = c(k) + ∆c(k). (9)

There are some modifications of the method, say that only a∆c(k) is added, where a <= 1.

Levenberg-Marquardt:

There is an artificial assumption, that the second term in the equation (7) could be
approximated by

λ(k) D ∆c(k), (10)

where D is a suitable diagonal matrix of scales. It is often chosen as a unity matrix I or
a diagonal of the matrix Ao. The equation (7) is then transformed into

A(k) ∆c(k) + λ(k) D ∆c(k) = −v(k). (11)

The idea belongs to Levenberg. The strategy of modification improved Marquardt and
later Fletcher made the superfinish of it.

The equation (11) may be converted into the form

(A(k) + λ(k) D) ∆c(k) = −v(k). (12)

If D = diag(A(k)), the diagonal of the system matrix, is strongly influenced by a scale
parameter λ. The higher it is, the closer the result is to the stable solution of steepest
descent. For λ = 0, the method approaches the method of Newton- Raphson, which is
less stable and may diverge.

The strategy is based on a comparison of a forecast of the solution for the next
iteration. If the forecast is close to the reality, the lambda may be lowered. If it is bad, λ
should become higher in order to stabilize the process. And it is the role of some heuristic
choice of authors in multipliers 2 or 10. They could be other.

The Levenberg-Marquardt method in Fletcher’s modification [1] for solution of non-
linear least squares problems has been implemented in MATLAB in a simplified version
under the name LMFsolve some time ago (see [2]), and is widely used by the MATLAB
community. The convergence and stability of the function has been strongly influenced
both by the simplification of the code and a bug in application of analytical form of ja-
cobian matrix. This has been a reason why a new version of the function LMFnlsq2 has
been built. It is almost unchanged transcription of the original Fletcher’s FORTRAN
code into MATLAB structures, but the initial part containing option settings, finite dif-
ference evaluation of jacobian matrix and printout module. The new function is stable
and efficient.

Unconstrained optimization

A script named LMFnlsq2test is provided for testing LMFnlsq2. It covers both
unconstrained and constrained minimization problem of Rosenbrock’s function

f(x) = 100 (x2 − x21)
2 + (1 − x1)

2 (13)

as a sum of squares of residuals, f(x) = f 2
1 (x) + f 2

2 (x), where f1(x) = 10 (x2 − x21) and
f2(x) = 1−x1. The results of this case of solution are shown in the graphical form in the
left picture of figure 1.

Constrained optimization

An additional condition should be stated in case of a constrained problem. If the
feasible domain were circular with its center at the origin of coordinates and a diameter
r, the condition could be formulated as

x21 + x22 <= r2 . (14)

2

This condition creates a new third equation f3(x) = g(d), where g(d) is a penalty
function of d as an outer distance of x from the border of the circle with radius r. The
function f3(x) = 0 inside the circle, and steep increasing outside. The trace of the solution
for r = 0.5 is in the middle picture of the figure 1.

Nonlinear regression

The function LMFnlsq2 may also be used for a fit of nonlinear functions. The third
example in the script LMFnlsq2test shows how to solve a regression problem of measured

Fig. 1. results of application of the function LMFnlsq2

data suffering from a random measurement noise. The solution is presented on the right-
hand side of the figure 1.

Script for all three tasks

% LMFnlsq2test.m Rosenbrock’s valleys and a curve fitting
%%%
% The script solves a testing problem of the Rosenbrock’s function by
% minimization of a sum of squares of residuals and a curve fitting.
% It has been prepared in Matlab v. 2006b.
% Requirements: FEX ID:
% inp function for keyboard input with default value 9033
% fig function for coded figure window placement 9035
% separator for separating displayed results 11725
% LMFnlsq2 function for nonlinear least squares 16063
% Example:
% A user may run the script multiply changing only few parameters:
% iprint as a step in displaying intermediate results,
% ScaleD diagonal scale matrix, and
% Trace a control variable for storing intermediate data.

% Miroslav Balda
% miroslav AT balda DOT cz
% 2008-08-18 v 1.1 Modified for analytical gradient
% 2009-01-06 v 1.2 updated for modified function LMFnlsq2

clear all
close all

Id = ’’;
if ~exist(’inp.m’,’file’), Id = [Id ’inp (Id=9033) ’]; end
if ~exist(’fig.m’,’file’), Id = [Id ’fig (Id=9035) ’]; end
if ~exist(’separator.m’,’file’), Id = [Id ’separator (Id=11725)’]; end
if ~exist(’LMFnlsq2.m’,’file’), Id = [Id ’LMFnlsq2 (Id=16063)’]; end
if ~isempty(Id)

error([’Download function(s) ’ Id ’from File Exchange’])
end

3

separator([mfilename,’ ’,date],’#’,38)
separator(’Rosenbrock without constrains’,’ ’);

ipr= eval(inp(’iprint ’,’5’)); % step in printing of iterations
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% Control variable (step in iterations) for display intermediate results

sd = eval(inp(’ScaleD ’,’[]’)); % D = diag(J’*J)
xy = eval(inp(’Trace ’,’1’)); % save intermediate results
disp(’ ’);

fig(8);
x0 = [-1.2, 1]; % Usual starting point for Rosenbrock valey
for k = 1:2 % Cycle for analytical | finite differences gradient

t = clock;
if k==1 % EXAMPLE 1: Rosenbrock without constrains

r = 0;
gr = ’AG_ ’; % Analytical gradient
ros = @(x) [10*(x(2)-x(1)^2)

1-x(1)];
jac = @(x) [-20*x(1), 10

-1, 0];
disp(’Analytical gradient’)
[xf,ssq,cnt,loops,XY] = LMFnlsq2 ...% With analytical Jacobian matrix

(ros,x0,’Display’,ipr, ’ScaleD’,sd, ’Trace’,xy,’Jacobian’,jac);
else % EXAMPLE 2: Rosenbrock with constraint

separator(’Rosenbrock with constrains’,’ ’)
gr = ’FDG_ ’; % Finite difference approx. of gradient
r = 0.5;
w = 1000;
d = @(x) x’*x-r^2; % delta of squares of position and radius
ros = @(x) [10*(x(2)-x(1)^2)

1-x(1)
(r>0)*(d(x)>0)*d(x)*w

];
disp(’Gradient from finite differences’)
[xf,ssq,cnt,loops,XY] = LMFnlsq2 ...% With finite difference Jacobian mx

(ros,x0,’Display’,ipr, ’ScaleD’,sd, ’Trace’,xy);
end
R = sqrt(xf’*xf);
fprintf(’\n Distance from the origin R =%9.6f, R^2 = %9.6f\n’, R, R^2);
separator([’t = ’,num2str(etime(clock,t)),’ sec’],’*’)

if xy % Saved sequence [x(1), x(2)]
subplot(1,3,k)
plot(-2,-2,2,2)
axis square
hold on
fi=(0:pi/18:2*pi)’;
plot(cos(fi)*r,sin(fi)*r,’r’) % circle
grid
fill(cos(fi)*r,sin(fi)*r,’y’) % circle = fesible domain
x=-2:.1:2;
y=-2:.1:2;
[X,Y]=meshgrid(x,y);
Z=100*(Y-X.^2).^2 - (1-X).^2; % Rosenbrock’s function
contour(X,Y,Z,30)
plot(x0(1),x0(2),’ok’) % starting point
plot(xf(1),xf(2),’or’) % terminal point
plot([x0(1),XY(1,:)],[x0(2),XY(2,:)],’-k.’) % iteration path
if r>0

tit = ’Constrained’;
else

tit = ’’;
end

4

title([tit,’ Rosenbrock valley - ’ gr],...
’FontSize’,14,’FontWeight’,’demi’)

xlabel(’x_1’,’FontSize’,12,’FontWeight’,’demi’)
ylabel(’x_2’,’FontSize’,12,’FontWeight’,’demi’)

end
end

% EXAMPLE 3: Curve fit of decaying exponential
iprint = -1; % without displaying lambda
separator(’Exponential fit y(x) = c1 + c2*exp(c3*x)’,’ ’);
t = clock;
c = [1,2,-1];
x = (0:.1:3)’; % column vector of independent variable values
y = c(1) + c(2)*exp(c(3)*x) + 0.1*randn(size(x)); % dependent variale

% Initial estimates:
c1 = y(end); % c1 = y(x->inf)
c2 = y(1)-c1; % c2 for x=0
c3 = real(x(2:end-1)\log((y(2:end-1)-c1)/c2)); % evaluated c3
res = @(c) real(c(1) + c(2)*exp(c(3)*x) - y); % anonym. funct. for residua

[C,ssq,cnt] = LMFnlsq2(res,[c1,c2,c3],’Display’,iprint);

subplot(1,3,3)
plot(0,0, x,y,’o’, x,res(C)+y,’-r’, ’Linewidth’,1), grid
axis ’square’
title(’Regression by f(x) = c_1 + c_2exp(c_3x)’,...

’FontSize’,14,’FontWeight’,’demi’)
xlabel(’x’,’FontSize’,12,’FontWeight’,’demi’)
ylabel(’y’,’FontSize’,12,’FontWeight’,’demi’)
separator([’t = ’,num2str(etime(clock,t)),’ sec’],’*’)

Record of one run of LMFnlsq2test

>> LMFnlsq2test

######################## LMFnlsq2test 22-Apr-2013 ########################

Rosenbrock without constrains

iprint = [5,0] =>
ScaleD = [] =>
Trace = 1 =>

Analytical gradient

itr nfJ SUM(r^2) x dx l lc

0 1 2.4200e+001 -1.2000e+000 0.0000e+000 0.0000e+000 1.0000e+000
1.0000e+000 0.0000e+000

5 8 2.6137e+000 -4.5776e-001 -2.6926e-001 6.9532e-003 8.6655e-004
1.3964e-001 3.7337e-001

10 13 1.9450e-001 5.6651e-001 -8.4431e-002 3.4766e-003 8.6655e-004
3.1282e-001 -1.4134e-001

15 18 1.1799e-003 1.0000e+000 -5.8609e-002 0.0000e+000 8.6655e-004
9.9656e-001 -1.1612e-001

17 19 0.0000e+000 1.0000e+000 0.0000e+000 0.0000e+000 8.6655e-004
1.0000e+000 0.0000e+000

Distance from the origin R = 1.414214, R^2 = 2.000000

****************************** t = 0.249 sec *******************************

5

Rosenbrock with constrains

Gradient from finite differences
**

itr nfJ SUM(r^2) x dx
**

0 1 4.7961e+006 -1.2000e+000 0.0000e+000
1.0000e+000 0.0000e+000

10 14 1.0610e+000 -2.3397e-002 -1.2107e-001
-1.1131e-002 5.5415e-002

20 28 3.0386e-001 4.4934e-001 -8.3355e-004
1.9938e-001 -8.8222e-004

30 44 2.9665e-001 4.5580e-001 -1.1574e-006
2.0553e-001 -1.0814e-006

35 50 2.9664e-001 4.5580e-001 2.2705e-007
2.0554e-001 -1.1629e-007

Distance from the origin R = 0.500000, R^2 = 0.250000

****************************** t = 0.156 sec *******************************

Exponential fit y(x) = c1 + c2*exp(c3*x)

**
itr nfJ SUM(r^2) x dx

**
0 1 3.2856e-001 1.0678e+000 0.0000e+000

2.0012e+000 0.0000e+000
-1.2618e+000 0.0000e+000

1 2 2.2294e-001 1.0355e+000 3.2277e-002
2.0807e+000 -7.9454e-002

-1.1000e+000 -1.6188e-001
2 3 2.1980e-001 1.0294e+000 6.0639e-003

2.0895e+000 -8.8806e-003
-1.1128e+000 1.2882e-002

3 4 2.1980e-001 1.0293e+000 1.1836e-004
2.0896e+000 -8.7186e-005

-1.1127e+000 -1.3811e-004

****************************** t = 0.156 sec *******************************

The last example shows how to suppress displaying of control parameters lambda. It is
also obvious, that good initial estimate of unknown parameters diminishes a necessary
number of iterations to minimum.

References

[1] Fletcher, R., (1971): A Modified Marquardt Subroutine for Nonlinear Least Squares.
Rpt. AERE-R 6799, Harwell

[2] Balda, M.,(2007): LMFsolve: Levenberg-Marquardt-Fletcher’s algoritm for non-
linear least squares problem. MathWorks, MATLAB Central, File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/16063

6

