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Improved Sparse Signal Recovery via
Adaptive Correlated Noise Model

Nasser Eslahi and Alessandro Foi

Abstract—Sparse signal recovery consists of employing a spar-
sity promoting regularizer to estimate the underlying signal from
an incomplete set of measurements. Typical recovery approaches
involve an alternating procedure where the estimate of the signal
is progressively refined through filtering its degraded observation
by a denoiser. The filter acts, implicitly, as a regularizer for
the estimate. Hence, the implicit regularization is determined
by the signal model underlying the denoising filter, as well as
by the model of effective noise (i.e. degradation to be filtered)
adopted by the filter. We improve the recovery by an adaptive
stationary correlated noise model and the corresponding denoiser
in place of the traditional filters for uncorrelated white noise.
The effective noise can vary as the recovery progresses and
we track these variations by estimating the noise correlation
at every iteration. Competitive inverse problems are considered
as benchmarks, including compressive spectral/temporal imaging
and 2D/3D tomography. Analysis of the effective noise within
each application demonstrates that it features various forms of
correlation, which if leveraged by a denoiser lead to a better and
faster signal recovery.

Index Terms—Sparse recovery, stationary correlated noise,
power spectral density, noise estimation, collaborative filtering.

I. INTRODUCTION

SPARSE signal recovery as one of the fundamental prob-
lems in computational imaging aims to recover an un-

known signal vector x from few non-adaptive, possibly noisy,
linear measurements y of the form

y = Mx + ε, (1)

where M∈Cm×n is a measurement matrix with m�n, and
ε represents the measurement error [1], [2]. The underlying
signal x can be recovered using a nonlinear sparsity-promoting
algorithm, under the assumption that x is sparse or compress-
ible with respect to a given basis or a redundant dictionary
mutually incoherent with M [3].

Typical sparse signal recovery approaches proceed itera-
tively, refining the estimate of x by filtering its degraded
observation [4]–[24]. These approaches are successfully used
in various applications [25]–[29]. As we detail in Section
II, a common feature of these approaches is to utilize an
additive white Gaussian noise (AWGN) shrinkage or denoising
to alleviate the degradations. In particular, utilizing an AWGN
denoiser corresponds to modeling the noise to be filtered as
AWGN; however, this filtered noise model can be different
from that of the actual degradation (or effective noise), i.e. the
difference between the degraded observation and the ground
truth. The AWGN assumption of effective noise holds indeed
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only under special conditions that are hardly met in practice,
e.g., the measurement matrix M being itself independent
and identically distributed random Gaussian as required in
approximate message passing [11], [16]. Nevertheless, AWGN
denoisers have been legitimately or pragmatically applied even
when the effective noise is not white, e.g., in order to guarantee
convergence to a given penalized solution [17]–[21], or simply
because of limitations of the denoiser itself.

A more general noise model, which we advocate in this
paper1, allows for correlation within the degradations. This
correlation can be result of multiple contributors: the structure
of M, the statistics of ε, as well as their interaction with
the structure of x and the effect of denoisers during previous
iterations. In contrast to AWGN, correlated noise corresponds
to errors that are disproportionate across the data spectrum, to
an extent that AWGN denoisers may not effectively discern
between the true signal and noise in regularization via shrink-
age. Hence, ignoring such correlation in the denoising step can
lead to ineffective filtering and also distortion to the underlying
signal, thus impairing the accurate high-quality recovery of x.
Moreover, we have the denoising tools that allow to deal with
correlated noise efficiently.

This work develops around the following five contributions:

1. (Section III) We treat the degradations in sparse signal
recovery as additive (signal-independent) stationary cor-
related noise that can vary at each iteration.

2. (Section IV) Since degradations are unknown and al-
ways embedded within the degraded observations, we
approximate their varying statistics at every iteration from
alternative signals dubbed surrogate and latent noise,
using approximations designed to curtail the signal con-
tamination.

3. (Sections V and IV) At every iteration, the statistics of
the degradations are represented as a noise power spectral
density (PSD) that is adopted by the denoiser when
filtering the degraded observations.

4. (Section VI) For various applications of sparse multidi-
mensional and multispectral signal recovery, we analyze
the effective noise and show that it is not white but it

1Preliminary material was presented in [30], [31]. Here, we introduce a
more sophisticated and accurate estimation of the power spectrum of the effec-
tive noise. Unlike prior works, we model both surrogate and latent noise terms,
estimating the noise PSDs in local Fourier domain, hence supporting any filter
for correlated noise. These methodological advances lead to superior quality
of recovery. We further study how the tuning of the filter strength crucially
depends on the model assumed for the effective noise, which we analyze in
detail for a wider range of sparse signal recovery applications, under both
ADMM and ISTA.
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rather features significant forms of correlation, even when
the recovery is carried out by an AWGN denoiser.

5. (Section VI) For all these applications, we compare the
recovery under the modeling assumption of effective
noise as AWGN versus the proposed adaptive correlated
noise model. Experiments show advantage of the latter in
terms of both objective and subjective visual quality as
well as faster recovery.

II. ITERATIVE SPARSE SIGNAL RECOVERY

The estimation of x in (1) is an ill-posed linear inverse
problem which can be obtained through a regularization-based
optimization problem of the form

x̂ = argmin
v∈Rn

Qy(v) + γR(v), (2)

where Qy is the data-fidelity term enforcing the consistency
of x̂ with the measurements y, R is the regularization term
representing the prior model of x, and γ>0 is the regular-
ization parameter balancing the contribution of both terms.
Many optimization algorithms have been proposed to solve
(2) [4]–[10], with R explicitly modeling the sparsity of x with
respect to a transform.

In the remainder of this section we briefly review some
widely used iterative approaches for sparse signal recovery.
While this selection has no pretension of being exhaustive, we
argue that other approaches (e.g., [7]–[9], [12]–[14], [17]–[24],
[32]), modulo technical adjustments, can be seen as instances
of the following cases.

The alternating direction method of multipliers (ADMM)
[10] is widely used to tackle large-scale inverse problems of
the form (1). The idea is to convert the unconstrained optimi-
zation problem (2) into its equivalent constrained form which
is then decoupled into two separate proximal optimizations
with respect to its augmented Lagrangian function:

uk = proxγρk−1R
( zk︷ ︸︸ ︷
xk−1 + bk−1

)
, (3a)

xk = proxρk−1Qy
(uk−bk−1), (3b)

bk = bk−1 + xk − uk, (3c)

where uk and bk are respectively the auxiliary variable and
the scaled Lagrange multiplier, k≥1, b0 =0,

proxγρk−1R(·) def
= argmin

u∈Rn
γρk−1R(u)+

1

2
‖u− · ‖22 (4)

is the proximal operator of γρk−1R, and ρk−1>0 is the step
size. The x-subproblem (3b) can be interpreted as an inversion
step since it only relies on the choice of the forward model.

The forward-backward splitting (FBS) [5] (a.k.a. proximal
gradient) method is another proximal splitting approach to
solve (2). It follows an iterative procedure of the form

uk = proxγρk−1R
( zk︷ ︸︸ ︷
xk−1 + bk−1

)
, (5a)

xk = uk + νk
(
uk − uk−1

)
, (5b)

bk = −ρk∇Qy(xk), (5c)

where ∇ is the gradient operator, b0 =0, x0 =u0∈Rn,
νk∈ [0, 1) is the relaxation parameter, and ρk−1>0 is again
the step size. For νk=0 ∀k≥1, the FBS (5a)-(5c) is known
as ISTA (iterative shrinkage/thresholding algorithm) [4], while
for νk= (tk−1−2)/tk with tk=1+

√
1+t2k−1 and t0 =2 we have

its accelerated version known as FISTA (fast ISTA) [6].
Typical examples of Qy(v) in (2) are 1

2‖y−Mv‖22 and
1
2‖M

†(y−Mv)‖22, where †denotes the pseudoinverse. ForR(v)
one commonly uses ‖T (v)‖p for p∈{0, 1} and a sparsifying
transform T . If T is orthonormal then the proximal of zk (3a)
and (5a) reduces to the shrinkage of T (zk) with hard threshold√

2γρk−1 for p=0, or with soft threshold γρk−1 for p=1 [33].
Similar results hold also for other basic regularizers R [34].

In (3a) and (5a), the action of the proximal operator (4) on

zk = xk−1 + bk−1, (6)

can be regarded as a denoiser seeking to recover x from

zk = x + ek, (7)

where zk and ek respectively represent the noisy signal to
be filtered and the effective noise (or degradation) at each
iteration of the algorithm. Thus (3a) and (5a) are denoising
steps dependent on the prior model.

Because natural signals enjoy more elaborate forms of
regularity than are often captured by a simple R such as in the
above example, the recovery of x in (1) can be significantly
improved by using advanced denoising filters as implicit prior
models instead of proximal (4). This pragmatic approach is
known as plug-and-play prior (PnP) framework [15], [17]–
[22], [25], [27], [35]. In PnP, (3a) and (5a) are replaced by

uk = Φ(zk, λ,Θek), (8)

where Φ denotes a denoiser, the parameter λ>0 controls the
filtering strength, and Θek is a characterization of noise model
in zk assumed by Φ. For an AWGN denoiser, Θek is the
noise variance σ2

ek
, whereas it can be the noise PSD Ψek

when Φ is a correlated noise denoiser. The choice of Φ, λ
and Θek characterizes how signal and noise are modeled for
regularization in PnP. Despite ek may not be AWGN [16],
[29], [32], [36]–[39] and although various denoisers can be
used within PnP, nearly all works have so far adopted AWGN
filters, owing to popularity, vast off-the-shelf availability, ease
of use, and the fact that simplest priors like those illustrated
above lead to shrinkage with constant threshold, which is a
prototype of AWGN denoising. We take a radical departure
from these conventional models.

III. STATIONARY NOISE MODELING
IN SPARSE SIGNAL RECOVERY

In the generic form (7), we explicitly model ek as a zero-
mean additive stationary correlated noise [40], i.e.

ek = ωk ~ gk, (9)

where ωk is standard white Gaussian noise, ~ denotes con-
volution, and gk is a kernel which specifies the correla-
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tion in ek. Let F denote the global Fourier transform2,
then F (ek)=F (gk)�F (ωk) where � denotes elementwise
product, and the Fourier PSD of ek is

Ψek = var{F (ek)} = n|F (gk)|2, (10)

describing how the noise power is distributed over frequencies.
Accordingly, Ψ

1/2
ek =std{F (ek)} represents the Fourier root-

PSD of ek. In particular, if gk in (9) is a scaled Dirac
delta with mass σek , then ek is AWGN with variance σ2

ek
,

i.e. ek∼N (0, σ2
ek

In) where In denotes the n×n identity
matrix; this white noise features a flat PSD Ψek≡nσ2

ek
which

is identically equal to n times the variance.
The subindex k in Ψek emphasizes that these PSDs may

vary at each iteration of sparse signal recovery.

IV. NOISE PSD ESTIMATION
IN SPARSE SIGNAL RECOVERY

Before addressing the proposed strategy for estimating Ψek

under the correlated noise modeling of the effective noise ek
(9), we first discuss two alternative procedures to set σ2

ek
under

the AWGN modeling of ek, by which Ψek≡nσ2
ek

.

A. Non-adaptive Variance under AWGN Modeling

The first alternative is a non-adaptive procedure shared by
many works, e.g., [15], [17]–[20], [22], [25], [27], [32], [35],
where an “estimate” of σek used for a given PnP denoiser
is determined directly by the choice of the parameters λ, γ
and ρk−1 and of the regularizer R in the definition of the
proximal operator (4). For instance, let R(u)=‖T (u)‖0 in (4)
for orthonormal T . Then an estimate of σek can be defined as

σ̂ek =λ−1
√

2γρk−1 . (11)

Analogously, σ̂ek=λ
−1γρk−1 for R(u)=‖T (u)‖1.

B. Adaptive AWGN Variance Estimation

The second alternative instead estimates the AWGN vari-
ance adaptively from the highest-frequencies of the noisy
image zk (6), which are likely dominated by noise. This
is most commonly done by applying a robust estimator such
as the sample median absolute deviation (MAD) [41] over the
high-passed zk to discard the influence of outliers due to sharp
features such as edges and singularities. We can formulate it as

σ̂ek=1.4826‖ϕ‖−12 MAD{zk~ ϕ} , (12)

where ϕ is a high-pass filter and the factor 1.4826 calibrates
for a normal distribution, which can be assumed regardless
of the distribution of ek, since convolving with ϕ provides
approximate Gaussianization by the central-limit theorem [42].

2Here F and ~ are multidimensional operators matching the dimension of
the signals they are applied to (e.g., 3D for a grayscale video). Throughout
the paper, vectorized signals are tacitly reshaped to their native dimensionality
when subject to multidimensional operators like convolution, transforms,
filters, etc.; the output of these operators is returned to a vector.

C. Approximation of the PSD of ek

Estimating Ψek under the correlated noise modeling of ek
is far more involved. Unlike the flat PSD of a white noise,
estimating Ψek from the spectrum of zk can lead to significant
overestimation, because the spectrum of x can be large and
dominating over frequencies other than the highest ones.

The identity between (6) and (7) yields the effective noise
ek=bk−1+xk−1−x which can be decomposed as

ek =

sk︷ ︸︸ ︷
bk−1 + M†M(xk−1 − x) +

lk︷ ︸︸ ︷
M⊥(xk−1 − x) , (13)

where M⊥=In−M†M is the orthogonal projection on the
null space of M. We dub sk the surrogate noise, and lk the
latent noise. The decomposition of ek (13) allows us to replace
Mx with y−ε through the forward model (1), where by this
substitution the surrogate noise sk will not require the direct
access to x.

From (13), the global Fourier PSD of ek can be writ-
ten as Ψek=Ψsk+Ψlk+2 cov{F (sk),F (lk)}, where Ψsk

and Ψlk are respectively the global Fourier PSDs of sk
and lk , and cov{·, ·} is the covariance between its in-
puts. A series of pragmatic and simplifying assumptions
are made in order to approximate Ψek . First, we as-
sume cov{F (sk),F (lk)}=0, i.e. ignore any dependence be-
tween sk and lk, which results in3

Ψek ≈ Ψsk+Ψlk . (14)

The two addends are addressed in the following subsections.
1) Approximation of the PSD of Surrogate Noise sk: Upon

defining the measurement residual as

rk = y−Mxk (15)

and by simple substitutions, we can rewrite M†M(xk−1−x) as
M†(ε−rk−1). Thus, we can further decompose sk in (13) as

sk =

wk︷ ︸︸ ︷
bk−1−M†rk−1 + M†ε , (16)

which gives Ψsk =Ψwk
+ΨM†ε+2 cov{F (wk),F (M†ε)}.

Although the particular realization of ε is unknown, its
statistics are either known or can be estimated upon us-
ing the prior information on acquisition, and we can thus
compute ΨM†ε. Next, for the simplicity of computation,
we assume that wk and M†ε have perfect correlation,
i.e. cov{F (wk),F (M†ε)}=Ψ

1/2
wk�Ψ

1/2

M†ε
, which results in

Ψsk ≈
(
Ψ

1/2
wk

+Ψ
1/2

M†ε

)2
. (17)

2) Approximation of the PSD of Latent Noise lk: Unlike sk,
lk cannot be rewritten easily without involving x, as M⊥x is
not available.

For an arbitrary square matrix A∈Cn×n, we can define

fA[ξ]=
1

n

∥∥φξF>A
∥∥2
2
, (18)

3Our preliminary works [30] and [31] utilized Ψek =Ψbk−1
. Hence, we

emphasize that (14) is a compromise and alternative definitions are possible.
We discuss some of them in Section VII-C.
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Figure 1. The flowchart of the proposed sparse signal recovery via adaptive correlated noise model.

where φξF is the ξ-th basis vector of F , and the superscript>
denotes the Hermitian transpose. Note that for any AWGN
η with flat PSD Ψη , ΨAη = fA�Ψη and, by substituting
Ψη=ΨM†Mη/fM†M into ΨM⊥η = fM⊥�Ψη , we have

ΨM⊥η[ξ] =
fM⊥ [ξ]

fM†M[ξ]
ΨM†Mη[ξ] ∀ξ s.t. fM†M[ξ] 6=0. (19)

Noting next that ΨM†M(xk−1−x)=ΨM†(ε−rk−1), and assum-
ing cov{F (M†rk−1),F (M†ε)}=Ψ

1/2

M†rk−1
�Ψ

1/2

M†ε
(i.e. per-

fect correlation between M†rk−1 and M†ε, occurring when
Mxk−1=Mx), we have ΨM†M(xk−1−x)=

(
Ψ

1/2

M†rk−1
−Ψ

1/2

M†ε

)2
.

By further replacingη in (19) with xk−1−x (even if this might
violate the AWGN condition needed for (19) to hold as an
equality) we approximate Ψlk as

Ψlk[ξ]≈

{ fM⊥ [ξ]

fM†M[ξ]

(
Ψ

1/2

M†rk−1
−Ψ

1/2

M†ε

)2
[ξ] if fM†M[ξ] 6=0,

0 otherwise.
(20)

3) Estimation of Ψek in Local Moving Window: Since
sample estimates of Ψsk (17) and Ψlk (20) cannot be directly
computed from a single observation of sk and lk, we estimate
them with respect to a local Fourier transform of smaller
size on a moving window, where different window positions
correspond to having several instances of a stationary process.
These small-size PSDs are then summed according to (14)
and upsampled, providing an estimate Ψ̂ek of Ψek . These
operations are detailed in Appendix B. The overall proposed
sparse signal recovery pipeline is illustrated in Figure 1.

V. STATIONARY NOISE MODELING IN
TRANSFORM-DOMAIN AND BMXD FILTERS

Various types of denoisers Φ (8) have been adopted for
sparse signal recovery such as total-variation regularization,
nonlocal means, and neural networks. In this work, we nev-
ertheless focus on transform-domain filters as: 1) they have
been extensively used in sparse signal recovery (see, e.g., [11]–
[17], [19], [22], [24]–[27], [32], [35]); 2) their shrinkage
core can be easily linked to explicit regularizers R (e.g.,
`0 or `1 norms) for which exist theoretical guarantees of
convergence [17], [19]; and, most important for this work, 3)
they allow for a relatively effortless and informative use and ex-
ploration of correlated noise models.

Transform-domain filters attenuate noise through a sparsity-
promoting thresholding of the noisy spectrum. The core oper-
ation inside such filters can be formulated for (7) as

T −1(Υ(T (zk), τk)) , (21)

where T is a chosen decorrelating/sparsifying transform, and
Υ is a shrinkage operator with the threshold τk. In (21),
T (zk)[ξ]=〈zk, φξT 〉=φξT

>
zk, where 〈·, ·〉 denotes the inner

product, and φξT is the ξ-th basis vector of T . The threshold τk
acts as a gauge of the magnitude of each transform coefficient
against that of the corrupting noise. When denoising stationary
correlated noise, τk can be set as

τk[ξ] = λσT (ek)[ξ] , (22)

where σT (ek) = std{T (ek)}=
{

std{〈ek, φξT 〉}
}
ξ

is the noise
T-root-PSD, i.e. the standard deviation of the noise ek in
T domain, and λ>0 is a parameter scaling the σT (ek) to
modulate the filtering strength (22). The noise T-PSD (i.e. the
variance of the noise ek in T domain) is

σ2
T (ek)

[ξ] = var
{
〈ek,φξT 〉

}
=

= ‖gk~φξT ‖
2
2 =

1

n2
∥∥Ψek�F 2(φξT )

∥∥
1
.

(23)

A. Simplification under AWGN Modeling of ek

For AWGN ek∼N (0, σ2
ek

In), (23) simplifies to

σ2
T (ek)

[ξ] = σ2
ek
‖φξT ‖

2
2 ; (24)

provided ‖φξT ‖2 =1, i.e. normalization of the atoms of T , (23)
further reduces to a flat T-PSD equal to the noise variance and
consequently the filtering strength τk (22) is constant across ξ:

τk[ξ] = λσek , σ2
T (ek)

≡σ2
ek
. (25)

B. BMxD Filters

In this work, we leverage the family of BMxD filters in the
denoising step of iterative sparse signal recovery; specifically,
we adopt BM3D [43], BM4D [26], and RF3D [44]4.

The choice of the filter within the family depends on
the data structures as well as the type of noise modeling.

4BMxD filters are used widely in PnP recovery [13], [15]–[17], [19], [20],
[22], [25], [26], [32], [35]
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For instance, BM3D [43] captures local spatial regularity
within images through 2D blocks whereas BM4D [26] cap-
tures local 3D spatial/spatiospectral regularity within volu-
metric/multispectral images using 3D cubes. Both methods
exploit nonlocal self-similarity by stacking several mutually
similar 2D blocks or 3D cubes into, respectively, 3D or 4D
arrays called “groups” that are jointly filtered by a 3D or 4D
transform-domain shrinkage. In what follows, we denote the
transformation applied to groups by T3D or T4D. Similarly,
RF3D [44] captures local and temporal regularity within a
video by stacking 2D blocks along motion trajectories into 3D
spatiotemporal volumes. Such volumes are akin to 3D arrays
in BM3D, because blocks along a motion trajectory are very
similar to each other; thus volumes are filtered by shrinkage
in T3D domain.

Even though the BMxD filters can operate shrinkage as two
successive stages of hard-thresholding and Wiener filtering,
for PnP recovery we employ the hard-thresholding stage only,
which can be formalized as an instance of (21)-(22).

Note that BM3D, as well as other BMxD filters, operates on
a multitude of different groups extracted from zk, which are
separately processed and aggregated. Therefore, the transform
T in (21) does not represent a single instance of T3D, but rather
it stands for a highly overcomplete collection of groupwise
transforms. Likewise, the T-PSD (23) stands for a collection
of groupwise PSDs σ2

T3D(ek)
.

Despite these general common features, these three BMxD
filters differ significantly in the way noise is modeled and in
the efficient computation of the T-PSD (23), as we further
detail in Appendix A.

C. Selection of the Threshold Parameter λ
The choice of the value of λ corresponds to choosing prior

parameters of the denoising problem. Besides manual tuning,
there are several established strategies for setting the value of
λ. The most notable are the so-called “universal” threshold
[33], which for an array of size b×b×d is λ=

√
2log(b2d),

and the data-driven empirical thresholds based on Stein’s
Unbiased Risk Estimate (SURE) [45], [46] or on the False
Discovery Rate [47]. These thresholding schemes are shown
to satisfy certain minimax optimality properties under white
and, to some degree, also for stationary correlated noise [33],
[46]–[49] when used in conjunction with basic orthonormal
wavelets and other redundant wavelet or multiscale sparsi-
fying transforms. Although sophisticated denoisers such as
those considered in the present work leverage highly adap-
tive transform-domain representations which are significantly
more involved than classical wavelets, they nevertheless adopt
values of λ that are often quantitatively close to the values
suggested by these established schemes. For instance, when
working with 8×8 blocks, BM3D adopts by default a value of
λ equal to 2.7, which is only marginally smaller than the value
2.9 suggested by the universal threshold for image patches of
comparable size.

In (22) or (25), a large λ or overestimation of either σT (ek)

or σek causes oversmoothing, i.e. excessive loss of features of
x in the filtered image. Conversely, a small λ or underestima-
tion of either σT (ek) or σek leads to undersmoothing, i.e. a

significant portion of ek is left in the filtered image [33]. While
ad-hoc tuning of λ can help to mitigate a systematic over- or
under-estimation of the noise PSD, one cannot deal with cases
where part of the spectrum is overestimated while the rest is
underestimated (such as when approximating correlated noise
by an AWGN model) simply by tuning the scalar λ (see, e.g.,
the extensive analysis in [44]).

The knowledge of σT (ek) or σek and a proper selection of
λ are crucial for effective filtering as the main stage of PnP.

VI. EXPERIMENTS AND ANALYSIS

We compare the recovery results obtained by our proposed
adaptive correlated noise model against those of AWGN mod-
els on several applications of sparse signal recovery via PnP-
ADMM and PnP-ISTA: compressive spectral imaging (Sec-
tion VI-A), compressive temporal imaging (Sections VI-B),
2D tomography (Section VI-C) and 3D tomography (Sec-
tion VI-D). Experiments are carried out for both noise-free
(ε=0) and noisy (AWGN ε) measurements, with the exception
of Section VI-B where we model ε as AWGN and we estimate
its variance σ2

ε .
Objective quality of the recovered xk is measured as the

peak SNR (PSNR) in dB: 20 log10(
√
nmax(x)‖x−xk‖−12 );

consequently, we useQy(v)= 1
2‖M

†(y−Mv)‖22 in (2), which
complies with the mean squared-error in image domain.

In all experiments, we set x0 =M†y, and we limit the
iterations to kfinal =1000, which is large enough to ensure
significant recovery.

We consider the following strategies to set λ: 1) the default
value λdflt used by the filter in a stand-alone denoising task;
and 2) a value λ∗, common to all k 5, tuned for the recovery
task so to maximize the PSNR at kfinal. It is thus extremely
interesting and informative to compare the value of λ∗ with
that of λdflt, as it highlights how the filtering step in sparse
signal recovery differs from that of a conventional stand-alone
denoising application.

The progress of PnP iterations depends on the step size ρk;
for simplicity we fix ρk=ρ>0 as commonly done, e.g., [15],
[19]–[22], [32], [35]. Both ρ and γ are tuned so to maximize
the PSNR at kfinal, and thence denoted by a superscript ∗ ,
i.e. ρ∗, γ∗. The tuning of ρ∗, γ∗, as well as of λ∗, is made
separately for each recovery task and each measurement noise
level. When experiments are carried out over multiple images,
a common set of parameters is used for the different images,
maximizing the average PSNR at kfinal over the images6.

Under the AWGN modeling of ek, we follow the approaches
discussed in Sections IV-A and IV-B to set τk (25); whereas
for the correlated noise modeling of ek, we set τk (22)

5In principle one could get better results by tuning λ for different k, [31]
but for the sake of simplicity we use the same value of λ across all iterations.

6For the tuning, we have tested several different combinations of parameters
over reasonably fine grids, selecting the combinations that lead to the highest
PSNR at kfinal. Whenever the optimum values are not strictly enclosed within
the grid, this is extended accordingly.
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according to the strategies discussed in Section IV-C. We thus
have the following settings for τk for k>17:

W1 : τk≡λdfltσ̂ek

W∗1 : τk≡λ∗σ̂ek

}
from (25) with σek estimated by (12)

W∗2 : τk≡λdflt√2γ∗ρ∗ 8} from (25) with σek “estimated” by (11)
C : τk=λdfltσ̂T (ek)

C∗: τk=λ∗σ̂T (ek)

}
from (22) and (23) with Ψek
estimated as in Section IV-C

As hinted by notation, settings W1, W∗1, W∗2 are all based on a
white noise model for ek, whereas both C and C∗ assume that
ek is correlated noise. The superscript ∗ denotes settings where
the filtering strength τk is subject to scaling optimization, in
the following sense. None of the parameters optimized for W1

and C directly controls τk, which is adaptively set based on
either a variance estimate σ̂2

ek
(12) or a PSD estimate Ψ̂ek

(providing via (23) the estimate σ̂2
T (ek)

of the T -PSD), with
the PnP denoiser Φ (8) employed as in a stand-alone denoising
task with default λdflt. By optimizing λ∗ in W∗1 and C∗, and
γ∗ in W∗2, we can directly control τk in order to maximize
the final recovery quality, operating Φ in PnP with a different
strength than one would use in a stand-alone denoising task.

To evaluate the recovery performance under correlated
vs. AWGN modeling of ek, it is crucial to compare the settings
where the denoising step is treated as a stand-alone denoising
problem with τk determined directly by the model assumed
for ek, separately from those that feature an extra tuning to
directly aid the recovery. Namely, C shall be compared with
W1, whereas C∗ with W∗1, W∗2.

Technical details of each experiment are given in the Ap-
pendix C. The MATLAB code used for the experiments of
this section is available at https://webpages.tuni.fi/foi/varikas/.

A. Compressive Spectral Imaging

We begin with multispectral image recovery using the
central 256×256-pixel portion of three multispectral images
(chart_and_stuffed_toy, flowers, feathers) from the CAVE
dataset [50] with 16 spectral bands, from 400 nm to 700 nm
with a 20 nm interval. Single-shot spectrally compressed mea-
surements are acquired by the simulated CASSI (coded aper-
ture snapshot spectral imager) [51]: each band is masked by a

7For white as well as for correlated noise modeling of ek , the initial
e1 is always assumed to be AWGN with σe1=0.2

(
max(z1)−min(z1)

)
,

and τ1≡λdfltσe1. This aggressive initialization allows us to process major
distortions in z1 as noise, helping to escape from a local-minimum region.

8We omit the combination τk≡λ∗
√
2γ∗ρ∗, since tuning γ while λ=λdflt

already provides direct scaling of τk , making it superfluous to tune λ in W∗2 .
Note that γ is never used by recovery algorithms with W1, W∗1 , C, and C∗.

Table I
COMPRESSIVE SPECTRAL IMAGING (SECTION VI-A): AVERAGE

PSNR (dB) OVER THE RECOVERED MULTISPECTRAL IMAGES FROM
NOISE-FREE (SNR=∞) AND NOISY (AWGN ε, SNR=25 AND 15 dB)
SINGLE-SHOT SPECTRALLY COMPRESSED MEASUREMENTS, AT kfinal .

λ PSNR (dB)
SNR (dB)→ ∞ 25 15 ∞ 25 15

B
M

4D

Pn
P-

A
D

M
M W1 3.7 3.7 3.7 23.6 23.3 20.3

C 3.7 3.7 3.7 36.5 34.1 30.0
W∗1 9.5 8.0 7.8 34.5 33.1 29.9
W∗2 3.7 3.7 3.7 35.0 33.0 29.9
C∗ 3.7 3.7 3.7 36.5 34.1 30.0

B
M

4D

Pn
P-

IS
TA

W1 3.7 3.7 3.7 19.2 19.3 18.7
C 3.7 3.7 3.7 31.6 33.9 29.9

W∗1 18.0 10.3 7.8 33.0 32.7 29.8
W∗2 3.7 3.7 3.7 33.2 32.7 29.8
C∗ 4.9 4.5 4.3 32.4 34.0 30.0

GPSR-BB [7] n/a n/a n/a 26.5 25.9 24.9
TwIST [8] n/a n/a n/a 28.6 27.6 26.4

shifting pseudo-random binary mask with 25% transmittance;
the 16 masked bands are then summed into a single 256×256
measurement array.

The recovery is possible thanks to the regularity and
smoothness among adjacent pixels and across spectral bands of
the underlying multispectral image. We capture this regularity
via BM4D using groups of elongated cubes of size 8×8×16
and set λdflt =3.7=

√
2log(82 ·16) according to the “universal”

threshold [33] (as opposed to the typical isotropic volumetric
imaging configuration of this filter, which adopts much smaller
4×4×4 cubes and a consequently smaller λdflt =2.7).

Table I reports PSNR results with their corresponding λ
values, demonstrating improvement by modeling ek as corre-
lated rather than white noise. The improvement is especially
dramatic without separate tuning of τk, and most noticeable
for lower SNR of the input. Having λ∗=λdflt for C∗ in PnP-
ADMM suggests that we are able to operate Φ effectively
as if it were a stand-alone denoising task; whereas W∗1
demands much larger λ∗, showing the inadequacy of the
AWGN modeling of ek. Although PnP-ISTA performs worse
than PnP-ADMM when SNR=∞, likely due to falling into
local minima, the results by the C setting without tuning of
τk are still competitive, also in comparison with the Barzilai-
Borwein gradient projection for sparse reconstruction (GPSR-
BB) [7] and two-step ISTA (TwIST) [8] algorithms, both
widely used for compressive spectral recovery [52] (details
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Figure 2. Compressive Spectral Imaging (Section VI-A). Visual comparison of the recovered multispectral chart_and_stuffed_toy image from a single-shot
noise-free (i.e. ε=0, SNR=∞) spectrally compressed measurements. The RGB representation is obtained by fusing channels #4, #5, #7,. . ., #9, #13,. . .,#16 .

https://webpages.tuni.fi/foi/varikas/
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Figure 3. Compressive Spectral Imaging (Section VI-A). Spatiospectral correlation in the effective noise ek of the recovered multispectral chart_and_stuffed_toy
image from noise-free (i.e. ε=0, SNR=∞) spectrally compressed measurements, visualized as the 8×8×16 DCT root-PSDs. The root-PSDs denoted by
σT3D(ek)

and σ̂T3D(ek)
are computed from (23) given respectively an “oracle” Ψek and an estimate Ψ̂ek that are obtained as described in Appendix B. We

can show only the outer skin of these 3D objects, and separately display the three lowest-frequency faces that stem from the DC (LLL corner, at the back)
and the three highest-frequency faces (HHH corner, diametrically opposed to the DC), as illustrated by the black and white sketch. The 1st and 2nd (resp. 3rd

and 4th) rows correspond to the recovery via PnP-ADMM (resp. PnP-ISTA) framework with BM4D as the denoiser at k=10 and k=1000, respectively. The
σ̂e10 and σ̂e1000 adopted by the AWGN models are indicated by I in the colorbars of (a)–(c) and (f)–(h).

BM4D PnP-ADMM (at kfinal =1000) BM4D PnP-ISTA (at kfinal =1000)

ground truth

PSNR

ground truth

PSNR

measurement
frame y
(PSNR:)

measurement
frame y
(PSNR:)

pseudo-
inverse

(10.3 dB)

pseudo-
inverse

(10.3 dB)

GPSR-BB
[7]

(25.0 dB)

GPSR-BB
[7]

(25.0 dB)

TwIST
[8]

(25.2 dB)

TwIST
[8]

(25.2 dB)

W1

λdflt=3.7
(24.8 dB)

W1

λdflt=3.7
(24.8 dB)

W∗1
λ∗=9.5
(31.3 dB)

W∗1
λ∗=9.5
(31.3 dB)

W∗2
λdflt=3.7
(31.2 dB)

W∗2
λdflt=3.7
(31.2 dB)

C=C∗

λdflt=λ∗=3.7
(32.0 dB)

C=C∗

λdflt=λ∗=3.7
(32.0 dB)

W1

λdflt=3.7
(19.3 dB)

W1

λdflt=3.7
(19.3 dB)

C
λdflt=3.7
(32.1 dB)

C
λdflt=3.7
(32.1 dB)

W∗1
λ∗=18

(30.8 dB)

W∗1
λ∗=18

(30.8 dB)

W∗2
λdflt=3.7
(31.0 dB)

W∗2
λdflt=3.7
(31.0 dB)

C∗
λ∗=4.5
(32.1 dB)

C∗
λ∗=4.5
(32.1 dB)

Figure 4. Compressive Spectral Imaging (Section VI-A). Recovered images as in Figure 2 but for noisy input measurements (AWGN ε, SNR=25 dB).
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Figure 5. Compressive Spectral Imaging (Section VI-A). Root-PSD of ek as in Figure 3, but for noisy input measurements (AWGN ε, SNR=25 dB). Please
refer to the caption of Figure 3 for guidance.

on both algorithms in Appendix C-A.)

The recovered chart_and_stuffed_toy image from noise-free
(resp. noisy) measurements and the spectra of ek are respec-
tively illustrated in Figures 2 and 3 (resp. Figures 4 and 5). The
results of W1 are quite poor, because its estimated σ̂ek value
(denoted by I in the colorbar) is smaller than most of the

“oracle” 9 σT3D(ek), as seen in Figures 3(a,f) and 5(a,f), which
makes τk≡λdfltσ̂ek to significantly underestimate the ideal

9From the ground-truth image x we can only obtain a single oracle
realization of the effective noise ek=zk−x, but we do not have access
to a genuine oracle PSD of the random process realized by ek . We thus use
quotation marks for such computed “oracle” PSDs.
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Figure 6. Compressive Spectral Imaging (Section VI-A). Visual comparison
of ek and sk at k=10 and k=1000 corresponding to the results of Figure 2
and Figure 3(c)–(e). Nonstationarities in the noise can be noticed here.

strength λdfltσT3D(ek). This is compensated by λ∗�λdflt in
W∗1. Indeed, in W∗2, σ̂ek=

√
2γ∗ρ∗/λdflt (11) with optimized

γ∗ is larger than most of the respective σT3D(ek), as seen
in Figures 3(c,h) and 5(c,h). For neither W1, W∗1, nor W∗2,
a constant σek can reasonably approximate σT3D(ek), which
features order-of-magnitude differences between lowest and
highest frequencies, and noticeable anisotropy. Hence, under
AWGN modeling, the filter Φ must balance a compromise
between systematical oversmoothing of fine details and leaving
coarser structures unresolved, preventing an efficient recovery.

Figure 6 confirms that ek contains highly correlated sta-
tionary features, but also nonstationary structures; such non-
stationarities are stronger in lk as opposed to in sk, which we
speculate is due to the direct presence of the difference image
xk−1−x in lk (13). To justify our speculation, we observe
that in Figure 3(e) at k=1000, σ̂T3D(ek)≈0 by which the
denoiser and consequently the proximal operator in (3b) are
approximately the identity operator, the algorithm reaches a
steady state and Mxk−1≈Mx, which for ε=0 implies sk≈0
and lk≈xk−1−x. Note that due to our approximation of Ψlk
(20), at k=1000 in this experiment Ψ̂lk≈0, hence σ̂T3D(ek)

in Figure 3(e) and the “oracle” σT3D(ek) in Figure 3(d) are
different. Also note that as the recovery progresses, ek gets
weaker and thus harder to estimate its PSD accurately.

We further note that unless the noise ek is stationary
like in (9), the PSD (even a genuine oracle PSD) does not
characterize the statistics of the noise. Therefore, one should
not necessarily expect improvement by the “oracle” PSD. It
is then interesting to conduct an additional set of experiments
with PnP-ADMM under C and C∗ setting adopting an “or-
acle” root-PSD σT3D(ek) in the threshold (22). For the set
of SNR = {∞, 25, 15} dB, these experiments under C and
C∗ respectively obtain {1.1, 1.0, 0.8} dB and {0.5, 0.9, 0.8} dB
lower PSNR than the corresponding results in Table I, while
λ∗={3.3, 3.3, 3.7} in this C∗ setting. The shortcomings of
the “oracle” PSD are confirmed by these inferior results, and
also by λ∗<λdflt for noise-free and high-SNR measurements,
likely to offset the nonstationary features in ek that inflate the
“oracle” PSD.

B. Compressive Temporal Imaging

We consider the recovery of the 256×256×32 NBA video
from the 256×256×4 temporally compressed measurements
used in [53], acquired by a simulated CACTI (coded aperture
compressive temporal imager) [54]: the video is divided into 4
consecutive chunks, where each of the 8 frames in a chunk is
masked by a shifting pseudo-random binary mask with 50%
transmittance; the 8 masked frames are then summed into a
single 256×256 measurement array. Although spatiotemporal
regularity of natural scenes makes the recovery possible, the
aggressive compressive capture of this highly dynamic scene
with complex motions of non-rigid bodies makes this test
challenging even for sophisticated methods like MMLE-GMM
[53]. We capture this regularity via RF3D as the denoiser Φ.

As shown in Figures 7 and 8, the setting C provides better
recovery than W1, while the setting C∗ provides comparable
results to those of W∗1 and W∗2 but with a faster recovery.
Most interesting, the λ∗ values for C∗ are closer to λdflt than
those optimized for W∗1. Figure 9 gives evidence of significant
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Figure 7. Compressive Temporal Imaging (Section VI-B. PSNR progression versus iteration number k for the NBA video recovery.
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Figure 8. Compressive Temporal Imaging (Section VI-B. The recovered 6th frame of NBA video from noise-free (SNR=∞) temporally encoded measurements.
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Figure 9. Compressive Temporal Imaging (Section VI-B. Spatiotemporal correlation in the effective noise of the recovered NBA video from noise-free
(i.e. ε=0, SNR=∞) temporally encoded measurements, visualized as the 8×8×9 DCT root-PSD. The root-PSDs denoted by σT3D(ek)

and σ̂T3D(ek)
are

computed from (23) given respectively an “oracle” Ψek and an estimate Ψ̂ek that are obtained as described in Appendix B. The σ̂e10 and σ̂e1000 adopted
by the AWGN models are indicated by I in the colorbars of (a)–(c) and (f)–(h).
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Figure 10. Compressive Video Recovery (Section VI-B). The recovered 6th

and 7th frames of 512×512×10 water balloon video from real compressive
measurements. Observe how important details like the inflation outlet are
recovered only under the C and C∗ settings.

magnitude variations and anisotropy in σT3D(ek) and σ̂T3D(ek),
consistent with the analysis in Section VI-A.

We also consider the recovery of the 512×512×10 water
balloon video from a real 512×512 measurement array, ac-
quired by a snapshot compressive imaging camera [55]; each
frame is masked by a distinct non-binary mask controlled
by a digital micro-mirror device; the 10 masked frames are

Table II
2D TOMOGRAPHY (SECTION VI-C). AVERAGE PSNR (dB) OVER THE

RECOVERED MR IMAGES FROM INCOMPLETE PSEUDO-RADIAL
NOISE-FREE (SNR=∞) AND NOISY (AWGN ε, SNR=20 dB)

MEASUREMENTS USING PNP-ADMM AND PNP-ISTA, AT kfinal =1000.

15 (m/n=0.074) 30 (m/n=0.144)
λ PSNR (dB) λ PSNR (dB)

SNR (dB)→ ∞ 20 ∞ 20 ∞ 20 ∞ 20
x0=M†y n/a n/a 15.7 15.6 n/a n/a 17.8 17.6

B
M

3D
Pn

P-
A

D
M

M

W1 2.7 2.7 18.1 16.9 2.7 2.7 24.9 20.2
C 2.7 2.7 20.3 18.7 2.7 2.7 27.4 23.1

W∗1 6.6 3.2 19.9 18.8 6.0 3.2 28.1 23.2
W∗2 2.7 2.7 20.3 18.7 2.7 2.7 28.4 23.2
C∗ 3.6 2.8 20.6 18.9 4.6 2.9 28.3 23.2

B
M

3D
Pn

P-
IS

TA

W1 2.7 2.7 18.1 16.9 2.7 2.7 24.9 20.2
C 2.7 2.7 20.2 18.1 2.7 2.7 27.2 22.8

W∗1 10.4 4.6 20.0 18.7 6.4 4.0 28.4 23.4
W∗2 2.7 2.7 19.9 18.9 2.7 2.7 28.4 23.3
C∗ 3.6 3.5 20.4 18.9 4.8 3.4 28.3 23.4

summed into a single temporally compressed measurement
array to deliver an equivalent 500 frames-per-second video.
The acquisition is subject to unknown camera shot noise ε that
we model as AWGN for simplicity; we estimate its standard
deviation similar to (12) as σ̂ε =1.4826‖ϕ‖−12 MAD{y ~ ϕ}.
We again employ RF3D as the denoiser Φ within PnP. As can
be seen in Figure 10, C (resp. C∗) can recover more details
than W1 (resp. W∗1 and W∗2), attesting the improvement of
recovery by the proposed correlated noise modeling.

C. 2D Tomography

We consider the recovery of ten 217×181-pixel magnitude
slices (5 transverse and 5 sagittal cross-sections) of the Brain-
Web Magnetic Resonance (MR) phantom [56] from incom-
plete radial sampling of their 2D FFT spectra. This problem
is widely studied, e.g., [13], [20], [26], [27], [57]. We employ
BM3D as the denoiser Φ within PnP frameworks.
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C, λdflt=2.7
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∗=10.4
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W∗2, λ
dflt=2.7

(20.6 dB)
C∗, λ∗=3.5
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BM3D PnP-ISTA (at kfinal =1000)
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sagittal #2

x0=M†y
(17.7 dB)

W1, λ
dflt=2.7

(24.1 dB)
C, λdflt=2.7

(25.4 dB)
W∗1, λ

∗=6.0
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W∗2, λ
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(25.6 dB)
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BM3D PnP-ADMM (at kfinal =1000)
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BM3D PnP-ISTA (at kfinal =1000)

Figure 11. 2D Tomography (Section VI-C). The recovered T2 BrainWeb transverse and sagittal MR images from noise-free (i.e. ε=0, SNR=∞) measurements
acquired, respectively, by 15 and 30 radial lines of the 2D FFT spectrum at kfinal =1000. PSNR (dB) values are reported within parentheses.

λdflt =2.7 λ∗=6.0 λdflt =2.7 λdflt =2.7 λdflt =2.7 λ∗=4.6 λ∗=4.6

σT2D(ek) σT2D(ek) σT2D(ek) σT2D(ek) σ̂T2D(ek)
σT2D(ek) σ̂T2D(ek)

σT2D(ek) σT2D(ek) σT2D(ek) σT2D(ek) σ̂T2D(ek)
σT2D(ek) σ̂T2D(ek)

W1 W∗1 W∗2 C C C∗ C∗

W1 W∗1 W∗2 C C C∗ C∗
λdflt =2.7 λ∗=6.4 λdflt =2.7 λdflt =2.7 λdflt =2.7 λ∗=4.8 λ∗=4.8

k
=

1
0

k
=

1
0
0
0

B
M

3D
Pn

P-
A

D
M

M
k
=

1
0

k
=

1
0
0
0

B
M

3D
Pn

P-
IS

TA

Figure 12. 2D Tomography (Section VI-C). Spatial correlation in ek of
the recovered BrainWeb sagittal MR images (30 radial lines) corresponding
to Figure 11, visualized as 8×8 Bior1.5 wavelet root-PSDs at k=10 and
k=1000. The DC coefficient and the highest frequency coefficient are dia-
metrically opposite, in (0, 0) and (7, 7), respectively. The root-PSDs denoted
by σT2D(ek)

and σ̂T2D(ek)
are computed from (23) given respectively an “or-

acle” Ψek and an estimate Ψ̂ek that are obtained as described in Appendix B.
The σ̂ek of AWGN models is indicated by J in the corresponding σT2D(ek)

.

Table II reports the λ values and the average PSNR10

of recovered slices at kfinal under 15 and 30 radial lines
sampling, without and with noise (zero-mean complex AWGN,
SNR=20 dB). As can be seen, C significantly outperforms W1.
The performance of C∗ is comparable to that of W∗1 or of W∗2.
The values of λ∗ are closer to λdflt under C∗ than under W∗1.
Figure 11 illustrates two sets of recovered images, showing
a better recovery of edges and fine details under correlated
noise modeling even when the PSNR is comparable to those
of AWGN model. Figure 12 gives evidence of significant
variations and nonuniformity in σT2D(ek) and σ̂T2D(ek), again
consistent with the analysis in Section VI-A.

10We compute PSNR only where x>0.04max(x), to exclude sizable un-
informative background from the phantoms used in Sections VI-C and VI-D.

Table III
3D TOMOGRAPHY (SECTION VI-D): PSNR (dB) OF THE RECOVERED

3D BrainWeb MR PHANTOM FROM INCOMPLETE PSEUDO-RADIAL
NOISE-FREE (SNR=∞) AND NOISY (AWGN ε, SNR=20 dB)

MEASUREMENTS USING PNP-ADMM AND PNP-ISTA, AT kfinal =1000.

m/n=0.136 m/n=0.277
λ PSNR (dB) λ PSNR (dB)

SNR (dB)→ ∞ 20 ∞ 20 ∞ 20 ∞ 20
x0=M†y n/a n/a 22.5 22.3 n/a n/a 26.8 26.1

B
M

4D
Pn

P-
A

D
M

M

W1 2.7 2.7 32.7 25.4 2.7 2.7 39.9 30.9
C 2.7 2.7 35.5 28.0 2.7 2.7 41.9 31.1

W∗1 8.0 3.2 35.3 28.2 6.0 3.4 42.5 31.2
W∗2 2.7 2.7 35.3 28.3 2.7 2.7 42.4 31.2
C∗ 4.2 2.7 35.9 28.0 4.8 2.7 43.1 31.1

B
M

4D
Pn

P-
IS

TA

W1 2.7 2.7 32.5 25.3 2.7 2.7 39.6 29.2
C 2.7 2.7 35.4 28.1 2.7 2.7 41.9 31.2

W∗1 10 4.6 35.3 28.5 7.5 4.4 42.1 31.5
W∗2 2.7 2.7 35.2 28.4 2.7 2.7 42.2 31.4
C∗ 4.1 3.0 35.9 28.2 5.3 2.7 42.8 31.2

D. 3D Tomography

We consider the recovery of a 64×64×64-voxel magnitude
of the BrainWeb MR phantom [56] from 13.6% and 27.7%
3D radial sampling of its FFT spectrum. We employ BM4D
as the denoiser Φ within PnP frameworks.

Table III reports the λ values and the PSNR (dB) of the
recovered images, demonstrating that the recovery under C
setting significantly outperforms W1, while yielding compa-
rable results to those of W∗1 and W∗2 settings which require
one extra parameter to be tuned. The λ∗ in C∗ setting is
closer to λdflt than is that in W∗1. The 3D cross-sections of
the recovered magnitude are illustrated in Figure 13. Insight
about these results can be gained from inspecting the spectra
of ek in Figure 13, showing nonuniform root-PSDs.

VII. DISCUSSION

To the best of our knowledge, besides our preliminary works
[30], [31], a correlated noise model in PnP recovery has been
used only by the method [36], in a simplified setting limited to
estimating the standard deviation of few individual scales of a
wavelet decomposition for FISTA in radio-interferometry, by
[32], estimating the variance of individual curvelet subbands
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(a) ground-truth (b) W1, λdflt =2.7
(24.5 dB)

(c) C, λdflt =2.7
(28.1 dB)

(d) W∗1 , λ∗=4.6
(28.5 dB)

(e) W∗2 , λdflt =2.7
(28.4 dB)

(f) C∗, λ∗=3

(28.2 dB)

(g) σT3D(ek)

W1 , λdflt =2.7

k
=

1
0

k
=

1
0
0
0

(h) σT3D(ek)

C, λdflt =2.7

(i) σ̂T3D(ek)

C, λdflt =2.7

(j) σT3D(ek)

W∗1 , λ∗=4.6
k
=

1
0

k
=

1
0
0
0

(k) σT3D(ek)

W∗2 , λdflt =2.7

(l) σT3D(ek)

C∗ , λ∗=3

(m) σ̂T3D(ek)

C∗ , λ∗=3

Figure 13. 3D Tomography (Section VI-D). (a)–(f): 3D cross-sections of the recovered BrainWeb phantom from 13.6% 3D radial sampling of its FFT noisy
spectrum (zero-mean complex AWGN ε, SNR=20 dB) via BM4D PnP-ISTA at kfinal =1000. (g)–(m): spatial correlation in ek of the recovered BrainWeb
phantom

(
see Figures 13(a)–(f)

)
, visualized as the 4×4×4 3D DCT root-PSD at iteration k=10 and k=1000. The root-PSDs denoted by σT3D(ek)

and
σ̂T3D(ek)

are computed from (23) given respectively an “oracle” Ψek and an estimate Ψ̂ek that are obtained as described in Appendix B. Only the lowest- and
highest-frequency faces of each 3D root-PSD cube are shown. The σ̂e10 and σ̂e100 of the AWGN model are indicated by I in the colorbars of (a).

within ADMM for image recovery from random projections,
and later by [37]–[39], extending AMP [11], [16] in the special
case of Fourier-domain variable-density sampling operator M
and again representing the correlation through the variance of a
few wavelets subbands. Our method and framework developed
in the present paper improves and generalizes fundamentally
over all these prior works. Firstly, we explicitly decouple the
effective noise PSD estimation in Fourier domain from the PnP
denoising step, obtaining an explicit and rich representation
of the Fourier PSD Ψek and thus enabling the use of any
denoiser Φ for correlated noise through (8). Furthermore,
we here encompass both ADMM and FBS (ISTA, FISTA,
etc.) without resorting to ad-hoc tweaks, and include both
surrogate and latent noise terms in the PSD estimation, which
allows us to apply this unified framework to a wide range
of recovery problems, including cases where M is neither
variable-density nor convolutional, as well as handling unusual
situations featuring highly anisotropic degradation. We note
that although ek may often deviate from being a purely
stationary noise (as shown in Figure 6) and the estimation
of Ψek be imprecise, the proposed noise model (9) offers an
approximation of the correlation in ek that is nevertheless
more accurate and effective than the naive AWGN model.
Strong nonstationarities, and x itself, make it hard to obtain
a usable Ψek estimate directly from zk, which is why in this
work we opt instead to estimate the noise PSD from sk and
lk. Beside the technical detail given in Section IV-C, let us
give an intuition of why this helps against overestimation. The
significant part of the structured errors and signal x leaked into
ek is typically concentrated in the null space of M, where
it cannot be anchored to y through the fidelity. Due to the
decomposition of ek as (13), those errors end up in the latent
noise component, hence sk is typically not structured (as can
be seen in Figure 6, too). The approximation (20) used for
estimating the PSD of the latent noise projects the structured
errors that were in the null space of M onto its row space,

thus effectively attenuating them.

A. Correlated Noise Filtering as Explicit Regularization

One can interpret correlated noise filtering in sparse sig-
nal recovery as equivalent to using a different regularizer
in (2). For instance, let R(v)=‖T (v)‖1 =1>n×1|T (v)| be
the basic regularizer promoting `1 sparsity with respect to
an orthogonal T . Upon replacing the constant vector 1n×1
by an arbitrary nonnegative vector ιι∈Rn, (4) becomes a
soft-shrinkage with thresholds τk[ξ]=ρkγ ιι[ξ]‖φξT ‖22, which
through (22) corresponds to denoising with a non-flat PSD.
Further, allowing ιι to change at every iteration based on
the current zk, i.e. ιι(zk), is akin to a reweighted `1 min-
imization where R(v)= ιι>(v) |T (v)| is the explicit form
of the regularizer for (2) resulting in soft-shrinkage under
a data-driven non-flat PSD. Specifically, we want ιι(zk) to
depend on the stationary random structures within zk and
hence, as discussed in Section IV-C, in our algorithm we
use ek instead of zk and separate the noise estimation step
from the denoising. Analogous observations hold also for
‖T (v)‖0 =1>n×11|T (v)|>0, where 1(·) denotes the indicator
of (·), with τk[ξ]=

√
2ρkγιι[ξ]‖φξT ‖2.

B. Deep Learning Methods for Sparse Signal Recovery

As Φ (8) one can also use a denoiser based on deep
learning. However, this filter should have been trained so
to be able to deal with the type of correlation met during
the recovery. The recovery methods in [38], [39] show that
these filters perform well when trained for relatively narrow
classes of PSDs (e.g., 13 degrees of freedom). However, the
retraining gets more involved and the performance substan-
tially decreased when dealing with much broader families
of PSDs or when the filter is meant to be operated as a
blind denoiser for correlated noise (see, e.g., the analysis in
[58]). In this regard, transform-domain filters in general, and
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Table IV
A FEW ALTERNATIVE APPROXIMATIONS OF Ψek

case approximated Ψek
≈ approximations of other terms H1 H2

A0 Ψsk
+Ψlk as (14) Ψsk

as (17), Ψlk as (20) exact exact
A1 Ψsk

Ψsk
as (17) exact exact

A2 Ψbk−1
as in [30], [31], [36] n/a exact inexact

A3


Ψ

M†Mek
[ξ]

f
M†M[ξ]

if f
M†M[ξ] 6=0,

0 otherwise.

Ψ
M†Mek

≈
inexact exactΨ

M†(Mzk−y)
+Ψ

M†ε

A4

Ψ
M†Mek

≈
inexact exact(

Ψ
1/2

M†(Mzk−y)
+Ψ

1/2

M†ε

)2
A5 Ψbk−1

+Ψxk−1−x Ψ
1/2

M†M(xk−1−x)
≈ exact inexact∣∣Ψ1/2

M†rk−1
−Ψ

1/2

M†ε

∣∣ ,
A6

(
Ψ

1/2
bk−1

+Ψ
1/2
xk−1−x

)2 exact inexact

specifically the BMxD employed in our manuscript, can work
out-of-the-box for arbitrary PSDs and are thus well suited for
dealing with the unknown and varying noise correlation that
is encountered during the iterative recovery. As an alternative
to using a learned deep denoiser within a PnP framework, it
is sometimes preferred to employ unrolled algorithms such
as the learned ISTA (LISTA) (e.g., [59] for a review) that
solve the inverse problem through a neural network where
each subsequent layer corresponds to a further iteration of the
recovery algorithm. We speculate that their good performance
is partly due to the fact that the parameters learned from end-
to-end training do implicitly model the filtering of correlated
noise across the various iterations, instead of simple AWGN
residuals.

C. Alternative Approximations of Effective Noise PSD Ψek

In this paper we use (14), (17) and (20) to approximate
Ψek. However, there are alternative ways to approximate Ψek

based on different simplifying assumptions; some of these
alternatives are summarized in Table IV. Although these are
appealing due to their simplicity, we favor approximations that
are exact for Qy(v)= 1

2‖M
†(y−Mv)‖22 in (2) used in the

experiments, under any of these two idealistic hypotheses:
H1: xk−1 =x (ideal recovery),
H2: y=x (complete direct measurements, noise-free).

It can be shown that only A0 and A1 are exact under each
hypothesis. Despite its defects, A0 leads to better results in
most cases and is hence adopted in this work.

D. Estimating Effective Noise PSD Ψek from zk

The above estimation strategies and approximations are all
more involved than the direct estimation of Ψek from the
noisy image zk. To justify the burden and demonstrate the
overestimation occurring when the noise PSD is estimated
directly from zk (7), we conduct the experiments of Sec-
tion VI-A with BM4D PnP-ADMM under setting C and C∗

where σT3D(ek) is now estimated from zk (7) using a robust
estimator (see Appendix B) as a means to decrease the effect
of signal contamination on the estimated PSD. For the set of
SNR = {∞, 25, 15} dB, these experiments under C and C∗

respectively obtain {11.2, 8.6, 5.4} dB and {11.0, 6.0, 4.6} dB
lower PSNR compared to their corresponding results in Ta-
ble I, while λ∗={3.1, 2.9, 3.1} in this C∗ setting (smaller

than λdflt=3.7, revealing overestimation). These significantly
inferior results confirm the importance of designing viable
PSD estimation strategies for general PnP recovery problems.

E. Wiener filtering

In our experiments, the Wiener stage of BMxDs is not used
since it depends more crucially on a precise noise model, and
also it does not typically bring improvement to the recovery
because it is rather weak as a sparsity-promoting regularizer.

F. Computational Complexity

Denoising correlated noise is slightly more expensive than
denoising AWGN, with main differences consisting in the
use of nonuniform shrinkage thresholds. For instance, with
the BM3D MATLAB/C implementation, the denoising step of
the experiments in Section VI-C, takes respectively 0.21 and
0.29 seconds per iteration (Intel Core i7-7700HQ 2.8-GHz
CPU) for the W1/W2/W∗2 and C/C∗ settings, respectively.
The adaptive estimation of the PSD of ek at every iteration (see
Appendix B) has marginal complexity compared to BMxD
denoising itself, taking 0.06 seconds (MATLAB).

VIII. CONCLUSIONS

We studied the effective noise ek in sparse signal recovery,
modeling it as a generic stationary correlated noise, and
introduced a comprehensive methodology for its estimation
and effective attenuation within established PnP iterative ap-
proaches. Through extensive analysis, we have demonstrated
that:
1. Significant correlation in ek is commonplace.
2. This correlation can occur also when measurements y are
noise-free, i.e. ε=0, and even under a PnP AWGN denoiser.
3. Filters for correlated noise can use in PnP a strength pa-
rameter λ close to the default value for stand-alone denoising,
thus allowing effective recovery without separate tuning of λ.
4. Modeling ek as correlated noise improves recovery quality.
Overall, we have shown the rationale, feasibility, and practical
advantages supporting the adoption of a correlated noise model
for ek over the common AWGN model.

APPENDIX A
NOISE MODELING IN BMXD FILTERS

A. Stationary Correlated Noise Modeling in BM3D/BM4D

BM3D [43] operates by stacking mutually similar b×b
blocks into 3D arrays called groups. Groups are filtered
collaboratively to obtain distinct estimates for each block.
Let zc

k denote a block extracted from zk at position c, and
let Z denote a generic group formed by stacking h blocks
{zci
k }hi=1. The collaborative filtering of Z can be defined anal-

ogous to (21)-(22) as Z̃=T −13D

(
Υ(T3D(Z), λσT3D(Z))

)
, where

T3D =T2D⊗T1D is a separable 3D transform, ⊗ denotes the
tensor product, and σT3D(Z) is the T3D noise root-PSD of Z.
Here T2D is a spatial transform for b×b blocks and T1D is a
“nonlocal” 1D transform applied along the stacking dimension.
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The 3D array Z̃ is treated as a stack of estimates of the noise-
free blocks, which are aggregated to their original positions
{ci}hi=1 within the image using adaptive weights.

Under the simplifying assumption that noise in a block is
independent from the noise in any other block11, and due to the
orthonormality of T1D along the third dimension, the T3D noise
PSD of a group Z is the stacked replica of the T2D noise PSD:

σ2
T3D(Z)[ξ1, ξ2, ξ3] = var

{
T3D(Z)

}
[ξ1, ξ2, ξ3] =

= var
{
〈Z, φξ1,ξ2T2D

⊗ φξ3T1D
〉
}

=

= var
{
T2D(zci

k )[ξ1, ξ2]
}

=σ2
T2D(ek)

[ξ1, ξ2],

(26)

where ξ1, ξ2 and ξ3 are, respectively, the two spatial and the
nonlocal components in the T3D domain, zci

k is any of the
blocks stacked in Z, and σ2

T2D(ek)
denotes the T2D-PSD of

ek
12. The T2D-PSD σ2

T2D(ek)
is computed according to (23) as

σ2
T2D(ek)

[ξ1, ξ2]=n−2‖Ψek�F 2(φξ1,ξ2T2D
)‖1.

BM4D [26] is the extension of BM3D to 3D data. It operates
by grouping h mutually similar b×b×d cubes of voxels into
4D arrays which are then filtered collaboratively. BM4D mod-
els ek as stationary noise correlated in all three dimensions,
with σ2

T3D(ek)
denoting the T3D-PSD of ek. Analogous to (26),

the T4D noise PSD of a 4D group Z

σ2
T4D(Z)[ξ1, ξ2, ξ3, ξ4] = var

{
〈Z, φξ1,ξ2,ξ3T3D

⊗ φξ4T1D
〉
}

=

= σ2
T3D(ek)

[ξ1, ξ2, ξ3],
(27)

where ξ1, ξ2, ξ3 are the spatial components and ξ4 is the non-
local component in the separable T4D =T3D ⊗ T1D domain13.

B. Stationary Correlated Noise Modeling in RF3D

The video denoiser RF3D [44] aggregates a multitude
of motion-compensated spatiotemporal volumes which are
filtered in a transform domain. A generic spatiotemporal
volume Z is formed by concatenating b×b blocks extracted
from h consecutive frames of zk into a b×b×h array. The
collaborative filtering of Z via shrinkage in T3D domain and
estimate aggregation are performed analogous to BM3D.

Specific to RF3D is a model of ek as a combination of
two frame-wise components: a random noise eRNDk that is
independently realized at every frame, and a fixed-pattern
noise (FPN) eFPNk that is constant in time. Thus, in a set of n3
frames, there are n3 independent realizations of eRNDk and n3
copies of a unique realization of eFPNk. Both eRNDk and eFPNk
are zero-mean processes and each features its own spatial
correlation with 2D PSDs ΨRNDk and ΨFPNk , respectively.
Overall this corresponds to a spatiotemporally correlated noise
ek whose 3D PSD Ψek is formed by replicating the 2D
ΨRNDk along the temporal frequencies plus n3ΨFPNk over the

11An improved BM3D with exact calculation of σ2
T3D(Z)

(i.e. without
assuming noise independence from block to block) was recently introduced
[60] but is not adopted here so to maintain consistent PSD modeling with
BM4D and also enable direct comparison with earlier works.

12The slight abuse of notation for σ2
T2D(ek)

(T2D is defined for blocks,
not for the entire ek) follows from noting that, due to the assumed noise
stationarity, any block extracted from ek is subject to same variances
var
{
T2D(z

c
k)
}

, irrespective of the block position c.
13For the experiments in Section VI-A, ξ3 represents the spectral compo-

nent (i.e. wavelengths) of the multispectral image.

temporal-DC plane. The T3D-PSD of noise in a spatiotemporal
volume Z formed by blocks extracted at positions {ci}hi=1 from
h consecutive frames is then

σ2
T3D(Z)[ξ1, ξ2, ξ3] = σ2

RNDk [ξ1, ξ2]

+ α
(
ξ3, {ci}hi=1

)
σ2

FPNk [ξ1, ξ2] ,
(28)

where σ2
RNDk and σ2

FPNk are the T2D-PSDs of eRNDk and eFPNk
respectively computed from ΨRNDk and ΨFPNk according
to (23), and the factor α>0 internally computed by RF3D
depends on the temporal frequency ξ3 and on the spatial
alignment of the blocks within the frames [44, Section IV-
D] and thus changes adaptively for each volume. Computing
σ2
T3D(Z) via a pair of 2D PSDs as in (28) is more efficient than

the formal computation with the 3D Ψek assumed by (23).

C. Simplification under AWGN Modeling in BMxD Filters

When ek is modeled as AWGN ek∼N (0, σ2
ek

In), (26) for
BM3D and (27) for BM4D reduce respectively to

σ2
T3D(Z)[ξ1, ξ2, ξ3] = σ2

ek
‖φξ1,ξ2T2D

‖22 , (29)

σ2
T4D(Z)[ξ1, ξ2, ξ3, ξ4] = σ2

ek
‖φξ1,ξ2,ξ3T3D

‖22 . (30)

Under the AWGN model ek∼N (0, σ2
ek

In) there can be no
FPN and thus for RF3D σFPNk =0 and (28) reduces to (29).

When ‖φξT ‖2 =1, which holds for all BMxD transforms in
this work, both (29) and (30) further simplify to a constant
independent of ξ : σ2

T (Z) ≡ σ
2
ek

.

APPENDIX B
ADAPTIVE NOISE PSD ESTIMATION

IN SPARSE SIGNAL RECOVERY

The local FFT-PSD of a stationary noise can be estimated
as the sample variance of its local FFT spectrum computed
over a moving window, as each position of the window can
be treated as a different realization of the noise. Specifically,
we first separately estimate the local FFT-PSDs of wk and
M†ε, which following (17) give the local FFT-PSD of sk.
Even though M†ε is unavailable, we can generate a noise
ε̂ with the same statistics as ε, and then apply the moving
window onto M†ε̂ 14. To estimate the local FFT-PSD of lk,
the local versions of fM†M and fM⊥ should be computed. To
this end, we can compute the local FFT-PSDs of M†Mη and
M⊥η for a standard AWGN η, which upon division by the
size of the window respectively coincide with local versions
of fM†M and fM⊥ . These, together with the local FFT-PSDs
of M†rk−1 and M†ε, give the local FFT-PSD of lk as per
(20). Finally, by (14), we obtain the local FFT-PSD of ek,
which is then upsampled to a global FFT-PSD, constituting
an estimate Ψ̂ek of Ψek . For the upsampling, we use the con-
strained nonnegative least-squares method [40, Section 6.3.2],
enforcing smoothness and symmetries of Fourier PSDs.

14As an alternative to the moving window method, for an AWGN ε
with variance σ2

ε , each entry of the local FFT-PSD of M†ε can also be
computed as n−2

∥∥ΨM†ε�F2(φξT )
∥∥
1

with T being the small size FFT

and ΨM†ε[ξ]=var{〈M†ε, φξF 〉}=σ
2
ε‖φ

ξ
F

>
M†‖22. The local versions of

fM†M and fM⊥ can be computed similarly.



14 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING

This approach is used directly for the experiments in Sec-
tion VI-C with BM3D, where the 2D PSD Ψek is estimated
starting from 2D moving-window analyses of 2D wk, M†ε,
M†rk−1 and, likewise, for the experiment in Sections VI-A
and VI-D with BM4D, where PSDs and moving windows are
3D. For the video-recovery experiments in Section VI-B with
RF3D, we take advantage of the special structure assumed
by the 3D PSD Ψek and estimate instead its frame-wise 2D
components ΨRNDk and ΨFPNk . Since eFPNk is temporally
invariant and eRNDk is zero-mean, we can estimate them as
êFPNk=ek and êRNDk=ek− êFPNk , where the decoration ·
stands for the temporal mean over all frames in the video.
The same separation carries over to M†ε, wk, and M†rk−1,
which can be split into their respective FPN subcompo-
nents (i.e. M†ε, wk, M†rk−1) and “RND” subcomponents
(i.e. M†ε−M†ε, wk−wk, M†rk−1−M†rk−1). We estimate
the 2D FFT-PSDs of each of these six subcomponents via
a local 2D FFT analysis as above, which upon combination
like in (17), (20) and (14), and subsequent upsampling, gives
Ψ̂RNDk and Ψ̂FPNk .

We note that using a small moving window can limit the fre-
quency resolution of the PSD, while a bigger moving window
yields fewer samples for PSD estimation. We used moving
windows of size 31×31×13 for the CAVE multispectral
images in Section VI-A, 31×31 for the NBA and water balloon
sequences in Section VI-B, 21×18 for the 2D Brainweb
cross-sections in Section VI-C, and 15×15×15 for the 3D
Brainweb volume in Section VI-D. We remark that the local
FFT-PSDs corresponding to these moving windows, while
of course smaller than the global PSDs, have nevertheless
orders of magnitude more degrees of freedom than the simple
representations of noise correlation through the variances of
individual wavelet subbands [32], [36]–[39].

The above local definition of fM†M can also improve
the conditioning in the definition (20). In particular, for the
experiments with binary sampling of the Fourier spectrum in
Sections VI-C and VI-D, the proportion of zeros of fM†M is
substantially lower for its local version, which leads to a better
approximation of Ψek .

For the comparative illustrations of root-PSDs in Figures 3,
5, 9, 12 and 13, we compute “oracle” Ψek by upsampling the
local FFT-PSD of a single realization of the oracle effective
noise ek=zk−x, computed too over a moving window.

To estimate Ψek from the noisy image zk (8) in Sec-
tion VII-D, we apply the sample MAD [41] over the local
FFT-spectra of zk computed over a moving window, followed
by upsampling.

APPENDIX C
TECHNICAL DETAILS OF THE EXPERIMENTS

A. Compressive Spectral Imaging (Section VI-A)

In (1), x represents the multispectral image vectorized
starting from the spectral dimension, M is a m×16m block-
diagonal matrix, where each block is a binary row vector
of length 16 (number of bands) extracted from the pseudo-
random shifting mask in reverse direction to its shifting, and
y are spectrally compressed measurements.

For Qy(v)= 1
2‖M

†(y−Mv)‖22, (3b) is solved as

xk = ρk
ρk+1M†y +

(
In − ρk

ρk+1M†M
)
(uk − bk−1) . (31)

GPSR-BB solves (2) for an analysis-based `1 regularization
with Qy(v)= 1

2‖y−Mv‖22 and R(v)=‖T (v)‖1, where T
is the 3D separable composition of 2D Symlet-8 wavelet
transform for the spatial dimensions and 1D DCT along
the spectral dimension [52]. TwIST is based on a similar
formulation, with the gradient operator instead of T , thus
solving (2) for the total-variation regularizer. Similar to W∗2,
GPSR-BB and TwIST include an explicit parameter γ from
(2) that was separately optimized at kfinal =3000.

B. Compressive Temporal Imaging (Section VI-B)

Here x is the concatenation of all consecutive video chunks,
where each chunk is vectorized first in time and then in
space, M is a m×8m block-diagonal matrix comprised of 4
(number of chunks) identical m4 ×

8m
4 block-diagonal matrices,

where each block is a binary row vector of length 8 (number
of frames per chunk) extracted from the mask in reverse
direction to its shifting, and y are the temporally compressed
measurements. The solution of (3b) is similar to (31).

MMLE-GMM [53] maximizes the likelihood of the Gaus-
sian mixture model of x given y.

For the water balloon data, M is formalized as a m×10m
block-diagonal matrix where each block is a row vector of
length 10 (number of frames), providing a single snapshot
measurement y shown in Figure 10. Since the ground-truth
video is unavailable, the tuning of parameters ρ∗, γ∗, and λ∗

(where applicable) is made for the recovery of a test video
from simulated acquisition by the same M subject to synthetic
AWGN ε with variance σ̂2

ε .

C. 2D Tomography (Section VI-C)

Let F be the forward FFT matrix with F†Fx=x, then in (1)
M=DF where D is a downsampling matrix composed of m
rows of In and y are k-space measurements of the vectorized
image x. For Qy(v)= 1

2‖M
†(y−Mv)‖22, (3b) is solved as

xk = F†
(
(D†D+ρ−1k In)−1

(
D†y+ρ−1k F(uk−bk−1)

))
.

Nonnegativity is then enforced by updating xk 7→max(xk,0).

D. 3D Tomography (Section VI-D)

Here (1) is analogous to the one above, only with x a vec-
torized 3D volumetric image. We zero-pad the 181×217×181
BrainWeb phantom [56] to 217×217×217 and then trilinearly
resize it into a 64×64×64 magnitude.
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