
1

Anisotropic Denoising of
3D Point Clouds by Aggregation of

Multiple Surface-Adaptive Estimates
Zhongwei Xu, Alessandro Foi, Senior Member, IEEE

Abstract—3D point clouds commonly contain positional errors which can be regarded as noise. We propose a point cloud denoising

algorithm based on aggregation of multiple anisotropic estimates computed on local coordinate systems. These local estimates are

adaptive to the shape of the surface underlying the point cloud, leveraging an extension of the Local Polynomial Approximation (LPA) -

Intersection of Confidence Intervals (ICI) technique to 3D point clouds. The adaptivity due to LPA-ICI is further strengthened by the

dense aggregation with data-driven weights. Experimental results demonstrate state-of-the-art restoration quality of both sharp

features and smooth areas.

Index Terms—3D Point Cloud, denoising, anisotropic, surface-adaptive filtering.

✦

1 INTRODUCTION

POINT-CLOUD data, which consist of collections of 3D
point locations along with some other affiliated proper-

ties (colors, point orientations, etc.) discretely representing
3D scenes or objects, are widely used in many applications,
including cultural heritage preservation [1], autonomous
vehicles [2] and virtual reality [3]. These data can be the
direct output of various 3D scanning devices, or be com-
puted from photographs taken at multiple viewpoints using
photogrammetry techniques [4], [5]. Such adaptive proce-
dures are invariably prone to errors, e.g., due to vibrations
or scattering during the scanning process, or because the
multi-view photographs are not ideal (e.g., subject to re-
flections, over or under exposed, blurred, grainy). These
measurement errors result in noise corrupting the positions
of the points in the cloud. To permit the most effective use
of the acquired point clouds, it is essential to first remove
the noise.

In this paper we develop an anisotropic denoising al-
gorithm for point clouds based on a dense aggregation of
moving least squares (MLS) estimates defined on directional
neighborhoods that are locally adaptive to the shape of
the surface underlying the point cloud. Specifically, the
Local Polynomial Approximation (LPA) - Intersection of
Confidence Intervals (ICI) technique [6], [7] is employed
to automatically determine adaptive directional neighbor-
hoods for each point. This procedure identifies the largest
neighborhoods whose content fits the desired polynomial
smoothness; hence they avoid edges and singularities and
constitute a robust adaptive support for a local polynomial
MLS estimation. The final estimate of the point cloud is ob-
tained by combining all overlapping local estimates through
a novel regularized aggregation procedure specific for point

• Z. Xu is with Noiseless Imaging Oy (Ltd), 33720, Tampere, Finland. E-
mail: xu@noiselessimaging.com

• A. Foi is with Tampere University, 33720, Tampere Finland, and with
Noiseless Imaging Oy.

clouds.
The LPA-ICI technique was originally developed for the

pointwise adaptive nonparametric estimation of 1-D sig-
nals [6], and further developed into an adaptive anistropic
filter for images and videos. Thanks to its design flexibility
and accurate adaptation to the geometry of the image con-
tent, it has found successful application to image denoising
and other image and video restoration tasks [8]. These
properties make it a natural candidate also for dealing with
point cloud data.

The specific technical contributions in this work include:

• the design of the adaptive anisotropic neighborhood
structure with respect to the local coordinate system
(LCS);

• a novel aggregation strategy where the final estimate
simultaneously fits all overlapping local estimates;

• a robust method for estimating the noise variance of
noisy point clouds;

• a robust method for estimating the surface sample
density of point clouds;

• a fully automatic algorithm for point cloud denoising
that embeds the above four items and can adapt to data
with unknown sampling density and noise variance;

• a scheme for the efficient recursive application of this
point cloud denoising algorithm.

2 RELATED WORK

Many algorithms for point cloud denoising have been pro-
posed in the last two decades. A classical approach based
on the MLS approximation is introduced in [9]. However,
due to fixed circular symmetric (isotropic) weights in the
MLS, this method tends to over-smooth sharp features in
the point cloud. This issue has been addressed by various
anisotropic approaches: [10] extended the popular bilateral
filter from image [11] and mesh denoising [12] to point cloud
denoising; by first detecting the location of sharp features,

2

[13] classifies piecewise smooth regions that are separately
filtered, while [14] applies piecewise polynomials (splines)
for better local approximation of smoothness and singulari-
ties. The anisotropic mean curvature flow technique is em-
ployed by [15] and [16] to recognize and recover the sharp
edges during the filtering; [17] takes the bilaterally filtered
point normals as the indicator of surface discontinuities
(sharp features), then treats the points from the other side of
the discontinuity as outliers during their robust approxima-
tion procedure, thus preserving sharpness. Sparse recovery
methods using global ℓ1 and ℓ0 minimization are presented
in [18] and [19], respectively, demonstrating the potential
to reconstruct sharp edges of basic geometrical objects (e.g.,
dodecahedron, pyramid) even when the noise level is high.
The locally optimal projection (LOP) operator introduced
in [20] incorporates multivariate ℓ1 median fitting and a
repulsion function to project a number of evenly distributed
points onto the underlying surface of the noisy point cloud.
Due to desired features such as not relying on local orienta-
tion of the input noisy points and robustness to outliers, sev-
eral algorithms were developed based on LOP: [21] acceler-
ates the time-consuming LOP operator by describing local
point distribution with a Gaussian mixture model (GMM);
since both [20] and [21] still run in an isotropic manner,
[22] and [23] adopted a strategy similar to that introduced
in [17] by incorporating the filtered normal information
of the input points in their LOP-like projection operators,
making them anisotropic. The idea of implementing signal
processing on graphs [24] for point cloud denoising appears
in [25], where convex optimization is applied on the graph
structure built on the noisy point cloud. More recently, [26]
proposed a rolling filter for removing small-scale geometric
features in a point cloud while retaining the large-scale
structures.

Due to the crucial role orientation played in many point
cloud processing applications, such as surface reconstruc-
tion and point-based rendering, considerable efforts were
also invested in developing accurate normal estimation
algorithms. The main challenge is obtaining correct normals
at points close to sharp features, where the estimate of
normal based on local neighborhood is often corrupted by
points from different sides of the surface discontinuities.
Techniques proposed to tackle this issue, include the itera-
tive bilateral normal filtering [17], the anisotropic neighbor-
hood based estimation [27], low-rank approximation using
non-local similarities [28], and deep-learning based meth-
ods [29], [30]. We note that our proposed algorithm does
not crucially rely on an accurate normal estimation of each
point, as we explain further in this paper, thus we adopt
just the standard approach of local principal component
analysis (PCA) [27] due to its simplicity and computational
efficiency.

The proposed method possesses several advantages over
previous approaches to point cloud denoising: compared to
methods based on bilateral weights [10], [17], the LPA-ICI
is intrinsically more robust, because it is based on testing
the statistical consistency of a multiscale sequence of local
estimators, rather than the mere position of individual noisy
samples, this makes our method more effective under heavy
noise; by utilizing asymmetric directional neighborhoods for
the LPA-ICI, we can adapt to edges and discontinuities

Fig. 1. Adaptive isotropic neighborhoods (left) and adaptive directional
neighborhoods (right) indicated by black curved lines for a point (in red)
located close to a sharp edge in a 2-D noisy point cloud. Using adaptive
directional neighborhoods provides larger supports for a local estimate
even when the points are close to sharp features.

using much larger supports (hence stronger noise attenu-
ation) than classical MLS based on symmetric weights, as
illustrated in Fig. 1; as known from image denoising [31],
the aggregation of the overlapping local estimates improves
the stability and quality of the estimation; with the proper
modeling of the residual noise in the denoised point cloud,
further iterations of the proposed denoising algorithm allow
to attenuate more noise without distorting fine features;
thanks to its adaptivity and rigorous statistical modeling,
our method is able to preserve the structure and fine features
faithfully and with metrological accuracy, without incur-
ring in oversimplification of the fine geometries or shape
bias such as can be observed in [18], [19]; unlike LOP-
like anisotropic algorithms [22], [23], the proposed method
does not introduces gaps near sharp edges, thus the post-
upsampling process for filling the gaps, which is not cheap
and error-prone, is avoided.

At the time of writing of the present paper, methods
based on deep neural networks are making their debut
for denoising point clouds [32], after impressive results
were already demonstrated for the restoration of images
and videos (e.g., [33], [34], [35]). These methods, designed
for powerful parallel GPUs, crucially depend on expensive
training over massive datasets and are often impaired when
the data to be filtered deviates significantly from the training
material. As a model-based method, the proposed algorithm
does not rely on training and thus generalizes and adapts to
multiple sampling and measurements scenarios, where it at-
tains consistent quality without need of additional training.

3 OBSERVATION MODEL AND NOTATION

We consider a noisy point cloud P = {pi, i = 1, . . . , I} of
the form

pi = qi + ηi, pi, qi, ηi ∈ R
3,

where qi is a point from the unknown noise-free point cloud
Q, ηi ∼ N (µ,Σ) is i.i.d. zero-mean Gaussian white noise,

with µ = [0, 0, 0]
T

and Σ = σ2
1, 1 being the 3×3 identity

matrix.
Each point is a 3-component column vector representing

a spatial position in R
3. We assume that point clouds are dis-

crete noisy samples of an underlying surface (2-dimensional
manifold) which we denote by S . As the noise is modeled
as isotropic, the point-to-surface error measured along the
normal to the surface has also variance σ2.

The aim of denoising is to obtain from P a point cloud

Q̂ = {q̂i, i = 1, . . . , I} that is close to S , while not being
necessarily close to Q.

Since we focus on positional noise filtering, in this work
we expect the input noisy point clouds are without normal
information, as well as the denoised ones.

3

Noisy P

σ2 and δ

Estimation

(4.1)

δ̂

σ̂2

LCS

Construction

(4.2)

Pointwise

LPA-ICI

(4.3.2, 4.3.3)

Adaptive

Directional

Sizes

Local

Estimate

(4.4)

Aggregated

Estimate

(4.5)

σ̃2

(4.6)

Denoised Q̂

Second iteration (4.6)

Fig. 2. Flowchart of the proposed point cloud denoising algorithm (indices of the corresponding subsections are in parentheses). Taking an un-
oriented and un-organized point cloud P as the input, our algorithm first estimates its noise variance σ2 and surface sample density δ (Section 4.1),
which are utilized throughout our algorithm enabling adaptivity to point clouds of various scales and noise levels; the local coordinate system (LCS)
for each point pi ∈ P is then computed (Section 4.2) using local PCA and employed for building the directional neighborhoods of pi, which have
shape of right rectangular prisms (Section 4.3.1 and Fig. 4); thereafter, the LPA-ICI technique is applied within the LCS of pi to select the adaptive
size for each directional neighborhood of pi, such that the directional neighborhoods are large in smooth areas and small when approaching sharp
edges (Sections 4.3.2, 4.3.3, and Fig. 6); with its own directional neighborhoods, we can already compute the local estimate of pi (Section 4.4),
however it is a rather weak estimate; a novel strategy to aggregate the overlapping adaptive local estimates (Section 4.5) of pi is therefore introduced
to gain more stable and finer estimation; a second iteration of this denoising process can be applied on the denoised Q̂, by modeling the residual
noise variance σ̃2 in Q̂ (Section 4.6). The dashed arrows indicate the start of the second iteration.

Fig. 3. Computation of the LCS for a point in the noisy Bunny point cloud.
Left: a point (in yellow) and its KNN (in green); right: zoomed-in view of
the KNN and the three principal axes of the LCS (red and blue being the
first and second principal axes, and black being the third principal axis).

4 PROPOSED DENOISING ALGORITHM

Fig. 2 provides a flowchart of the proposed algorithm, with
the pipeline summarized in the caption, which we describe
in detail in the following subsections.

4.1 Surface sample density and noise variance estima-

tion

In order to develop a robust and practical denoising al-
gorithm suitable for real world use cases, where often the
essential information of P , i.e. its noise variance σ2 and
surface sample density (denoted by δ), are unknown, we
introduce a novel strategy to estimate them, as we detail in
Appendix I, and utilize these two parameters throughout
the proposed algorithm.

4.2 LCS construction

For each point pi ∈ P , we find its K nearest neighbors
(KNN) and compute their three principal components, de-
noted by ci, di, and ei (1st, 2nd, and 3rd components,
respectively). These are three column vectors of unit norm
(i.e. versors). The LCS of pi, denoted by Li, is then built
having pi as its origin and using ci, di, and ei as the versors
of its three axes, as illustrated in Fig. 3. This is an efficient,
yet rudimentary, approach for LCS construction. The versors
ci and di span a plane that, roughly, is locally parallel to the
underlying surface at pi, while ei acts as the local surface
normal [27].

The local coordinates of any point pm ∈ P with respect
to Li are denoted as pLi

m [xLi
m , yLi

m , zLi
m]T and they can be

easily computed by pLi
m = [ci, di, ei]

T (pm − pi). Trivially,
pLi

i = [0, 0, 0]T and cLi

i = [1, 0, 0]T , dLi

i = [0, 1, 0]T , eLi

i =
[0, 0, 1]T .

Although this simple LCS computation provides only a
rough estimate of the local surface orientation and normal,
this does not reflect into the quality of the final point-cloud
estimate by our algorithm. As explained in the following
sections, the LCS is used to define an adaptive directional
neighborhood and, due to adaptivity, the resulting neigh-
borhood is only marginally impacted by moderate errors in
the surface normal estimation.

4.3 Adaptive directional sizes

The idea of anisotropic LPA-ICI is to model the local
smoothness of the underlying surface S with respect to dif-
ferent directional neighborhoods with varying sizes. Points
within each directional neighborhood are treated as part
of a locally smooth portion of S , where a low-order local
polynomial model fits the data. Anisotropy follows from
allowing neighborhoods along different directions to have
different sizes. Compared to adaptive isotropic neighbor-
hoods, the adaptive directional ones can attain large sizes
even in areas that are close to sharp features, thus providing
better supports for local estimates, as illustrated in Fig. 1.

In the following subsections, we concentrate on the
peculiar and novel aspects involved when considering the
LPA-ICI for point clouds. We refer our readers to [36], [37],
[38] for details about this versatile established technique.

4.3.1 Structure of the directional neighborhoods

In case of point clouds, directional neighborhoods are sub-
volumes of R

3 which are intersected with P in order to
select points. Concretely, for each pi, we consider four
directional neighborhoods each within the four quadrants
defined by the first two principal axes of Li. Each directional
neighborhood is a right rectangular prism, as illustrated by
the example in Fig. 4. The base of the prism is a h×h square,
where h defines the size of the directional neighborhood;
the height of the prism is, by construction of Li, along
the normal and it is set equal to max {6σ, 2h}, so that the
prism is tall enough to include noisy samples from the
neighborhood of pi (i.e. ±3σ about the floor of the LCS)
without intersecting other portions of the manifold.

4

u
i ,

π

4

h

Fig. 4. The directional neighborhoods of pi, as seen from atop (along
the zLi axis of the local coordinate system) (left) and sideways (right).
The arrow with angle ϑ = π

4
indicates the direction of the neighborhood

in red, denoted by uh
i,π

4

; the blue plane represents the (xLi , yLi)-plane;

the magenta, green, and black lines represent the three axes of the local
coordinate system Li.

We denote each directional neighborhood of pi as uh
i,ϑ,

where h ∈ R
+ is the size and ϑ ∈ Θ =

{

π
4 ,

3π
4 , 5π

4 , 7π
4

}

gives
direction within the (xLi , yLi)-plane, as also shown in Fig. 4.
Further, let Mh

i,ϑ be the indices of the points inside uh
i,ϑ,

i.e. P ∩ uh
i,ϑ =

{

pm,m ∈ Mh
i,ϑ

}

. For h=0 we set u0
i,ϑ={pi}

and M0
i,ϑ = {i}, because the probability that u0

i,ϑ contains
any point other than pi is equal to zero.

4.3.2 Pointwise polynomial estimate

The fitting of the local polynomial model over each direc-
tional neighborhood is operated through the LPA kernels
ghi,ϑ, which are computed with respect to the coordinates

xLi
m , yLi

m , m ∈ Mh
i,ϑ, as

ghi,ϑ(k) = φ(k, :)
(

φTφ
)†

φ(1, :)T, k=1, . . . ,
∣

∣Mh
i,ϑ

∣

∣, (1)

where † is the matrix pseudoinverse, φ(k, :) denotes the
k-th row of φ, and the matrix φ is formed by horizontal
concatenation of column vectors φl,r of length

∣

∣Mh
i,ϑ

∣

∣, each
representing a bivariate monomial with non-negative inte-
ger exponents l, r for the polynomial approximation:

φ = [φ0,0 , · · · , φl,r , · · ·] ,

φl,r=

(

xLi
m1

)l(
yLi
m1

)r

...
(

xLi
mk

)l(
yLi
mk

)r

...

,
{

mk

}|Mh
i,ϑ|

k=1
= Mh

i,ϑ .

For an order-O LPA, the degree of each monomial φl,r

entering φ is restricted to l+r ≤ O; thus the matrix φ has
size

∣

∣Mh
i,ϑ

∣

∣×3 and
∣

∣Mh
i,ϑ

∣

∣×6 for order-1 and order-2 LPA,
respectively. In our algorithm we set m1 = i (i.e. the index
of the current point pi), thus xLi

m1
= yLi

m1
= 0 and for order-1

LPA, φ(1, :) = [1, 0, 0].
These kernels yield a polynomial approximation of the

normal elevation of S at pi with respect to Li as

(z̃Li

i)hϑ =

|Mh
i,ϑ|
∑

k=1

zLi
mk

ghi,ϑ(k) . (2)

Due to the specific construction (1), the LPA approximation
(2) is equivalent to first solving a least-squares fitting prob-
lem over the polynomials of order O,

α∗ = argmin
α

|Mh
i,ϑ|
∑

k=1

(

zLi
mk

−
∑

l+r<O

αl,r

(

xLi
mk

)l(
yLi
mk

)r

)2

, (3)

(z̃Li

i)h1

ϑ

(z̃Li

i)h2ϑ

(z̃Li

i)h4ϑ

(z̃Li

i)h1

ϑ(z̃Li

i)h3ϑ

+
i,ϑ

Fig. 5. Illustration of the Intersection of Confidence Interval (ICI) rule.

and then sampling the fitted polynomial at
(

xLi
m1

)l(
yLi
m1

)r
:

(z̃Li

i)hϑ =
∑

l+r<O

α∗
l,r

(

xLi
m1

)l(
yLi
m1

)r
.

4.3.3 Adaptive size selection

Anisotropy of the estimate entails the adaptive selection of
the size of the directional neighborhood of each point and
for each direction. We employ the ICI technique for this task.

Concretely, let H = {h1, . . . , hJ} ⊂ R
+ be a predefined

set of increasing sizes and compute (2) for each h ∈ H , using
the same fixed polynomial order for all sizes and yielding
a set of estimates {(z̃Li

i)h1

ϑ , . . . , (z̃Li

i)hJ

ϑ }. Since Mh
i,ϑ grows

with the size h, these estimates are characterized by decreas-
ing variance and increasing bias with h. Although the bias
is unknown, the pointwise variance is easily computed as

(

σh
i,ϑ

)2
= σ2‖ghi,ϑ‖22 . (4)

The ICI rule selects from {(z̃Li

i)h1

ϑ , . . . , (z̃Li

i)hJ

ϑ } an adap-

tive estimate (z̃Li

i)
h
+

i,ϑ

ϑ that aims at optimizing the bias-
variance trade-off. Specifically, the ICI progressively inter-
sects the confidence intervals associated to the estimates,
starting from the smallest size h1 and increasing the size as
long as the intervals have a common non-empty intersec-
tion. The confidence interval Dj is computed as,

Dj =
[

(z̃Li

i)
hj

ϑ − Γσ
hj

i,ϑ, (z̃
Li

i)
hj

ϑ + Γσ
hj

i,ϑ

]

(5)

where Γ > 0 is a threshold parameter.
The adaptive size h+

i,ϑ is the largest one before the in-
tersection is empty. The corresponding adaptive directional
neighborhood is denoted as u+

i,ϑ. Ideally, if all estimates are
unbiased, the corresponding confidence intervals have (with
overwhelming probability), a common intersection which
contains the true value of the normal elevation, and the
ICI selects the largest neighborhood. An illustration of ICI
rule is drawn in Fig. 5. The idea of the LPA-ICI is that, by
monitoring the intersection of the confidence intervals, it
is able to detect the increase of bias that results from the
neighborhoods expanding over an edge or sharp features
incompatible with the assumed polynomial smoothness,
and it adaptively balances this with the decreasing variance,
towards minimization of the mean squared error [6].

In Fig. 6, we show examples of the adaptive directional
neighborhoods computed by the LPA-ICI for three points
located within a smooth area, in the vicinity of an edge,
or in the vicinity of a corner in a noisy Cube point cloud.
Parameters of the ground-truth Cube point cloud, as well as

5

Fig. 6. Examples of the adaptive directional neighborhoods computed by
LPA-ICI for three points located within a smooth area (left), in the vicinity
of an edge (center), and in the vicinity of a corner (right) in the noisy
Cube point cloud (noise σ=0.4), as visualized from atop (top) and side-
ways (bottom). The points located inside the neighborhood are drawn in
red. Observe that the directional neighborhoods are consistently small
when approaching edges/corners, as also illustrated in Fig. 8.

of the other point clouds used in the paper, are summarized
in Table 1. Observe that the directional neighborhoods are
consistently small when approaching sharp edges/corners.
It can also be observed that, in the vicinity of edges and
corners, the estimated normal ei (illustrated by the black
line in Fig. 6) can be inaccurate. However, such a moderately
inaccurate normal does not compromise the final estimate
of our algorithm, as it only marginally affects the adaptive
directional size selection of LPA-ICI (see Fig. 7) and it is not
used for defining the aggregated estimate in the following
step (Section 4.5) of our algorithm.

The visual evaluation of the selection of the adaptive
directional sizes is given in Fig. 8. The directional size of
pi along a specific direction θ (in the case of the figure, a
direction parallel to an edge of the cube), is defined as

h+
i,θ =

∑

ϑ∈Θ
h+
i,ϑmax

{

0, 〈ϑLi , θ〉
}

∑

ϑ∈Θ
max {0, 〈ϑLi , θ〉} , (6)

where 〈ϑLi , θ〉 is the inner product between the direction ϑ
in the LCS of pi and the direction θ, treated as two versors in
R
3. In the figure we see that points within the smooth faces

have mostly larger directional sizes (indicated by bright
colors), which decrease when moving toward edges in the
direction indicated by the arrow. Points close to these edges
are all with very dark colors, indicating small directional
sizes, which reduces the risks of over-smoothing during our
following denoising process.

4.4 Local estimates with adaptive directional neighbor-

hood size

The local estimate with the adaptive directional size h+
i,ϑ can

be thus written with respect to the LCS of pi as

p̃Li

i,ϑ =
[

0, 0, (z̃Li

i)
h
+

i,ϑ

ϑ

]T

, (7)

or with respect to the canonical coordinates as

p̃i,ϑ = pi + (z̃Li

i)
h
+

i,ϑ

ϑ ei , (8)

TABLE 1
Parameters of the synthetic ground-truth and raw scanned point clouds
used in the experiments. Please refer to the footnote1 for more details.

Point cloud
I

(number of
points)

δ
(surface sample

density)
diameter

S
y

n
th

et
ic

Fandisk 6475 1.00 74.80

Bunny 35947 1.00 161.63

Armadillo 172974 1.00 395.03

Cube 13826 1.00 82.02

Dodecahedron 44228 1.00 124.61

Sphere 10201 1.00 54.25

Happy 100000 1.00 298.43

Box Push 100000 1.00 208.66

Dragon 100000 1.00 259.01

Galera 100000 1.00 228.85

Netsuke 100000 1.00 279.01

Column Head 100000 1.00 189.32

R
aw

Iron 161004 1.00 562.98

Shutter Blind 291220 1.00 752.56

h2 h1

pi

ei

Fig. 7. Directional size selection on a 2-D noisy point cloud, based on
an accurate normal estimation (left) and moderately inaccurate normal
estimation (right), where LPA-ICI can still function correctly.

where ei is the third principal component of the KNN of pi,
defining the LCS Li as in Section 4.2.

In Fig. 8, a number of erroneous small sizes (i.e. dark
color) in the middle of smooth faces can also be observed;
these errors are due to tails of the noise distribution affecting
the precision of LPA-ICI. Due to these errors, the individual
local estimates p̃i,ϑ (8) are in fact rather weak estimates of
pi; it is thus standard practice to strengthen the estimation
by fusing or aggregating multiple LPA-ICI estimates (see,
e.g., [31], [39]). A special aggregated estimate for point cloud
denoising is introduced in the following subsection.

4.5 Aggregated estimate

For each point pi, we have now four directional neighbor-
hoods with adaptive sizes h+

i,ϑ, ϑ ∈ Θ and corresponding
estimates (7)-(8). There are in principle three alternative
approaches to estimate q̂i: 1) combine the four adaptive
estimates (8) p̃i,ϑ, ϑ ∈ Θ; 2) define a new local estimate
based on all points in the union of the four directional

1. Armadillo and Bunny are from the Stanford 3D Scanning Reposi-
tory [40]. Fandisk is downloaded from [41]. Cube, Dodecahedron and
Sphere are made by the authors. Each face of the Cube is a regular
grid 49×49 points. Happy, Box Push, Dragon, Galera, Netsuke and
Column Head are from [42]. The raw scanned Iron and Shutter Blind
point clouds are provided by [22]. We rescaled all point clouds to a
common δ=1 to simplify the comparisons of results. The original δ of
Armadillo, Bunny, Fandisk, Shutter Blind and Iron are 4.71, 664102.44,
883.99, 160253.81 and 1.65, respectively. The original δ of Happy, Box
Push, Dragon, Galera, Netsuke and Column Head are 2047833, 228.03,
1509735.90, 1898.38, 11.53, 57.38, respectively. We compute the diameter
of a point cloud as the largest distance among all points in that cloud.

6

Fig. 8. Front and side views of the noisy Cube point cloud: each point’s
directional neighborhood size along the direction indicated by the arrow
(which is parallel to an edge of the cube) is computed using (6); points
with bright colors indicate large directional sizes and vice versa. Note
that, in these plots the noisy points have been projected to the original
noise-free Cube surfaces for better visualization purpose. Observe that
the directional sizes decrease when approaching the edges pointed by
the arrow, and they can be still large when close to the edges in the
opposite direction, which is an advantage of using adaptive directional
neighborhoods instead of adaptive isotropic ones, as illustrated in Fig. 1.

neighborhoods, i.e.
{

pm,m ∈ M
h
+

i,ϑ

i,ϑ , ϑ ∈ Θ
}

; 3) define an
aggregated estimate that simultaneously fits the many local
estimates from overlapping adaptive directional neighbor-
hoods of different points.

The first approach is the simplest but is known to be
relatively weak and not particularly competitive already in
the basic case of image denoising. The second approach
assumes that the four neighborhoods share a unique un-
derlying smooth surface, something which does not happen
when pi is on an edge.

To take advantage of the multiplicity of overlapping
estimates for each point (see, e.g., Fig. 9), our method
develops along the third approach. In particular, we define
our estimate as

q̂i = argmin
q

(

∑

(n,ϑ)∈Ki

w2
n,ϑ d2(q, S̃+

n,ϑ)+

λ2σ−2‖q − pi‖22
∑

(n,ϑ)∈Ki

w2
n,ϑ

)

,

(9)

where Ki provides the point and direction indices (n, ϑ)
of any adaptive directional neighborhood u+

n,ϑ containing

pi, S̃+
n,ϑ is the polynomial surface fitted by the LPA on

the adaptive directional neighborhood u+
n,ϑ, d is the point-

to-surface distance, λ > 0 is a regularization parameter,
and w2

n,ϑ = ε−2
n,ϑ are weights inversely proportional to the

average quadratic fit of the surface to the data

ε2n,ϑ =
∣

∣

∣M
h
+

n,ϑ

n,ϑ

∣

∣

∣

−1
∑

m∈M
h
+
n,ϑ

n,ϑ

d2(pm, S̃+
n,ϑ) , (10)

∣

∣

∣M
h
+

n,ϑ

n,ϑ

∣

∣

∣ being the number of points included by u+
n,ϑ.

The first addend in (9) promotes estimates q̂i that are
close to the polynomial surfaces fitted within adaptive
neighborhoods that contain the noisy point pi. As illustrated
in Fig. 10, since the point-to-surface distance is measured
along the surface normals, minimization of the first addend
alone (i.e. λ=0) may elicit large drifts of the estimates along
directions tangential to the surfaces; the second addend in
(9) is a quadratic regularization term that prevents such
large drifts. The weights wn,ϑ give more importance to

surfaces S̃+
n,ϑ that enjoy a better fit to the data in their

own adaptive neighborhood. Ideally, the fit should be tested

p1

p2

pi

q

pi

q

Fig. 9. 2-D illustration of the quantities being summed in (9). The green
and red lines represent two order-1 LPA surfaces S̃+

n,ϑ
computed using

noisy points that belong to the directional neighborhoods of p1 and
p2, respectively. Points in the neighborhood of p1 are circled in green,
and points in the neighborhood of p2 are circled in red. Some points
(including pi) belong simultaneously to both neighborhoods, and are
thus circled in both green and red. The dashed black lines visualize the
distances d2(q, S̃+

n,ϑ
) of a candidate point q to the two lines, as well as

the distance of q to pi. In this example, we see that the green line fits the
points circled in green not as well as the red line fits the points circled in
red; hence, in the weighted sum, the distance between q and the green
line gets a smaller weight wn,ϑ than the distance between q and the red
line. The minimization of (9) is illustrated in Fig. 10.

against the noise-free data, i.e. replacing in (10) pm by qm;
however the latter is not available.

Order-1 case

For order-1 LPA, the surfaces S̃+
n,ϑ are flat planes. Each of

these planes is characterized by the point p̃n,ϑ which lies
within the plane, and by the normal vector to the plane,
which we denote by νn,ϑ. Note that νn,ϑ is not the vector

en used for LCS (Section 4.2). In fact, νn,ϑ=[cn, dn, en]ν
Ln

n,ϑ ,

where νLn

n,ϑ is the equivalent LCS representation of νn,ϑ .

This νLn

n,ϑ can be conveniently computed via (2) using LPA

kernels corresponding to the xLn and yLn components of
the fitted order-1 polynomial (3) as

νLn

n,ϑ =

−∑
∣

∣M
h
+
n,ϑ

n,ϑ

∣

∣

k=1 zLn
mk

φ(k, :)
(

φTφ
)†
[0 1 0]T

−∑
∣

∣M
h
+
n,ϑ

n,ϑ

∣

∣

k=1 zLn
mk

φ(k, :)
(

φTφ
)†
[0 0 1]T

1

.

Then (9) becomes

q̂i = argmin
q

(

∑

(n,ϑ)∈Ki

w2
n,ϑ (〈q − p̃n,ϑ, νn,ϑ〉)2 +

λ2σ−2‖q − pi‖22
∑

(n,ϑ)∈Ki

w2
n,ϑ

)

,
(11)

which is quadratic on q and can be solved by zeroing the
gradient as

∑

(n,ϑ)∈Ki

w2
n,ϑνn,ϑ〈q̂i − p̃n,ϑ, νn,ϑ〉+

λ2

σ2
(q̂i − pi)

∑

(n,ϑ)∈Ki

w2
n,ϑ = 0,

(12)
i.e.

∑

(n,ϑ)∈Ki

w2
n,ϑ

(

νn,ϑ〈q̂i, νn,ϑ〉+ λ2σ−2q̂i
)

=

∑

(n,ϑ)∈Ki

w2
n,ϑ

(

νn,ϑ〈p̃n,ϑ, νn,ϑ〉+ λ2σ−2pi
)

,
(13)

7

Fig. 10. 2-D illustrations of the minimization (9). The colored straight lines represent a number of fitted order-1 LPA surfaces S̃+

n,ϑ
; the lines are

drawn with thickness proportional to their respective weights wn,ϑ. The solid black line shows the trajectory of the solution q̂i for λ ranging from 0
(marked by circle, coinciding with the minimizer of the first addend in (9)) to +∞ (marked by cross, trivially coinciding with the noisy point pi). In
the order-1 case, both addends in (9) are quadratic, resulting in elliptical contours for the first addend (where the ellipticity depend on weights and
orientation of the fitted lines) and in circular contours for the second addend. For any given value of λ, the solution q̂i is located where elliptical and
circular contours are tangent to each other. All denoising experiments reported in the paper use a fixed value of λ = 0.06

/

√

δ̂ (see Section 5.2).

which using matrix-vector notation becomes Aq̂i = b, where

A =
∑

(n,ϑ)∈Ki

w2
n,ϑ

(

νn,ϑ ν
T
n,ϑ + λ2σ−2

1

)

, (14)

b =
∑

(n,ϑ)∈Ki

w2
n,ϑ

(

νn,ϑ ν
T
n,ϑ p̃n,ϑ + λ2σ−2pi

)

. (15)

Thus, q̂i is obtained by left matrix division of the 3×3
matrix A into the vector b. This solution is particularly
efficient since it does not require storing in memory the
multiple estimates for (n, ϑ) ∈ Ki , as these are progressively
aggregated into the A and b buffers.

If
∣

∣

∣M
h
+

n,ϑ

n,ϑ

∣

∣

∣ < 3, the local estimate is discarded, as the

plane S̃+
n,ϑ and its normal νn,ϑ could not be defined. For the

order-1 case, we also found empirically that the weights

wn,ϑ = min

{

(

ε2n,ϑ − 3σ2

4

)−1

,
1√
2σ2

∣

∣

∣M
h
+

n,ϑ

n,ϑ

∣

∣

∣

1
2

}

(16)

yield better results, as they mimic ideal weights computed
from qm balancing the fit error with the variance error due
overfit given few noisy samples in the neighborhood.

All experiments presented in the remainder are based on
the order-1 case.

4.6 Further denoising iterations and residual noise

variance

Further iterations of the denoising can improve the quality
of the estimate. Analogous to the first iteration, three inputs

are required (see Fig. 2): the denoised point cloud Q̂ from
the previous iteration, its residual noise variance (denoted

by σ̃2
i for q̂i ∈ Q̂), and the surface sample density, which

remains approximately equal to δ.
We model the variance of the residual noise after the first

iteration as

σ̃2
i = (1.0806̺i − 0.2424σ)

2
, (17)

̺2i =

∑

(n,ϑ)∈Ki

(

σh+

n,ϑ

)2

∑

(n,ϑ)∈Ki
1

=

∑

(n,ϑ)∈Ki
σ2‖gh+

n,ϑ‖22
∑

(n,ϑ)∈Ki
1

, (18)

where ̺2i is a compound variance that averages all point-
wise variances

(

σh+

n,ϑ

)

2 (4) of the directional estimate (7) with
the adaptive size h+

n,ϑ that concur to the estimation of q̂i.
The coefficients in (17) were fitted by linear regression

between
{

̺i, i = 1, . . . , I
}

and the standard deviations of
{

q̂i, i = 1, . . . , I
}

measured from Monte-Carlo simulations
(using all the synthetic point clouds in Table 1).

(a) (c) (e)

(b) (d) (f)

Fig. 11. (a) & (c) Residual noise variance distribution after the first
denoising iteration, computed from Monte-Carlo experiments on the
Cube and Fandisk point clouds by adding noise with σ = 0.4; (b) & (d)
the distribution of our modeled residual variances (17); points with bright
colors have large variances and vice versa; (e) & (f) reconstructed 3D
surfaces of the denoised Fandisk point clouds after the first and second
denoising iteration.

Fig. 11 (a)-(d) illustrates the qualitative and quantitative
match of the distribution of σ̃2

i with ground-truth computed
via Monte-Carlo experiments (shown here only for refer-
ence, and not available in the operation of the proposed
algorithm).

Similar to earlier work [43] on iterative LPA-ICI denois-
ing, the variances σ̃2

i are further scaled by a fixed constant
0<α≤ 1, in order to compensate for the fact that residual
noise after the first iteration is no longer spatially indepen-
dent but features correlation due to the operated filtering.

Whereas in the first iteration σ is a constant value for all
the points, in the second iteration different points are subject
to different noise variances. Thus, formulas in Sections 4.3.1-
4.5 hold upon replacing σ with ασ̃i for the corresponding
q̂i. Specifically, these straightforward replacements apply to
the height of the prism in Section 4.3.1, to equations (4), (9),
(12), (13), (14), and (15), while in (16), for each (n, ϑ) ∈ Ki ,

we replace σ2 with
(
∑

m∈M
h
+
n,ϑ

n,ϑ
α2σ̃2

m

)/
∣

∣M
h
+

n,ϑ

n,ϑ

∣

∣ , i.e. the

average variance over points
{

pm,m ∈ M
h
+

n,ϑ

n,ϑ

}

.

Fig. 11 (e-f) provides a visual comparison of the denoised
Fandisk point cloud after the first and second iteration,
illustrating the improvement in the filtering along edges and
in smooth regions.

In principle, a third and more iterations could be added
also. However, we did not investigate this possibility noting
that the benefit after the second iteration is typically only

8

Noisy MLS [9] Bilateral [10] Graph-based [25] EAR [22] + RIMLS [17]
(0.397) (0.158) (0.187) (0.146) (0.186)

CLOP [21] GPF [23] + RIMLS [17] RIMLS [17] Proposed
(0.149) (0.120) (0.135) (0.089)

Fig. 12. The cross-section view of the noisy Cube point cloud (σ = 0.4) and the denoised point clouds from different algorithms, where the cross-
section view of ground-truth surface is indicated by red lines. The root mean squared point-to-surface distance (RMSD⊥) of each result is reported
within parentheses. Observe that our denoised result is tightly aligned with the ground-truth surface, including sharp edges, as also suggested by
its RMSD⊥, which is the smallest of all. Some reconstructed surfaces of the denoised Cube are presented in Fig. 13.

marginal [43] and the modeling of the residual noise gets
challenging.

5 EXPERIMENTAL RESULTS AND ANALYSIS

We performed extensive experiments to validate the accu-
racy and advantages of the proposed denoising algorithm,
as detailed in the following subsections.

All the reported results by the proposed method can be
reproduced by the software included in the supplementary
materials.

5.1 Comparison methods

The compared popular and state-of-the-art point cloud de-
noising algorithms include the classical MLS [9] method,
the bilateral filter [10], the graph-based regularization al-
gorithm [25], PointCleanNet (PCN) [32], edge-aware re-
sampling (EAR) [22], continuous LOP (CLOP) [21], GMM-
inspired filter (GPF) [23], and RIMLS [17]. The MLS method
is implemented using the Point Cloud Library (PCL) [44].
The bilateral filter, graph-based regularization algorithm,
PCN, EAR, CLOP and GPF are implemented from the
source codes provided by their respective authors. For
RIMLS we used the corresponding function integrated in
the Meshlab software [45]. For PCN, we applied the denois-
ing script with 11 iterations, which is the same as in the
experiments in [32]. For GPF, we do not execute the gap
filling but only the edge-aware upsampling, as we noticed
the former would worsen the results. For EAR and GPF,
we applied RIMLS post-filtering, following the authors’
suggested pipeline. Both MLS and RIMLS are based on a
second-order polynomial surface regression.

5.2 Parameter settings

Unless otherwise noted, the reported results by the pro-
posed algorithm are obtained using two iterations and the

following parameters: KNN K=50; LPA order is 1 and LPA
sizes

H =
{

0, 3(
√
2)0
/

√

δ̂, 3(
√
2)1
/

√

δ̂, . . . , 3(
√
2)4
/

√

δ̂
}

, (19)

where δ̂ is the estimated surface sample density of the
considered noisy point cloud; ICI threshold Γ = 0.55 (first
iteration) and Γ = 0.85 (second iteration); α = 0.533; the

regularization parameter λ in (9) is set to 0.06
/

√

δ̂. Our

algorithm is applied using values of σ̂ and δ̂ estimated by
the methods described in the Appendix I, thus making the
procedure wholly unsupervised.

It is worth noting that the value of the ICI threshold Γ
directly affects the quality of the output: too large or too
small Γ result in either oversmoothing or underfiltering. In
particular, we illustrate the effect of using very large Γ in
Section 5.7. The chosen values Γ = 0.55, 0.85 are quanti-
tatively consistent with those used in earlier works using
directional LPA-ICI for denoising (e.g., Γ = 0.8 for [43]).
Likewise, the exponential rule adopted for H (19), where
the base surface of the directional neighborhood doubles at
each next scale, is standard in multiscale and multiresolu-
tion signal processing. The factor δ provides normalization
with respect to the surface density of the point cloud. The
maximum value of H determines the strongest smoothing
possible with one iteration of the algorithm. The minimum
non-zero value h1 ∈ H determines a neighborhood base

surface of 9/δ̂ so that Mh1

i,ϑ = 9 on average, enabling a
meaningful definition of the LPA kernel (1).

5.3 Experiments on synthetic data

The ground-truth synthetic point clouds used in the experi-
ments are specified in Table 1. The noisy ones are obtained
by adding Gaussian white noise with different σ values to
the ground-truth point clouds. We provide in supplemen-
tary materials all the noisy and ground-truth point clouds.

9

Noisy

EAR [22] + GPF [23] +
RIMLS [17] Proposed

RIMLS [17] RIMLS [17]

Fig. 13. The same noisy (σ = 0.4) and denoised Cube point clouds
as in Fig. 12, with reconstructed 3D surfaces (top) and with the color
of each point indicating its point-to-surface distance (bottom), for some
competitive methods and the proposed algorithm. The breaks on the
edges of the reconstructed surface for RIMLS and our results are due to
lower number of points (number of points = 13826), while results from
EAR and GPF are both upsampled following their pipelines (number of
points = 43828 for both).

Noise-free
GPF [23] + GPF [23] +
RIMLS [17] RIMLS [17]

Noisy Proposed Proposed

Fig. 14. Left and center: reconstructed 3D surfaces of noise-free, noisy
(σ = 0.638) and denoised Dodecahedron point cloud results from GPF
and the proposed algorithm; right: corresponding denoised point clouds,
where the color indicates the point-to-surface distance. The root mean
squared point-to-surface distances of the noisy and denoised point
clouds from GPF and our method are 0.630, 0.251 and 0.109, respec-
tively.

Noisy
(0.402)

GPF [23] + RIMLS [17] Proposed
RIMLS [17] (0.168) (0.156) (0.106)

Fig. 15. Top: reconstructed 3D surfaces of the noisy Sphere point cloud
(σ = 0.4) and the denoised results from different algorithms; bottom:
the corresponding denoised point clouds with the color of each point
indicating its point-to-surface distance against the ground truth. The
root mean squared point-to-surface distances of the noisy and denoised
point clouds are reported within parentheses.

With the availability of ground truth, we provide quan-
titative denoising results of the experiments on synthetic
point clouds, where both point-to-surface distance and
normal angular error are evaluated. The point-to-surface
distance is also represented by colors in the plots, where
brighter colors indicates larger distances and vice versa.
Description of the error metrics is in Appendix II.

Visual results are presented with reconstructed 3D sur-
faces of the denoised point clouds. All the surfaces in the
paper are reconstructed by the software [46].

The parameters of the comparison algorithms were man-
ually tuned in order to minimize the root mean squared
point-to-surface distance separately for each of the consid-
ered noise levels on the synthetic point clouds. The pro-
posed algorithm uses instead the above-mentioned single
set of parameters for all noise levels, i.e. it is fully unsuper-
vised.

The cross-sections in Fig. 12 show that the denoised
points by the proposed method are closely aligned with the
underlying ground-truth surface (indicated by red lines),
within smooth areas as well as at sharp edges, whereas
the other methods either leave some noise (e.g., CLOP and
RIMLS) or yield positional distortion around sharp edges
(e.g., EAR and GPF). This behaviour can be observed also in
Fig. 13, where the proposed method reconstructs smoother
and flatter cube faces and sharper and straighter edges,
as confirmed by the darker colors in the point-to-surface
distances plot. A similar performance advantage of our
algorithm is demonstrated in Fig. 14, which reproduces an
experiment on the Dodecahedron point cloud from [23].

For denoising those point clouds with curved shapes,
our algorithm, even using order-1 LPA approximation, still
outperforms the others as shown in Fig. 15 for the Sphere
point cloud denoising, thanks to its adaptivity and the
strength of aggregated estimation.

Denoising results on point clouds of more complex
shape, including Fandisk, Bunny and Armadillo, further
attest the effectiveness of our algorithm. Quantitative results
in Table 2 show that our proposed algorithm attains the
smallest point-to-surface distance in the near totality of
cases. Although not specifically designed for the normal es-
timation task (a problem which is inherently different from
denoising), our method does achieve highly competitive
results, with both low Root Mean Squared Angular Error
with threshold (RMSAEτ) and large Proportion-of-Good-
Points (PGP) values, as reported in Table 3.

Visual assessment of some of these denoised point
clouds are presented in Fig. 16, 18, and 19. It can be observed
that, for all three noise levels, our algorithm not only well
preserves the sharp features (e.g., sharp edges in Fandisk
and Bunny, teeth and claw tips of Armadillo), but also filters
the noise better in smooth areas (e.g., back of Bunny and
chest of Armadillo). Other methods seem to encounter more
difficulty at balancing this trade-off, e.g., the over-smoothed
edges from MLS in Fig. 16, or noise-remaining smooth areas
such as the back of Bunny from RIMLS in Fig. 18 and the
chest of Armadillo in MLS and RIMLS results in Fig. 19,
although they attain similar quantitative performance in
these two cases in Table 2 and 3.

Similar to Fig. 13, 14, and 15, in Fig. 17, the uniformly
dark colors on our denoised point clouds indicate the consis-

10

TABLE 2
Root mean squared point-to-surface distance (RMSD⊥) results for noisy and denoised point clouds. The green and red background colors indicate

the best and second best results, respectively.

σ

Root mean squared point-to-surface distance

Noisy MLS [9]
Bilateral Graph-based

PCN [32]
EAR [22] +

CLOP [21]
GPF [23] +

RIMLS [17] Proposed
[10] [25] RIMLS [17] RIMLS [17]

F
an

d
is

k 0.2 0.1978 0.1532 0.1372 0.1300 0.1976 0.1776 0.1374 0.1189 0.1011 0.0979

0.4 0.3910 0.2230 0.2261 0.2240 0.3896 0.2200 0.2054 0.2154 0.1707 0.1694

0.8 0.7565 0.3770 0.4208 0.3645 0.7535 0.3272 0.3574 0.4385 0.3202 0.2963

B
u

n
n

y 0.2 0.2002 0.0960 0.1053 0.1350 0.2352 0.1643 0.1007 0.1229 0.0958 0.0908

0.4 0.3980 0.1648 0.1846 0.2137 0.3243 0.2308 0.1614 0.2107 0.1572 0.1423

0.8 0.7854 0.2931 0.3341 0.3558 0.4129 0.3057 0.2789 0.3679 0.2525 0.2311

A
rm

a-

d
il

lo

0.2 0.1999 0.0963 0.1148 0.1376 0.3403 0.1557 0.1016 0.1363 0.0982 0.0981

0.4 0.3979 0.1627 0.1880 0.2173 0.4377 0.2269 0.1672 0.2381 0.1596 0.1562

0.8 0.7922 0.2833 0.3381 0.3616 0.5866 0.3250 0.2783 0.4151 0.2669 0.2544

TABLE 3
Root mean squared angular error with threshold (RMSAEτ) of normals and the proportion of good points (PGP) in parentheses for noisy and
denoised point clouds (definitions of RMSAEτ and PGP are given in Appendix II). The green and red background colors indicate the best and

second best results, respectively.

σ

RMSAEτ (PGP in parentheses)

Noisy MLS [9]
Bilateral Graph-based

PCN [32]
EAR [22] +

CLOP [21]
GPF [23] +

RIMLS [17] Proposed
[10] [25] RIMLS [17] RIMLS [17]

F
an

d
is

k

0.2
1.1890 0.7722 0.7287 0.8004 1.1892 0.8438 0.8133 0.6708 0.6482 0.6843

(42.93%) (76.06%) (78.69%) (74.22%) (42.92%) (71.33%) (73.35%) (81.92%) (83.15%) (81.11%)

0.4
1.4859 1.0152 1.1450 1.0693 1.4863 0.9448 0.9588 0.8891 0.7953 0.8127

(10.58%) (58.49%) (47.09%) (53.85%) (10.53%) (64.08%) (62.97%) (68.14%) (74.59%) (73.39%)

0.8
1.5443 1.3099 1.4027 1.3967 1.5438 1.1089 1.2547 1.1000 1.0418 1.0689

(3.37%) (30.63%) (20.37%) (21.03%) (3.43%) (50.37%) (36.38%) (51.17%) (56.23%) (53.88%)

B
u

n
n

y

0.2
1.2121 0.5368 0.5210 0.9474 1.1720 0.8286 0.5195 0.6642 0.5274 0.5301

(40.68%) (88.61%) (89.27%) (63.91%) (44.57%) (72.47%) (89.31%) (82.43%) (88.99%) (88.86%)

0.4
1.4895 0.8334 1.0315 1.2935 1.4143 1.0383 0.7154 0.9817 0.7160 0.7058

(10.14%) (72.17%) (57.16%) (32.35%) (19.05%) (56.59%) (79.58%) (61.25%) (79.54%) (80.10%)

0.8
1.5470 1.1456 1.3498 1.4803 1.4721 1.0589 1.0223 0.9605 0.8654 0.8748

(3.02%) (47.07%) (26.30%) (11.25%) (12.25%) (54.83%) (57.93%) (62.90%) (69.95%) (69.28%)

A
rm

ad
il

lo

0.2
1.2311 0.5660 0.5885 0.9802 1.2769 0.7925 0.6037 0.6744 0.5726 0.6036

(38.79%) (87.32%) (86.27%) (61.34%) (34.11%) (74.86%) (85.52%) (81.86%) (87.01%) (85.52%)

0.4
1.4954 0.8778 1.0743 1.3228 1.4627 1.0989 0.8195 0.9888 0.8415 0.8379

(9.42%) (69.10%) (53.49%) (29.24%) (13.37%) (51.32%) (73.10%) (60.67%) (71.62%) (71.85%)

0.8
1.5471 1.1867 1.3723 1.4906 1.5083 1.1022 1.0912 1.1428 1.0233 1.0145

(3.01%) (43.16%) (23.81%) (10.00%) (7.85%) (51.02%) (52.02%) (47.31%) (57.84%) (58.56%)

tently low point-to-surface distances on both smooth areas
and sharp edge regions.

We observe in Table 2 and Table 3 that the PCN denoising
method is rather ineffective at filtering these noisy point
clouds, which have relatively lower noise and lower sam-
pling density than those on which this method had been
trained. Therefore, to enable a fair comparison against this
recent method, we provide a separate set of experiments
on the noisy point clouds from the PCN’s very own testing
dataset, as well as on noisier versions of some of the other
point clouds. These are challenging experiments on ex-
tremely noisy data, as illustrated by Fig. 20. The quantitative
results in Table 4 show that PCN attains a denoising quality
that is competitive with that of RIMLS, while the proposed
method is able to outperform them both, and often by a very
significant margin.

5.4 Experiments on raw scanned data

We ran experiments also on two raw scanned point clouds,
namely Iron and Shutter Blind. These point clouds are
included in supplementary materials and their parameters
are listed in Table 1. Ground-truth data is not available,

preventing a quantitative evaluation, we therefore present
only visual results in Fig. 21 and 22. As always, our algo-
rithm is applied with the parameters specified in Section
5.2 and using the noise variances estimated on each noisy
point cloud (see Appendix I). Parameters of the compared
algorithms are tuned by minimizing the root mean squared
point-to-surface distance on the synthetic Fandisk, Bunny
and Armadillo point clouds corrupted by noise with the
variance estimated on the raw scanned point clouds. In this
way we ensure that the other algorithms are applied using
ideal parameters for this noise level. Similar to the results
on synthetic data, our algorithm demonstrates superior
recovery of smooth areas (e.g., the smooth region enclosed
in the blue box in Fig. 21 and in the red box in Fig. 22) and of
fine features and sharp edges (e.g., the region in blue boxes
in Fig. 21 and 22).

5.5 Processing times

The average processing times for denoising the Bunny point
clouds with different noise levels (as shown in Table 2 and
Fig. 18) is reported in Table 5. For all algorithms, the pro-
cessing time changes roughly proportional to the number of
points in a point cloud.

11

σ
=
0
.2

Noise-free

σ
=
0
.4

σ
=
0
.8

Noisy MLS [9]
Bilateral Graph-based EAR [22] +

CLOP [21]
GPF [23] +

RIMLS [17] Proposed
[10] [25] RIMLS [17] RIMLS [17]

Fig. 16. Reconstructed 3D surfaces of noise-free, noisy, and denoised Fandisk point clouds. Fig. 17 illustrates these results with color-coding based
on the point-to-surface distance to the ground truth. Zoomed-in view is shown in blue box for each result.

σ
=
0
.2

σ
=
0
.4

σ
=
0
.8

Noisy MLS [9]
Bilateral Graph-based EAR [22] +

CLOP [21]
GPF [23] +

RIMLS [17] Proposed
[10] [25] RIMLS [17] RIMLS [17]

Fig. 17. The same noisy and denoised Fandisk point clouds as in Fig. 16, with the color of each point indicating its point-to-surface distance. The
figures in each row share a common color scaling.

12

N
o

is
e-

fr
ee

σ
=
0
.2

σ
=
0
.4

σ
=
0
.8

Noisy MLS [9] CLOP [21]
GPF [23] +

RIMLS [17] Proposed
RIMLS [17]

Fig. 18. Reconstructed 3D surfaces of noise-free, noisy, and denoised Bunny point clouds.

The proposed algorithm enjoys a graceful qual-
ity/complexity trade-off, since the aggregated estimate (Sec-
tion 4.5) can be computed from a reduced number of local
estimates. Specifically, and referring to (9), in order to define
q̂i it is enough that the set Ki contains at least one pair
of indices, i.e. that pi has been included in at least one
directional neighborhood for some point in the cloud. Thus,
it is not necessary to compute local estimates for every
i ∈ {1, . . . , I}. Furthermore, the algorithm can be speeded
up also by reducing the largest neighborhood size in H .
To evaluate these options quantitatively, we experimented
using different proportions of local estimates (where 100%
means computing local estimates for every i ∈ {1, . . . , I})
and by restricting the LPA sizes to two subsets of the default

full set (19), namely H =
{

0, 3(
√
2)0
/

√

δ̂, . . . , 3(
√
2)3
/

√

δ̂
}

and H =
{

0, 3(
√
2)0
/

√

δ̂, . . . , 3(
√
2)2
/

√

δ̂
}

, for which

max{H}
√

δ̂ is respectively equal to 3(
√
2)3 and 6, as op-

posed to max{H}
√

δ̂ = 12 (19). Fig. 23 summarizes the
results obtained by denoising several noisy point clouds

(σ = 0.2, 0.4, 0.8) in terms of relative root mean squared
point-to-surface distance (relative RMSD⊥) versus relative
processing time, i.e. the ratios between the RMSD⊥ and pro-
cessing time obtained with reduced settings and those using
(19) and 100% of the local estimates. An effective graceful
trade-off corresponds to being able to significantly reduce
the relative processing time while maintaining the relative
RMSD⊥ close to 1. The results show that one can halve
the processing times simply by computing only a smaller
portion of local estimates, and with negligible impact on the
RMSD⊥. The processing time can be reduced even further,
by using smaller H : on relatively complex point clouds like
Bunny, Fandisk, or Armadillo, we can get down to one
fourth of the original processing time without affecting the
RMSD⊥, as the local estimates only seldom benefit from

h > 6/
√

δ̂ due to the intricate surface; however, on a basic
point cloud like Cube, featuring large, perfectly flat faces,
the availability of very large sizes is very beneficial and
reducing H does bear a negative impact. Likewise, one can

expect that increasing max{H}
√

δ̂ beyond 12 can help at

13

N
o

is
e-

fr
ee

σ
=
0
.2

σ
=
0
.4

σ
=
0
.8

Noisy MLS [9] CLOP [21]
GPF [23] +

RIMLS [17] Proposed
RIMLS [17]

Fig. 19. Reconstructed 3D surfaces of noise-free, noisy, and denoised Armadillo point clouds. A zoomed-in smooth region is shown in the red box,
and a fine feature region in the blue box.

particularly high noise levels and on very large flat areas.

5.6 Importance of directional adaptivity

To give an indication of the importance of using adaptive di-
rectional neighborhoods in our algorithm, we performed the
following separate experiment on the noisy Fandisk, Bunny,
and Armadillo point clouds. Using for simplicity only a
single iteration, we apply the proposed algorithm adopting
either the usual adaptive directional neighborhoods, or a
basic adaptive isotropic neighborhood, namely, a sphere
with adaptive radius. In either case, the length or radius of
the neighborhood is selected from the same set of sizes H ,
while Γ has been tuned to maximize quality of results. The
averaged root mean squared point-to-surface distance over
the three point clouds is, for each noise level σ = 0.2, 0.4, 0.8

respectively, 0.095, 0.159, and 0.270 when using adaptive
directional neighborhoods, and 0.109, 0.170, and 0.272 when
using adaptive isotropic neighborhoods. These numerical
differences are concentrated in the vicinity of edges sur-
rounded by large smooth areas, where directional neigh-
borhoods are able to extend asymmetrically with respect to
the edge, whereas isotropic neighborhoods are either small
or extend over the edge (resulting in smearing of the edge),
which in turn leads to a less favourable trade-off between
bias and variance.

5.7 Large Γ for simplification of small structures

By using significantly larger Γ values than those indicated
in Section 5.2, the sensitivity of the ICI criterion is reduced
and our algorithm can remove the minor structures while

14

N
o

is
e-

fr
ee

σ
=

1.
60

63

(1.5883) (0.3530) (0.4496) (0.3280)

σ
=

4.
01

58

(3.8597) (1.4468) (1.5276) (0.8518)

σ
=

2.
10

97

(2.0048) (0.7972) (0.6638) (0.5866)

σ
=

5.
27

42

(4.6593) (3.3968) (2.0924) (1.6363)
Noisy RIMLS [17] PCN [32] Proposed

Fig. 20. Reconstructed surfaces of noise-free, heavily noisy Box Push
(top) and Galera (bottom), and their denoised results by different algo-
rithms. The root mean squared point-to-surface distances of the noisy
and denoised point clouds are reported within parentheses.

preserving only the major features of a point cloud. This
can further improve the denoising performance when point
clouds feature only simple basic shapes, such as Dodecahe-
dron and Sphere shown in Fig. 24 (top), and can be desirable
in certain applications that require additional shape sim-
plification beyond noise reduction, as illustrated in Fig. 24
(bottom) where the small details on the face and legs of
Armadillo are cleaned while the edges of the main shape
are untouched.

6 DISCUSSION AND CONCLUSION

We presented a novel point cloud denoising algorithm
based on aggregation of multiple polynomial surfaces com-
puted on directional neighborhoods that are locally adaptive
to the shape of the underlying surface of the point cloud.
The LPA-ICI technique is performed with respect to the LCS
of each point, providing its adaptive directional neighbor-
hood sizes; a dense aggregation of one point’s overlapping
local polynomial estimates from different adaptive direc-
tional neighborhoods delivers the stable and accurate final

TABLE 4
Root mean squared point-to-surface distance results for denoising very
strong noise. The σ values for the PCN testing data [32] correspond to

ratios between the noise standard deviation and the diagonal of the
bounding box of the noise free point cloud equal to 0.0025, 0.005, 0.01,
0.025, as per the authors’ original data. The green and red background

colors indicate the best and second best results, respectively.

Point clouds σ
RMSD⊥

RIMLS [17] PCN [32] Proposed

Happy

0.7080 0.3318 0.6050 0.2965

1.4160 0.7191 0.7512 0.5179

2.8321 1.6702 1.0032 0.9737

7.0802 3.4888 3.5914 2.3947

Box Push

0.4016 0.1321 0.3080 0.0909

0.8032 0.2082 0.3603 0.1593

1.6063 0.3530 0.4496 0.3280

4.0158 1.4468 1.5276 0.8518

Dragon

0.6285 0.2457 0.4842 0.2209

1.2571 0.5737 0.6434 0.3953

2.5142 1.3156 0.9109 0.8265

6.2855 4.2242 2.7852 2.1238

Galera

0.5274 0.2062 0.3964 0.1865

1.0548 0.3615 0.4961 0.3193

2.1097 0.7972 0.6638 0.5866

5.2742 3.3968 2.0924 1.6363

Netsuke

0.5445 0.2225 0.4546 0.2076

1.0889 0.3897 0.5724 0.3514

2.1779 0.8251 0.7358 0.6093

5.4447 3.0742 1.7705 1.5359

Column

Head

0.3731 0.2613 0.5764 0.2365

0.7462 0.4186 0.6727 0.3759

1.4925 0.7688 0.7970 0.5951

3.7312 1.5579 1.4372 1.1161

Armadillo
3.00 1.1925 0.9463 0.7304

6.40 3.0477 1.8531 1.6680

Bunny
3.00 1.3276 1.4028 0.8365

6.40 3.0758 5.7496 1.8038

Dodecahedron
3.00 0.5038 0.6991 0.4348

6.40 1.7029 3.5237 1.0001

Cube
3.00 0.9311 2.8314 0.7307

6.40 3.1323 6.0160 1.9020

estimate of the point. Increased effectiveness is achieved
through a second iteration of filtering, which is based on
modeling the residual noise variance distribution in the
denoised point cloud. The proposed algorithm, due to its
adaptive design, reduces the noise while preserving fine
features and sharp edges of the object surface underlying
a point cloud. Results obtained with a baseline implemen-
tation of the proposed algorithm with simple first-order
polynomials demonstrate superior restoration quality than
of competitive methods based on higher-order models. The
method has been validated over a set of synthetic and
real raw scanned point clouds, under various levels of
noise, being applied in fully unsupervised and automatic
way, without need of any separate parameter tuning, and
providing consistent quality over all these cases.

The proposed algorithm is developed under the assump-
tion of an additive Gaussian noise with uniform isotropic
variance σ2 and roughly uniform surface sampling density
δ. In some applications these hypotheses do not hold over
the whole point cloud; e.g., depending on the point acquisi-

15

Raw MLS [9] PCN [32] CLOP [21]
GPF [23] +

RIMLS [17] Proposed
RIMLS [17]

Fig. 21. Reconstructed surfaces of the raw scanned Iron point cloud (see Table 1 for its parameters) and of the denoised point clouds from different
algorithms. A zoomed-in area with smooth region and fine features are shown in the blue boxes.

Raw MLS [9] PCN [32] CLOP [21]
EAR [22] +

RIMLS [17] Proposed
RIMLS [17]

Fig. 22. Reconstructed surfaces of the raw scanned Shutter Blind point cloud (see Table 1 for its parameters) and of the denoised point clouds from
different algorithms. A zoomed-in smooth area is shown in the red box, and fine feature regions in the blue boxes.

TABLE 5
Average processing time (in seconds) of different algorithms on Bunny point cloud: MLS, Bilateral filtering, and CLOP are compiled C++ programs;

Graph-based regularization is in MATLAB “.m” code format; PCN codes are written in Python language and use the Nvidia CUDA Deep Neural
Network library; RIMLS was implemented by the corresponding function integrated in the Meshlab software; EAR and GPF are binary “.exe”

programs with user interfaces. Our proposed algorithm is in binary MEX format compiled from the C code generated from MATLAB “.m” sources
using MATLAB Coder. All algorithms, except PCN, were run on Intel Core i7-3520M CPU (2.90GHz×4) and 16GB memory; PCN was run on AMD
Ryzen 2700X CPU (3.70GHz×8), 32GB memory and Nvidia GeForce GTX 1080 Ti GPU. Quality/complexity trade-off for the proposed algorithm

is further reported in Fig. 23.

MLS [9]
Bilateral

[10]

Graph-based

[25]

EAR [22] +

RIMLS [17]
CLOP [21]

GPF [23] +

RIMLS [17]
PCN [32] RIMLS [17] Proposed

Bunny (σ = 0.2, 0.4, 0.8) 0.77 1.27 0.75 118.54 8.43 107.98 625.18 5.94 21.26

tion or scanning process, errors and sampling density may
be larger or smaller depending on the surface orientation or
object distance from the capture system. On this regard, we
can however observe that the actual filtering method is in-
trinsically local and it can be modified easily so to adopt lo-
cal or semilocal estimates of σ2 and δ. As a matter of fact, the
second iteration of the method already uses a local estimate
of σ2. Likewise, even though the adopted estimators of σ2

and δ (see Appendix I) are based on global robust statistics,
they can be modified in order to output the relevant local or
semilocal estimates (e.g., estimates conditioned upon either
the location or local normal orientation), as appropriate for

the target application. Furthermore, a preprocessing outlier-
removal stage (e.g., [25]) becomes necessary when the noisy
point cloud includes outlier points.

In this work we adopted an adaptive neighborhood
structure with four quadrants; more complex designs with
a higher number of narrower sectors are possible (see,
e.g., [37], [39]) but make the adaptive size selection less
stable. Although one may speculate that adopting higher-
order models into the proposed algorithm could bring some
improvement on complex, highly textured point clouds, we
must note that this would require a different and more
complicated aggregation procedure than (11), arguably lim-

16

Fig. 23. Relative RMSD⊥ vs. relative processing time plots for vari-
ous point clouds of different noise levels (σ = 0.2, 0.4, 0.8), where a
relative value is the proportion of that value against that from using

max{H}
√

δ̂=12 (19) and 100% of the local estimates.

iting the practicality of the approach. Therefore, we did not
pursue this opportunity.

A partitioning operator can be integrated into the pro-
posed algorithm for dealing with big point cloud data. In
particular, octree partitioning (see Fig. 25) can be used to
process independently the sub point cloud in each octant
(i.e. each leaf) of the octree: to enable full LPA-ICI filtering
and aggregation, adjacent octants must share an overlap
slab with thickness at least equal to max{H}.

Finally, the proposed method can benefit from various
forms of parellelization, which are currently not leveraged
by the current implementation. Specifically, the LCS con-
struction and the pointwise LPA-ICI can be processed in-
dependently for each point in the cloud in embarrassingly
parallel manner and different octants of the octree partition
processed in parallel also.

APPENDIX I: ESTIMATION OF NOISE STANDARD DE-

VIATION AND OF SURFACE SAMPLE DENSITY

We developed the following method for estimating the noise
standard deviation. The method extends to point clouds
the approach based on the median of absolute deviation
(MAD) [47] of high-frequency subbands which is estab-
lished in image processing, prominently in the wavelet
literature.

Analogous to a detail subband of the Haar wavelet
(i.e. first-order finite differences), we first construct a vector
d = [d1, . . . , dI] formed by the difference between adjacent
points along the third dimension of the LCS, where

di =
zLi

i − zLi

t√
2

,

and pt is the closest point to pi along the (xLi , yLi)-plane:

pt = argmin
pj∈P,pj 6=pi

∥

∥

∥(xLi

i , yLi

i)− (xLi

j , yLi

j)
∥

∥

∥

2
.

Then, we estimate the standard deviation of the noise σ as

σ̂ =
median(|d|)

0.6745
. (20)

For estimating the surface sample density, similar to the
above procedure we construct a vector v = [v1, . . . , vI]
formed by the normalized planar variance within the LCS,

vi = K−1 var
pj∈UK

i

{

(xLi

j , yLi

j)
}

,

Γ = 0.55, 0.85 Γ = 5.00, 5.00 Γ = 0.55, 0.85 Γ = 5.00, 5.00
(0.1086) (0.0983) (0.1061) (0.0783)

Γ = 0.55, 0.85 Γ = 5.00, 5.00
(0.1562) (0.2629)

Fig. 24. Reconstructed 3D surfaces of the denoised Dodecahedron
(noise σ=0.638), Sphere (noise σ=0.4), and Armadillo (noise σ=0.4),
using the proposed algorithm with different Γ settings. Within each pair,
the result on the left-hand side is with for the default Γ setting as
described in Section 5.2, whereas the one in the right-hand side uses
significantly larger values, leading to more aggressive smoothing. The
root mean squared point-to-surface distances against the ground truth
are reported in parentheses.

Fig. 25. Example of the octree partitioning on the Bunny point cloud
without (left) and with overlap of octants (right).

where UK
i is the KNN of pi, from which the LCS is also

defined, as described in Section 4.2. Then, the estimate of
the surface sample density is

δ̂ =
1

2π median(v)
. (21)

The scaling constants in (20) and (21) correspond to assum-
ing, respectively, that the noise is Gaussian distributed and
that the point cloud samples within the LCS are uniformly
distributed with respect to the planar components of the
LCS.

The accuracy of the σ̂ and δ̂ estimates is of course
affected by the actual level of noise relative to sampling
density, which in turn affects the construction of the LCS
via PCA of the KNN. To obtain accurate estimates under
stronger noise and/or at higher density, it is necessary to
use larger values of K in the construction of the LCS. Thus,
we progressively increase K and repeat the estimation of

σ and δ whenever the current value of the product σ̂
√

δ̂

17

exceeds a given threshold. Specifically, starting from K=50,

if σ̂
√

δ̂ ≥ 1.5 we repeat the estimation with K=200; then, if

σ̂
√

δ̂ ≥ 3.5 we repeat the estimation with K=300; finally, if

σ̂
√

δ̂ ≥ 4.5 we repeat the estimation with K=500. If, at any
stage, the threshold is not exceeded, the algorithm returns

the current estimates σ̂ and δ̂. This progressive increase of
K concerns exclusively the estimation of σ and δ: inside the
denoising algorithm, the LCS for the LPA-ICI denoising is
always built with K = 50, irrespective of what value of K
had been used for the preliminary estimation of σ and δ.

APPENDIX II: ERROR METRICS

A. Point-to-surface distance

The point-to-surface distance (also called point-to-plane dis-
tance) has been employed as the quality measurement of
point cloud denoising [25], [48] and point cloud compres-
sion [49] algorthms. It is also applied in Iterative Closest
Point (ICP) algorithms [50], [51] for point cloud registration.

We compute the point-to-surface distance as follows,

1) for each q̂i in the denoised point cloud Q̂, we first find
its nearest point (in Euclidean distance) in the ground-
truth Q, which can differ from qi and which we denote
by qi∗ ;

2) the surface normal at qi∗ , represented by ni∗ , is then
estimated using PCA on qi∗ ’s KNN in Q (we choose
K=5).

3) the point-to-surface distance Di⊥ of q̂i is then com-
puted as Di⊥ = ‖〈q̂i − qi∗ , ni∗〉‖2;

4) the root mean squared point-to-surface distance

(RMSD⊥) is thus
√

1
I

∑I
i=1 D

2
i⊥ .

B. Normal angular error and proportion of good points

Measuring the angular differences between each surface
normal in the denoised point cloud and its corresponding
one in the ground truth gives another perspective of the
denoising performance of an algorithm.

After obtaining ni∗ as in the above computation of the
point-to-surface distance, we compute the surface normal at

q̂i in Q̂ through the PCA of its KNN in Q̂ (again K = 5),
which we denote by n̂i; ni∗ is treated as the ground-truth
value for n̂i and by ∢ {n̂i, ni∗} ∈ [0, π/2] we denote their
absolute angular difference.

The Root Mean Square Angular Error with threshold τ
(RMSAEτ) [52], [53] is computed as

RMSAEτ =

√

√

√

√

1

I

I
∑

i=1

f2
τ (n̂i, ni∗) , (22)

where

fτ (n̂i, ni∗) =

{

∢ {n̂i, ni∗} if ∢ {n̂i, ni∗} < τ ,
π/2 otherwise .

The RMSAEτ treats all those angular errors larger than τ
as they were as bad as π/2, and in this way it avoids
the drawback of the common RMSAE (without threshold)
which favors smoothness everywhere at the expense of
sharp reconstruction of edges and corners [29], [52].

The proportion of good points (PGP) [29], [53], i.e. the

points in Q̂ whose angular error is smaller than τ , provides

an additional measure of the surface normal estimation
quality; it is computed as

PGP =
1

I

I
∑

i=1

N(n̂i, ni∗), (23)

where

N(n̂i, ni∗) =

{

1 if ∢ {n̂i, ni∗} < τ ,
0 otherwise .

When computing RMSAEτ and PGP, we set τ = π/18
(i.e. 10°), as recommended by [29], [52], [53].

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7-PEOPLE-2013-ITN) under grant agreement n° 607290
SpaRTaN, and from the Academy of Finland under project
n° 310779).

REFERENCES

[1] F. Lozes, A. Elmoataz, and O. Lézoray, “PDE-based graph signal
processing for 3-D color point clouds: opportunities for cultural
heritage,” IEEE Signal Process. Mag., vol. 32, no. 4, pp. 103–111,
July 2015.

[2] A. Holgado-Barco, B. Riveiro, D. González-Aguilera, and
P. Arias, “Automatic inventory of road cross-sections from
mobile laser scanning system,” Comput. Aided Civil Infrastr.
Eng., vol. 32, no. 1, pp. 3–17, 2017. [Online]. Available:
http://dx.doi.org/10.1111/mice.12213

[3] E. Shellshear, R. Berlin, and J. S. Carlson, “Maximizing smart
factory systems by incrementally updating point clouds,” IEEE
Comput. Graphics App., vol. 35, no. 2, pp. 62–69, Mar. 2015.

[4] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge University Press, 2003.

[5] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview
stereopsis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 8, pp.
1362–1376, Aug. 2010.

[6] A. Goldenshluger and A. Nemirovski, “On spatially adaptive
estimation of nonparametric regression,” Math. Meth. Stat., vol. 6,
no. 2, pp. 135–170, 1997.

[7] V. Katkovnik, “A new method for varying adaptive bandwidth
selection,” IEEE Trans. Signal Process., vol. 47, no. 9, pp. 2567–2571,
1999.

[8] A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-
adaptive DCT for high-quality denoising and deblocking of
grayscale and color images,” IEEE Trans. Image Process., vol. 16,
no. 5, pp. 1395–1411, 2007.

[9] D. Levin, “Mesh-independent surface interpolation,” Geometric
Modeling for Scientific Visualization, vol. 3, pp. 37–49, 2003.

[10] J. Digne, “The Bilateral Filter for Point Clouds,” Image Process. On
Line, 2015.

[11] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Sixth Int. Conf. Comput. Vis., 1998, pp. 839–846.

[12] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh
denoising,” ACM Trans. Graphics, vol. 22, no. 3, pp. 950–953, July
2003. [Online]. Available: http://doi.acm.org/10.1145/882262.
882368

[13] S. Fleishman, D. Cohen-Or, and C. T. Silva, “Robust moving
least-squares fitting with sharp features,” in ACM Trans. Graphics,
vol. 24, no. 3. ACM, 2005, pp. 544–552.

[14] Y. Lipman, D. Cohen-Or, and D. Levin, “Data-dependent MLS
for faithful surface approximation,” in Proc. 5th Eurographics Sym.
Geom. Process. Eurographics Association, 2007, pp. 59–67.

[15] C. Lange and K. Polthier, “Anisotropic smoothing of point sets,”
Comput. Aided Geom. Des., vol. 22, no. 7, pp. 680–692, 2005.

[16] A. Wetzler, G. Rosman, and R. Kimmel, “Patch-space Beltrami
denoising of 3D point clouds,” in IEEE 27th Conv. Elec. Electron.
Eng. Israel, 2012, pp. 1–5.

[17] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature preserv-
ing point set surfaces based on non-linear kernel regression,” in
Comput. Graphics Forum, vol. 28, no. 2, 2009, pp. 493–501.

18

[18] H. Avron, A. Sharf, C. Greif, and D. Cohen-Or, “ℓ1-sparse recon-
struction of sharp point set surfaces,” ACM Trans. Graphics, vol. 29,
no. 5, p. 135, 2010.

[19] Y. Sun, S. Schaefer, and W. Wang, “Denoising point sets via L0
minimization,” Comput. Aided Geom. Des., vol. 35, pp. 2–15, 2015.

[20] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer,
“Parameterization-free projection for geometry reconstruction,” in
ACM Trans. Graphics, vol. 26, no. 3. ACM, 2007, p. 22.

[21] R. Preiner, O. Mattausch, M. Arikan, R. Pajarola, and M. Wimmer,
“Continuous projection for fast L1 reconstruction.” ACM Trans.
Graph., vol. 33, no. 4, pp. 47–1, 2014.

[22] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. R.
Zhang, “Edge-aware point set resampling,” ACM Trans. Graphics,
vol. 32, no. 1, p. 9, 2013.

[23] X. Lu, S. Wu, H. Chen, S.-K. Yeung, W. Chen, and M. Zwicker,
“GPF: GMM-inspired feature-preserving point set filtering,” IEEE
Trans. Vis. Comput. Graphics, vol. 24, no. 8, pp. 2315–2326, 2018.

[24] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other
irregular domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp.
83–98, 2013.

[25] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, “Graph-based
denoising for time-varying point clouds,” in 3DTV-Conference
(3DTV-CON). IEEE, 2015, pp. 1–4.

[26] Y. Zheng, G. Li, X. Xu, S. Wu, and Y. Nie, “Rolling normal filtering
for point clouds,” Comput. Aided Geom. Des., vol. 62, pp. 16–28,
2018.

[27] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle, “Surface reconstruction from unorganized points,”
Proc. 19th Annual Conf. Comput. Graphics Interactive Tech.,
vol. 26, no. 2, pp. 71–78, July 1992. [Online]. Available:
http://doi.acm.org/10.1145/142920.134011

[28] X. Lu, S. Schaefer, J. Luo, L. Ma, and Y. He, “Low rank
matrix approximation for geometry filtering,” arXiv preprint
arXiv:1803.06783, 2018.

[29] A. Boulch and R. Marlet, “Deep learning for robust normal esti-
mation in unstructured point clouds,” in Comput. Graphics Forum,
vol. 35, no. 5, 2016, pp. 281–290.

[30] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra, “PCPNet:
Learning local shape properties from raw point clouds,” Comput.
Graphics Forum, vol. 37, no. 2, pp. 75–85, 2018.

[31] A. Foi and V. Katkovnik, “From local polynomial approximation to
pointwise shape-adaptive transforms: An evolutionary nonpara-
metric regression perspective,” in Proc. SMMSP, 2006.

[32] M.-J. Rakotosaona, V. La Barbera, P. Guerrero, N. J. Mitra, and
M. Ovsjanikov, “PointCleanNet: learning to denoise and remove
outliers from dense point clouds,” Comput. Graphics Forum, 2019.

[33] W. Bae, J. Yoo, and J. Chul Ye, “Beyond deep residual learning
for image restoration: Persistent homology-guided manifold sim-
plification,” in Proc. 2017 IEEE Conf. Comput. Vis. Pattern Recogn.
Workshops, 2017, pp. 145–153.

[34] C. Cruz, A. Foi, V. Katkovnik, and K. Egiazarian, “Nonlocality-
reinforced convolutional neural networks for image denoising,”
IEEE Signal Process. Lett., vol. 25, no. 8, pp. 1216–1220, 2018.

[35] X. Li, W. Dong, and G. Shi, Sparsity-Based Denoising of Photographic
Images: From Model-Based to Data-Driven. Cham: Springer,
2018, pp. 37–62. [Online]. Available: https://doi.org/10.1007/
978-3-319-96029-6 2

[36] V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola, “Directional
varying scale approximations for anisotropic signal processing,”
in 12th European Signal Process. Conf. IEEE, 2004, pp. 101–104.

[37] A. Foi, “Anisotropic nonparametric image processing: theory, al-
gorithms and applications,” Ph.D. dissertation, Dip. di Matemat-
ica, Politecnico di Milano, ERLTDD-D01290, 2005.

[38] V. Katkovnik, K. Egiazarian, and J. Astola, Local approximation
techniques in signal and image processing. SPIE Bellingham, 2006.

[39] V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola, “From local ker-
nel to nonlocal multiple-model image denoising,” Int. J. Comput.
Vision, vol. 86, no. 1, p. 1, 2010.

[40] “The Stanford 3D Scanning Repository.” [Online]. Available:
http://graphics.stanford.edu/data/3Dscanrep/

[41] [Online]. Available: https://github.com/areslp/normal/blob/
master/fandisk.ply

[42] M.-J. Rakotosaona, “PointCleanNet.” [Online]. Available: https:
//github.com/mrakotosaon/pointcleannet

[43] A. Foi, V. Katkovnik, K. Egiazarian, and J. Astola, “A novel
anisotropic local polynomial estimator based on directional
multiscale optimizations,” in Proc. 6th IMA Int. Conf. Math.
Signal Process., 2004, pp. 79–82. [Online]. Available: http:
//www.cs.tut.fi/∼lasip/2D/

[44] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library
(PCL),” in IEEE Int. Conf. Robotics and automation (ICRA). IEEE,
2011, pp. 1–4. [Online]. Available: http://pointclouds.org/

[45] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “Meshlab: an open-source mesh processing tool,” in
Eurographics Italian Chap. Conf., vol. 2008, 2008, pp. 129–136.

[46] L. Giaccari, “Surface Reconstruction Toolbox,” Sept.
2017. [Online]. Available: https://github.com/LuigiGiaccari/
Surface-Reconstruction-Toolbox/releases

[47] F. R. Hampel, “The influence curve and its role in robust estima-
tion,” J. Am. Stat. Assoc., vol. 69, no. 346, pp. 383–393, 1974.

[48] A. Javaheri, C. Brites, F. Pereira, and J. Ascenso, “Subjective and
objective quality evaluation of 3D point cloud denoising algo-
rithms,” in Proc. IEEE Int. Conf. Multim. Expo Workshops, 2017, pp.
1–6.

[49] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in IEEE Int. Conf.
Image Process., 2017, pp. 3460–3464.

[50] Y. Chen and G. Medioni, “Object modelling by registration of
multiple range images,” Image Vision Comput., vol. 10, no. 3, pp.
145–155, 1992.

[51] K.-L. Low, “Linear least-squares optimization for point-to-plane
ICP surface registration,” Chapel Hill, University of North Carolina,
vol. 4, no. 10, 2004.

[52] A. Boulch and R. Marlet, “Fast and robust normal estimation
for point clouds with sharp features,” in Comput. Graphics Forum,
vol. 31, no. 5, 2012, pp. 1765–1774.

[53] J. Zhang, J. Cao, X. Liu, J. Wang, J. Liu, and X. Shi, “Point cloud
normal estimation via low-rank subspace clustering,” Computers
& Graphics, vol. 37, no. 6, pp. 697–706, 2013.

Zhongwei Xu received the B.S. degree in Elec-
trical Engineering and the M.Sc. degree in Com-
puter Science from the Xidian University, China,
in 2008 and 2011, respectively. He received the
Ph.D. degree in Computer Science from the Uni-
versitat Autónoma de Barcelona, Spain, in 2015.
His research interests are the restoration and
enhancement of 3D point cloud data and digital
images, and image and video coding.

Alessandro Foi received the M.Sc. degree in
Mathematics from the Università degli Studi di
Milano, Italy, in 2001, the Ph.D. degree in Math-
ematics from the Politecnico di Milano in 2005,
and the D.Sc.Tech. degree in Signal Processing
from Tampere University of Technology, Finland,
in 2007. He is Professor of Signal Processing at
Tampere University, Finland. His research inter-
ests include mathematical and statistical meth-
ods for signal processing, functional and har-
monic analysis, and computational modeling of

the human visual system. His work focuses on spatially adaptive
(anisotropic, nonlocal) algorithms for the restoration and enhancement
of digital images, on noise modeling for imaging devices, and on the
optimal design of statistical transformations for the stabilization, nor-
malization, and analysis of random data. He is a Senior Member of
the IEEE, Member of the Image, Video, and Multidimensional Signal
Processing Technical Committee of the IEEE Signal Processing Society,
an Associate Editor for the SIAM Journal on Imaging Sciences, and a
Senior Area Editor for the IEEE Transactions on Computational Imag-
ing.

	Introduction
	Related work
	Observation model and notation
	Proposed Denoising Algorithm
	Surface sample density and noise variance estimation
	LCS construction
	Adaptive directional sizes
	Structure of the directional neighborhoods
	Pointwise polynomial estimate
	Adaptive size selection

	Local estimates with adaptive directional neighborhood size
	Aggregated estimate
	Further denoising iterations and residual noise variance

	Experimental Results and Analysis
	Comparison methods
	Parameter settings
	Experiments on synthetic data
	Experiments on raw scanned data
	Processing times
	Importance of directional adaptivity
	Large for simplification of small structures

	Discussion and conclusion
	Appendix I: Estimation of noise standard deviation and of surface sample density
	Appendix II: Error metrics
	References
	Biographies
	Zhongwei Xu
	Alessandro Foi

