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X-ray micro-tomography systems often suffer severe ring artifacts in reconstructed
images. These artifacts are caused by defects in the detector, calibration errors,
and fluctuations producing streak noise in the raw sinogram data. We model these
streaks in sinogram domain as additive stationary correlated noise upon logarith-
mic transformation. Based on this model, we propose a streak removal proce-
dure where Block-Matching and 3-D (BM3D) filtering algorithm is applied across
multiple scales, achieving state-of-the-art performance in both real and simulated
data. Specifically, the proposed fully automatic procedure allows for attenuation
of streak noise and the corresponding ring artifacts without creating major distor-
tions common to other streak removal algorithms.

1. Introduction

Ring artifacts are ubiquitous in computed tomography (Jha
et al., 2013; Artul, 2013; Boas & Fleischmann, 2012); they orig-
inate from angular streak noise in measured raw sinogram data
used to reconstruct a tomographic volume (Croton et al., 2019)
and appear as darker or lighter circles or arcs centered on the
axis of rotation for data acquisition. Streak noise can be caused
by mis-calibration of detector linear response, beam fluctua-
tions, beam hardening, or dusty or damaged scintillator screens
(Haibel, 2008; Vidal et al., 2005; Anas et al., 2010).

Minimization of ring artifacts by using adequate scanning
protocols (Pelt & Parkinson, 2018), high quality scintillator
screens and detectors is possible. It is, however, difficult to
completely avoid such artifacts and therefore achieve high-
est quality reconstruction solely by experimental measures.
Several algorithms have been proposed to reduce ring arti-
facts in tomographic imaging, including wavelet-FFT filters
(Münch et al., 2009), combinations of polynomial smoothing
filters and careful calibration of detector response function (Vo
et al., 2018; Croton et al., 2019), or iterative algorithms (Paleo
& Mirone, 2015) that combine regularized reconstruction with
denoising.

In this work, we model the streak noise as a spatially corre-
lated noise in sinogram domain, and propose a denoising pro-
cedure aiming to remove the streak noise before reconstruction.
The denoising procedure is based on collaborative filtering,
which employs both non-local self-similarity and transform-
domain shrinkage to denoise a noisy signal through jointly
transformed grouped blocks. In particular, we use the im-
age denoising algorithm BM3D (Dabov et al., 2007; Dabov
et al., 2008), leveraging the recent inclusion of exact transform-
domain noise variances (Mäkinen et al., 2020), which allow for
accurate modeling of long noise correlation within the jointly
transformed blocks.

Noting that some streaks may be too wide to be adequately
captured by a group of standard-sized BM3D blocks, we further

propose multiscale streak removal with BM3D. The proposed
procedure is fully automatic and includes self-calibration of the
filtering strength. We demonstrate the superior performance of
the proposed approach on real data from the table-top Prisma
XRM microCT at Sigray, and from the Synchrotron based mi-
croCT at the Advanced Photon Source (APS) in Argonne, avail-
able through Tomobank (De Carlo et al., 2018).

2. Transform-domain collaborative filtering of
correlated noise

In this section, we interpret sinogram streaks as spatially cor-
related noise, formalizing streak removal as filtering of corre-
lated noise where the streaks follow a basic stationary model.
As a powerful tool to deal with this model, we adopt a recent
BM3D designed for dealing with long-range correlation such
as that which characterizes the streaks. This constitutes the de-
noising module at the core of a multiscale and nonstationary
filtering architecture that will be presented in Section 3 for the
more general case of real-world streak noise.

2.1. Correlated noise model

We consider a noisy input z :X→R to be a combination of
underlying data y and additive stationary spatially correlated
noise η to be filtered:

z(x) = y(x) + η(x), x ∈ X , (1)

where x∈X⊂Z2 is the coordinate in the finite two-dimensional
image domain X (representing angles and displacements when
z is a sinogram) and

η = ν ~ g, ν (·) ∼ N (0, 1) , (2)

ν being zero-mean i.i.d. Gaussian noise with unit variance, and
~ denoting 2-D convolution with the kernel g. The kernel g
defines the spatial correlation of the noise as well as the noise
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strength, with ‖g‖2=std(η). An equivalent way of representing
correlated noise is by its power spectral density (PSD) Ψ:

Ψ = E
{
|F [η]|2

}
= var {F [η]} = |X | |F [g]|2 , (3)

with F being the 2-D Fourier transform, and |X | denoting the
cardinality (i.e. number of elements) of X . Equivalently, a ker-
nel g satisfying (2)-(3) can be defined from Ψ as

g = |X |−1/2F−1[std (F [η])] = |X |−1/2F−1
[√

Ψ

]
. (4)

2.1.1. Basic model for constant stationary streaks. Although
the streaks are originally multiplicative in nature, sinogram data
is considered upon a logarithmic transformation and therefore
the streaks can be modeled by the additive noise η in (1). The
sinogram streak noise is fairly constant in the angular dimen-
sion, presenting very long-range correlation in the noise along
this dimension. Treating angle as the vertical dimension and dis-
placement as horizontal, we consider the basic case of horizon-
tally white and vertically constant streak noise. Such noise can
be modeled through (2), when setting g as a vertically constant
line. This simple kernel as well as the corresponding PSD Ψ are
demonstrated in Figure 1; an example of real streak noise viably
approximated through this model is shown in Figure 2.

In practice, the above simple model cannot be used but for
small segments of the sinograms, as streak noise can often fea-
ture horizontal correlation, vertical variations, or nonstationari-
ties that are not described by the model. In Section 3, a complete
processing pipeline is further proposed to allow modeling more
complex cases of streak noise through (1)-(4), enabling their
attenuation through the collaborative filter.

η g Ψ = |X| |F [g]|2

Figure 1
Example noise η = ν ~ g, ν (·) ∼ N (0, 1), the corresponding correlation
kernel g, and PSD Ψ. For the kernel and the PSD, black pixels of the image
correspond to value 0 in the data.

Figure 2
Example of streak noise in a sinogram (a fragment of Fly) that can be seen as
well approximated by the model in Figure 1.

2.2. Transform-domain collaborative filtering and BM3D

The rationale of transform-domain filtering is to work with
a representation of the signal where most of the signal is com-
pacted to only a few coefficients, whereas the remaining coef-
ficients are mostly comprised of noise. Hence, by attenuating
the coefficients with a non-linear shrinkage operator, it is pos-
sible to attenuate noise while keeping most of the signal intact.
Nonlocal collaborative filters utilize this property in the context
of collective transform coefficients of groups of similar blocks
extracted from the image. In all of the following sections, we
consider the recently proposed variant (Mäkinen et al., 2020)
of BM3D for correlated noise denoising where the input is z
and the goal of denoising is to estimate y based on the statistics
of η or equivalently knowledge of Ψ or g.

In BM3D, all operations are made with regard to a reference
block moving through the image. For each position of the refer-
ence block, the following steps are executed:

1. Collect similar blocks into a group through block-
matching

2. Obtain the 3-D transform spectrum by collectively trans-
forming the obtained blocks

3. Perform shrinkage

4. Transform the shrunk spectra back to block estimates and
aggregate them to the original locations from which they
were collected

The 3-D transform spectrum of the grouped noisy blocks is
obtained through first applying a 2-D transform T 2D locally
to each block, then a 1-D transform T NL through the ”stack”
of grouped blocks. Denoting by {zx1 , . . . , zxM} a group of M
blocks of N pixels extracted from z at coordinates x1, . . . , xM ,
we obtain the T 2D spectrum coefficients as sxt

i =
〈
zxt , b

2D
i

〉
, for

i = 1, . . . ,N, t = 1, . . . ,M, where b2D
i is the i-th basis function

of T 2D. The 3-D spectrum coefficients are calculated through
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the direct tensor product of the T 2D and T NL transforms, as

sx1,...,xM
i, j =

〈
[zx1 ; · · · ; zxM ] , b

2D
i ⊗bNL

j

〉
=

=
〈
[sx1

i , · · · , s
xM
i ] , bNL

j

〉
=

M∑
t=1

bNL
j (t)sxt

i , (5)

where bNL
j (t) is the t-th element of the j-th basis function bNL

j

of T NL,⊗ denotes the tensor product, and [· ; · · · ; ·] denotes the
stacking of the blocks along the 3rd dimension. The indexing
and notation of the transform spectrum coefficients are illus-
trated in Figure 3.
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Figure 3
Notation and indexing of patch coordinates xl , patches zxl , and coefficients
sxl

i and sx1 ,...,xM
i, j in the the corresponding T 2D spectra and T 3D spectrum, re-

produced with permission from Mäkinen et al. (2020). The illustration is for
a group of three blocks of size 2×2 at coordinates x1 =(4, 3), x2 =(7, 5),
x3 =(8, 6) within a 10×10-pixel image.

In each step of the algorithm, the variances of sx1,...,xM
i, j play a

key role; we denote them by vx1,...,xM
i, j . For their calculation, we

refer the reader to Mäkinen et al. (2020). Here, we provide a
summary of the macroscopic operations of the algorithm.

2.2.1. Block-matching. For each reference block, BM3D de-
fines a local neighborhood from which similar blocks are col-
lected. Each block in the neighborhood is ranked by

LxR(x j) =
∥∥zxR− zx j

∥∥2
2 − 2γ

N∑
i=1

vxR,x j
i,2 , (6)

where zxR is the reference block, zx j is a potential match, vxR,x j
i,2

is the i-th coefficient of the block-pair transform-domain vari-
ance corresponding to block difference, and γ ∈ R. The com-
mon aim of block-matching is to find blocks which are the most
similar to the reference block in terms of the underlying noise-
free content. When only a noisy image is available, the similar-
ity is evaluated between noisy blocks and the term scaled by γ
in (6) compensates for bias in the ranking caused by noise cor-
relation. Specifically, with γ=0 the matches would be mainly
guided by the strong vertical correlation of the streak noise and
thus be located along the streaks, largely ignoring any similar-
ity of the underlying signal; setting γ>0 mitigates this bias by
promoting matching of blocks in which the noise is not corre-
lated with that of the reference block. In particular, we employ

γ=3 as proposed by Mäkinen et al. (2020) for the general case
of correlated noise, facilitating further the matching of blocks
which differ from the reference block mainly due to the vari-
ance of the block difference.

The common design of BM3D includes two distinct stages of
denoising with different shrinkage operators, meaning that the
full image is processed twice. In the second stage, the block-
matching is commonly executed on the image estimate pro-
duced by the first denoising stage. As this image can be pre-
sumed noise-free, the second block-matching is executed with-
out any compensation for noise correlation.

2.2.2. Shrinkage of the 3-D spectra. The core of BM3D is
shrinkage performed on the 3-D transform spectrum of the
grouped noisy blocks. For a given transform-domain coefficient
of the group, a generic shrinkage can be expressed as

sx1,...,xM
i, j 7−→ αi, js

x1,...,xM
i, j , (7)

where αi, j is a shrinkage attenuation factor which depends on
sx1,...,xM

i, j , the noise statistics, and possible other priors.
BM3D utilizes two shrinkage operations: in the first denois-

ing stage, the denoising process performs shrinkage by hard-
thresholding; the second stage employs a Wiener filter, utilizing
the hard-thresholding image estimate as a pilot signal.

In hard-thresholding, the shrinkage is performed by setting
spectrum coefficients smaller than a threshold to zero, as they
are mostly composed of noise:

αHT
i, j =

{
1 if

∣∣∣sx1,...,xM
i, j

∣∣∣ ≥√vx1,...,xM
i, j λ

0 otherwise,
(8)

where λ≥0 is a fixed constant.
In Wiener filtering, the attenuation coefficients of the transfer

function are computed from the previous estimate, used as pilot
signal, and from the variance of the noise spectrum coefficients
as

αwie
i, j =

∥∥ 〈[ŷHT
x1

; · · · ; ŷHT
xM

]
, b2D

i ⊗bNL
j

〉 ∥∥2∥∥∥〈[ŷHT
x1

; · · · ; ŷHT
xM

]
, b2D

i ⊗bNL
j

〉∥∥∥2
+µ2vx1,...,xM

i, j

, (9)

where ŷHT is the estimate of y obtained from the hard-
thresholding stage, and µ2 is a scaling factor included due to
aggregation to influence the bias-variance ratio we wish to min-
imize through the Wiener filter.

2.2.3. Aggregation. After calculating the attenuation factors
of the group, they can be applied to the 3-D transform spectra
to obtain estimates for the grouped blocks:

ŷx j = Q2D
{〈
αx1,...,xM

i, j sx1,...,xM
i, j , qNL

j

〉}
, (10)

where Q2D is the inverse transform of T 2D, and qNL
j is the j-th

transform basis function of the inverse of T NL.
Hence, an estimate is produced for all blocks included in the

group. As a new group is built for every position xR of the refer-
ence block, there is a large amount of block estimates providing
a highly redundant covering of the image. Let XR be the set
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of coordinates of all reference blocks and denote by
{

ŷxR
x j

}MxR
j=1

the set of estimates (10) for the group of blocks matched to the
reference block at position xR. Then, the block estimates of an
image are

⋃
xR∈XR

{
ŷxR

x j

}MxR

j=1 and they can all be distinct.
We aggregate all block estimates at their respective positions

into the image through an adaptive weighted average

ŷ =

∑
xR∈XR

∑MxR
j=1 ω

xR
x j

Wx j ŷ
xR
x j∑

xR∈XR

∑MxR
j=1 ω

xR
x j Wx j

, (11)

where ωxR
x j

is a block-specific weight and Wx j is a windowing
function over blocks at position x j. The weights ωxR

x j
, inversely

proportional to the residuals of transform-domain noise vari-
ances, promote estimates with less residual noise to improve
quality of the final estimate.
The steps for denoising a group of blocks are demonstrated in
Figure 4.

(a) (b) (c) (d) (e) (f) (g)

Figure 4
Denoising a part of Fly (a portion of Figure 2) with vertical streak noise with Ψ

as in Figure 1. Left to right: (a) Positions x1, . . . , x8 of one group of blocks with
reference block in red; (b) contents of the 8 matched blocks zx1 , . . . , zx8 ; (c)
the resulting T 3D spectrum coefficients sx1 ,...,x8

i, j ; (d) corresponding 3-D noise

standard deviations
√

vx1,...,x8
i, j ; (e) hard-thresholded coefficients αHT

i, j sx1 ,...,x8
i, j ;

(f) the denoised group of blocks ŷHT
x1
, . . . , ŷHT

x8
, and (g) the denoising result of

hard-thresholding ŷHT. For the spectrum coefficients and the standard devia-
tions (c,d,e), 50%-gray pixel color in the figure corresponds to value 0 in the
data.

3. Processing pipeline

In this section, we consider the necessary steps for modeling the
streak noise through (1) for real sinogram data, hence allowing
the effective application of BM3D for streak removal.

3.1. Bright-fielding and log-transformation

The optical attenuation through the sample is determined
experimentally via bright-field corrections requiring two addi-
tional inputs, the bright-field and the dark-field (Seibert et al.,
1998). The bright-field is an acquisition obtained by the imag-
ing procedure with no sample, and the dark-field is obtained
with no beam; both are 2-D arrays the size of effective pixels

of the detector. Furthermore, the Beer-Lambert law relates the
X-ray transform through the sample to the optical attenuation
by a logarithmic transformation (Swinehart, 1962).

Hence, the raw projections Praw are first normalized as

Pnorm =
Praw − ID

IB − ID
, (12)

where ID is the dark-field and IB is the bright-field1, and then
log-transformed as

Plog = ln (Pnorm) . (13)

Bright-fielding (12) provides a partial, but not thorough correc-
tion of the streak noise (Davidson et al., 2003); the denoising
pipeline of the following sections is designed to attenuate the
remaining streak noise.

3.1.1. Noise in the projections. Apart from possible com-
pletely defective detectors2 we treat the variation in detector
response as normally distributed. We further model the streak
noise as locally stationary, meaning that the streak variance
is presumed constant within sufficient area (i.e. the block-
matching search neighborhood) for the application of BM3D.
As the data is obtained through a photon-counting detector,
the statistics of the measured raw data can be further mod-
eled through a Poisson distribution. Considering both the ap-
proximately normally distributed streak noise and the Poisso-
nian component, noise in projections normalized by (12) can be
modeled as

Pnorm = A(1 + ηP) + π =

(
A +

π

1 + ηP

)
(1 + ηP) , (14)

where A are the noise-free projections, ηP is the normally dis-
tributed streak noise component, and π is (approximately) white
Poissonian noise with zero mean; all components of (14) are
considered as 3-D arrays and multiplications are elementwise.

We note that the natural logarithm of (13) acts as a variance-
stabilizing transformation for the multiplicative noise compo-
nent (1 + ηP). Hence, we have

Plog= ln (Pnorm)≈ ln
(

A +
π

1+ηP

)
+ ηP , (15)

where the approximation comes from ln(1+ηP)≈ηP . The addi-
tive noise component ηP in (15) corresponds to the streak noise
to be denoised. As here we only aim to attenuate the streak
noise, through denoising we estimate ln

(
A+ π

1+ηP

)
; the embed-

ded noise term π
1+ηP

although not i.i.d. is nevertheless (approx-
imately) white and does not present streaks.

Individual sinograms, each of which is defined as a cross-
section of the stack of projections Plog, are denoted as

Z = Y + ηZ , (16)

where Y denotes the underlying streak-free sinogram, and ηZ is
the corresponding cross-section of ηP . The sinograms Z are used
as the input for the processes in the following Section 3.2.

1 As Praw is a 3-D array, the pixels of IB and ID are replicated through the angle dimension for the operations in (12).
2 Extreme streak noise arising from defective detectors is addressed separately in Section 3.4.
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3.2. Multiscale filtering architecture

In what follows, we assume that sinograms Z are oriented
such that streaks are oriented vertically, i.e. the angular compo-
nent is vertical and the displacement is horizontal.

The streak noise ηZ is characterized by very long-range cor-
relation. In particular, because vertically there are no high-
frequency streak noise components, the streaks can be filtered
entirely at a coarse vertical scale, with consequent benefits in
terms of efficacy and computational efficiency. Furthermore,
BM3D operates using blocks of fixed size within a limited
neighborhood which may be too small to fully denoise the wider
streaks. Thus, we also want to denoise across multiple horizon-
tal scales to effectively attenuate streaks of varying sizes.

Our multiscale implementation is based on a simple and ef-
ficient pixel binning to go towards coarser scales by replacing
adjacent pixels by their sum. To go back towards finer scales
we leverage the iterative debinning approach from Azzari &
Foi (2016), which is based on spline upsampling. The multi-
scale denoising process is illustrated in Figure 5 and proceeds
as follows.

We begin with a single vertical binning of the full noisy sino-
gram Z of height m to a sinogram Z0 of height mv≤m through
a binning operator Bv. On Z0, we perform all consequent hori-
zontal operations and denoising.

After vertical binning, the sinogram Z0 is progressively
halved in size K times through a horizontal binning operator
Bh : Zk =Bh (Zk−1) = Bk

h (Z0)= Bk
h (Bv (Z)), k=1, . . . ,K. De-

noting by n the width of Z and Z0, Zk has width d2−kne; with
every binning, the streak width gets also halved. The multiscale
denoising is operated in a coarse-to-fine fashion, where progres-
sively for each k=K,K−1, . . . , 2, 1, 0, we obtain an estimate Ŷk

of Bk
h (Bv (Y )). We start by taking as noisy input Z∗K of BM3D

the smallest binned sinogram ZK ; in this way, we obtain from
Z∗K =ZK the coarsest estimate Ŷk, which is taken as initializa-
tion for the following recursive steps executed for each scale
k=K−1, . . . , 0 :

1. Replace the horizontal coarser-scale components of Zk by
those of the estimate Ŷk+1 :

Z∗k = Zk − B−1
h (Bh (Zk)) + B−1

h

(
Ŷk+1

)
= Zk − B−1

h

(
Zk+1 − Ŷk+1

)
.

2. Denoise Z∗k with BM3D to produce the estimate Ŷk.

The result Ŷ0 of the last denoising step is the fully denoised es-
timate the size of Z0. To produce the full-size estimate Ŷ of Y ,
we replace the vertical coarse-scale components of Z with those
of Ŷ0, similar to the Step 1 above:

Ŷ = Z − B−1
v (Bv (Z0)) + B−1

v

(
Ŷ0
)
= Z − B−1

v

(
Z0 − Ŷ0

)
.

Figure 6 illustrates the sinograms over the various stages of
the multiscale denoising process.

Bv B−1
v

Σ

B−1
v (Z0 − Ŷ0)

Z0 − Ŷ0
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Σ
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Ŷ0

BM3D
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Bh B−1
h

Σ

B−1
h (Z1 − Ŷ1)

Z1 − Ŷ1

+−

Σ
+−

Ŷ1

BM3D
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Σ
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h (Z2 − Ŷ2)
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Σ
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ŶK−1
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Σ
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ŶK
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Z∗
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0
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K
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d 1
2
ne ×mv
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d 1
2K−1 ne ×mv
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d 1
2K
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Figure 5
Flowchart of the multiscale denoising process, starting from the noisy sinogram
Z and resulting in the estimate Ŷ of the streak-free sinogram, both of size n×m.
First, Z is vertically rescaled into a sinogram Z0 of size n×mv, mv≤m, through
the binning operatorBv. Then, by repeated horizontal binningBh, Z0 is progres-
sively downscaled into a series of sinograms Zk =Bh (Zk−1), k=1, . . . ,K, each
of size d2−kne×mv. The coarsest scale noisy input Z∗K =ZK is denoised with
BM3D to produce ŶK . Then, recursively for k=K−1, . . . , 0, the noisy input
Z∗k =Zk−B−1

h

(
Zk+1−Ŷk+1

)
is denoised by BM3D to produce Ŷk; this defini-

tion of Z∗k means that the coarse-scale horizontal components of Zk are replaced
by Ŷk+1. The PSD for each scale is estimated as described in Section 3.3.2. The
resulting estimate Ŷ0 of the horizontal debinning (size n×mv) similarly replaces
the coarse-scale vertical components of Z to obtain the full-size estimate Ŷ .
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Figure 6
Multiscale denoising of Fly. Left: the noisy sinogram Z. Center and right: three scales of the multiscale denoising process, each showing Zk , Z∗k , and Ŷk .
The full-size estimate Ŷ is displayed in Figure 12.

η∗k , k<K g∗k =ςkgB Ψ
∗
k = |Xk| |F [g∗k ]|

2

Figure 7
Example of noise η∗k of Z∗k , k<K, the correlation kernel g∗k = ςkgB where gB is
produced by B and B−1, and the corresponding PSD Ψ∗k . For the kernel, 50%-
gray pixel color in the figure corresponds to value 0 in the data; for the PSD,
black is 0. Note the missing low frequencies at the center of the PSD, and the
higher-frequency nature of η∗k compared to the white streak noise η in Figure 1.

3.3. Multiscale noise model

For BM3D denoising, we regard Z∗k of each scale k as z of the
model (1), as

Z∗k = Bk
h (Bv (Y )) + η∗k , (17)

where

η∗k =

{
ηK k=K ,

ηk − B−1
h (Bh (ηk)) k<K ,

(18)

and ηk = Bk
h (Bv (ηZ)). This definition for η∗k , k<K follows

from considering the coarser-scale estimate Ŷk as perfectly de-
noised. Similar to (3), η∗k is treated as correlated noise with PSD

Ψ
∗
k = var (F [η∗k ]) = |Xk||F [g∗k ]|

2
, K ≥ k ≥ 0 , (19)

where g∗k is a correlation kernel and |Xk|=d2−knemv. As per
(4), the kernel g∗k can be defined as

g∗k = |Xk|−1/2F−1[std (F [η∗k ])] . (20)

3.3.1. Multiscale PSD of white streak noise. Let
η0=Bv (ηZ) be horizontally white and vertically constant streak
noise like in Figure 1. Under this assumption for η0, we have
that also all ηk = Bk

h (η0) for 0≤k≤K are horizontally white
and vertically constant, with variance var(ηk)=2kvar(η0). The
doubling of the variance with every horizontal binning follows
from the noise whiteness, which means that each pixel of the
coarser scale sinogram is a sum of two pixels with independent
noise of equal variance. Therefore, disregarding the specific
support size of their actual finite realizations, we can identify
these stationary random fields as

ηk = 2k/2 std(η0) ηW , (21)

where ηW is a white streak noise like in Figure 1 with
var(ηW)=1. We can hence rewrite (18) as

η∗k =

{
2K/2 std(η0) ηW k=K
2k/2 std(η0)

(
ηW − B−1

h (Bh (ηW))
)

k<K .
(22)

This together with (20) means that we can characterize η∗k
through a kernel g∗k obtained by scaling either of two basic two
kernels gc and gB,

gc = |X |−1/2F−1[std (F [ηW ])] ,

gB = |X |−1/2F−1[std
(
F
[
ηW − B−1

h (Bh (ηW))
])]

,
(23)

by a factor
ςk =2k/2std(η0)=std(ηk), (24)

as

g∗k =

{
ςkgc k=K ,
ςkgB k<K .

(25)

We note that although the equalities (23) formally depend on
the realization size |X |, in practice this term only renormalizes
the kernel with regard to the Fourier transforms; hence (23) can
be computed for an arbitrary support.

The kernel gc is single-pixel wide and vertically constant like
in Figure 1, with ‖gc‖2=std(ηW)=1. Example noise η∗k , k<K,
and the corresponding kernel g∗k = ςkgB and PSD Ψ∗k (19) are
shown in Figure 7.

Estimation of ς0. To estimate std(η0)= ς0, we first convolve
Z0 with a 2-D kernel gd=φ⊗ ψ where φ is a 1-D column Gaus-
sian function of length mv/2 and standard deviation mv/12 and
ψ is a horizontal high-pass Daubechies wavelet ”db3” of length
6, hence convolution with gd realizes low-pass filtering in verti-
cal and high-pass filtering in horizontal. Thus, compared to Z0,
Z0~gd offers a lower signal-to-noise ratio (SNR), which facil-
itates the estimation of noise statistics; an example of Z0 and
the corresponding Z0~gd are shown in Figure 8 (top). One can
compute an estimate of the standard deviation of η0~gd via its
median absolute deviation (Hampel, 1974) :

std(η0~gd)̂=1.4826 smed
X0

(∣∣∣Z0~gd− smed
X0

(
Z0~gd

)∣∣∣), (26)

where smed denotes the sample median and the factor 1.4826
calibrates the estimate with respect to a normal distribution of
the noise. As std(η0~gd) = ‖ς0gc~gd‖2, an estimate ς̂0 of ς0
can be obtained through

ς̂0 = ‖gc ~ gd‖−1
2 std(η0~gd)̂ . (27)
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3.3.2. Adapting the model to non-white streak noise. The
above model (21)-(25) assumes that the streak noise ηZ is hori-
zontally white and stationary; however, real streak noise is never
exactly white across the displacement, and may thus have sig-
nificant differences in noise power between scales.

To adapt to these deviations from the model, we relax the
definition (24) of ςk and allow the scaling parameter ςk≥0 to
vary with each scale k, while assuming the kernels as in (25) for
simplicity3. In this way, to adaptively model the PSD (19), we
require only the estimation of ςk on each Z∗k .
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Figure 8
A fragment of Z0 of Fly and the corresponding Z0~gd (top), and a fragment of
Z∗0 with the corresponding Z∗0 ~gd (bottom). For Z0~gd and Z∗0 ~gd, 50%-gray
pixel color in the figure corresponds to value 0 in the data. Note how most of the
signal of the sinogram fragments is not present in the convolved arrays, facili-
tating the estimation of the streak noise statistics. Although Z0~gd and Z∗0 ~gd
look very similar, careful visual inspection reveals slight differences similar to
those between η=ηk in Figure 1 and η∗k in Figure 7.

Estimation of ςk, k≥0. For k=K, ςK can be estimated from
ZK =Z∗K by trivial substitutions of 0 with K in (26) and (27). Al-
though also for k<K one could estimate ςk similarly from Zk, a
more accurate estimate can be obtained using Z∗k as this lever-
ages the denoising of the coarser scales and thus Z∗k ~gd offers
an even lower SNR than Zk~gd. An example of Z∗k and the cor-
responding Z∗k ~gd are shown in Figure 8 (bottom). Similar to
(26) and for any K≥k≥0, the standard deviation of the noise
in Z∗k ~gd can be estimated as

std(η∗k ~gd)̂ = 1.4826 smed
Xk

(∣∣∣Z∗k ~gd− smed
Xk

(
Z∗k ~gd

)∣∣∣) .
Noting that std(η∗k ~gd)=‖g∗k ~gd‖2, we then estimate ςk as

ς̂k =

{
‖gc ~ gd‖−1

2 std(η∗K~gd)̂ k=K ,

‖gB ~ gd‖−1
2 std(η∗k ~gd)̂ k<K .

(28)

3.3.3. Horizontal nonstationarity of ηZ . Variance of the
streak noise may differ across the sinogram due to changes in
photon flux or noise in the bright-field. Thus, it may not be pos-
sible to denoise Z∗k assuming a constant ςk for all spatial po-
sitions without either oversmoothing or leaving noise artifacts

in some areas. To adapt to horizontal nonstationarity, we fur-
ther relax the model allowing ςk to vary within each scale k. In
particular, before noise estimation and denoising, we split Z∗k
and Z∗k ~gd into overlapping, full-height segments. We apply
BM3D separately on each segment of Z∗k , using a PSD scaled
by ς̂k estimated on the corresponding segment of Z∗k ~gd, i.e. we
consider each segment as a separate noisy image z with a cor-
responding Ψ. After denoising, the segment estimates produced
by BM3D are recombined with a windowing function to form
the full estimate Ŷk.

3.4. Attenuation of extreme streaks

We note that the projections often include several streaks
caused by defects in the scintillator. These streaks can be far
stronger than what reasonably produced by the distribution of
ηP and therefore require a specific pre-processing. To this end,
after applying the bright-field and before the multiscale denois-
ing process, we run a simple procedure on Plog which aims to
detect and attenuate only the most extreme streaks. First, we
calculate the median across the angular dimension of the 3-
D stack of projections as P̃=smed

angle
(Plog), resulting in a 2-D

map in which the streaks present as pixels extremely brighter
or darker than their surroundings. To detect extreme outliers,
for each coordinate x representing a single pixel of the detec-
tor and hence of P̃, we fit a bivariate cubic polynomial ℘x to
a window P̃x of P̃ centered at x. Then, consistent with Gaus-
sian modeling of ηP , we mark the center pixel P̃(x) defective if
|P̃(x)−℘x(x)| > 4sstd{P̃x−℘x}, where sstd denotes the sample
standard deviation; each marked pixel in P̃ corresponds to a full
column of the sinograms.

Each pixel of a defective column is replaced with the median
of non-defective pixels within a 2-D window considering the
displacement dimensions around it. We note that columns cor-
rected in this way are unlikely to be completely free of streak
noise; instead, the aim is to introduce less extreme pixel val-
ues that can be further denoised by the following applications
of BM3D. In order to not overload the notation, we denote the
output of this step as Plog identical to its input.

The complete streak noise attenuation procedure is illustrated
in Figure 9. The procedure is fully automatic, requiring as an in-
put only the raw projections and the bright- and dark-fields.

3 Adopting the kernels (25) with arbitrary values of ςk corresponds to assuming ηk approximately white with variance ς2
k , which may differ from 2kstd(η0) against

(21). This assumption becomes increasingly appropriate as k grows for non-white η0 featuring mild local horizontal correlations, as the binning in Bk
h (η0) is

tantamount to a convolution and decimation, leading to a flattening of the PSD.
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bright-fielding
log-transform
(Section 3.1)
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Plog

extreme streak
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(Section 3.4)

for each cross-section Z

multiscale
denoising
(Figure 5)

Z Ŷ

denoised
stack

inputs

output

Figure 9
The complete denoising process, requiring as inputs the noisy projections Praw
and the bright- and dark-fields IB, ID, and producing as the output an estimate
of the streak-free stack of projections composed of sinogram estimates Ŷ .

4. Experiments

We test our pipeline on synthetic data as well as two real ac-
quisitions displaying ring artifacts. As a comparison, we show
results for two leading streak-removal procedures from the to-
mopy library (Gürsoy et al., 2014): Münch et al. (2009) and Vo
et al. (2018). In particular, for the latter we combine ”Algorithm
3”, ”Algorithm 5”, and ”Algorithm 6”, which is demonstrated
in Vo et al. (2018) to attenuate a variety of different streaks.

For the synthetic experiments, we use a sinogram
(627×180px) of the Shepp-Logan phantom obtained through
MATLAB Radon transform upon a sign change and an ex-
ponential transformation. We regard this sinogram as the
noise-free projections A and generate noise according to (14)
with g as a one-pixel wide image-height vertical kernel like
the one in Figure 1. To obtain streak noise of different
strengths, the streak noise component (1+ηP) is generated with
std(ηP)=0.005, 0.01, 0.02, 0.05. Next, to generate noisy mea-
surements with different SNR levels for the Poisson compo-
nent, we separately scale A to the ranges [1280, 2560] (higher
SNR) and [640, 1280] (lower SNR) and generate a Poisson vari-
ate with mean and variance A(1+ηP), thus defining the Pois-
sonian noise π as the difference between this Poisson variate
and A(1+ηP). Furthermore, we include experiments with π=0
(infinite SNR), thus resulting in a total of 12 combinations of
Poisson and streak noise strengths. We do not simulate extreme
streaks. As the underlying data consists of only a single sino-
gram, we have Z=Plog and we consider ln (A + π/(1+ηP)) as
the streak-free sinogram Y . The results of the phantom experi-
ments are collected in Table 1, and illustrated in Figure 10 and
Figure 11.

Table 1
Average signal-to-noise ratio (SNR) after attenuation of streaks in the Shepp-

Logan phantom subject to mixed streak and Poissonian noise as in (14), with
different combinations of std(ηP ) and peak values of A, with peak=∞ be-
ing the limiting case for which π=0. As all of the algorithms aim to remove
streak noise only, the SNR values are calculated with Y = ln(A + π/(1+ηP )) as

SNR(Ŷ )=10 log10

(
svar

X
{Y 2}

/
smean

X

(
(Ŷ−Y )2

))
, where svar and smean de-

note sample variance and sample mean, respectively. Each value of the table is
the average SNR over 10 different noise realizations.

SNR
peak std(ηP ) noisy Münch et al. (2009) Vo et al. (2018) proposed

∞ 0.005 32.61 11.80 28.97 44.05
(π=0) 0.01 26.59 11.78 28.52 39.19

0.02 20.58 11.72 27.48 34.29
0.05 12.77 11.49 24.62 27.24

2560 0.005 32.66 11.85 28.32 38.41
0.01 26.64 11.82 27.89 35.90
0.02 20.63 11.77 26.90 32.63
0.05 12.82 11.54 24.21 26.67

1280 0.005 32.71 11.90 27.76 36.51
0.01 26.69 11.87 27.36 34.31
0.02 20.68 11.82 26.45 31.55
0.05 12.86 11.59 23.92 26.21

tomogram of Y tomogram of Z

tomogram of Ŷ
Münch et al. (2009)

tomogram of Ŷ
Vo et al. (2018)

tomogram of Ŷ
proposed

Figure 11
Corresponding tomograms of Figure 10. On top, Y = ln(A + π/(1 + ηP )) and Z.
On bottom, left-to-right, Münch et al. (2009), Vo et al. (2018), proposed proce-
dure based on BM3D denoising. Note the strong circular components on both
Münch et al. (2009) and Vo et al. (2018), not present in the noisy tomogram or
in the proposed result.

The Fly dataset consists of 180 projections with 50 second
exposure (detector pixel size 27 micron, demagnified to 15.7
microns by cone-beam geometry) collected using Sigray Prisma
X-ray micro-tomography instrument at 34 kV; each sinogram
is 512px wide. The Fly contains both extreme streaks caused
by defective detectors and approximately normally distributed
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Y

Z |Y − Z|

Ŷ , Münch et al. (2009) |Ŷ − Z|, Münch et al. (2009)

Ŷ , Vo et al. (2018) |Ŷ − Z|, Vo et al. (2018)

Ŷ , proposed |Ŷ − Z|, proposed

Figure 10
Left: Comparison of sinograms after different denoising procedures on the
Shepp-Logan phantom with noise as in (14) with std(ηP ) = 0.02 and signal
peak 2560. Top to bottom: Y = ln(A + π/(1 + ηP )), Z, Münch et al. (2009),
Vo et al. (2018), proposed procedure based on BM3D denoising. Right: corre-
sponding estimation errors. Note how both of the comparison methods create
strong artifacts around the areas with the highest contrast, as pointed by the ar-
rows. These artifacts are which are method artifacts present only in the results
by these two algorithms.
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streaks, although they are generally more intense towards the
edges of the projections due to weak photon flux and Poisson
noise affecting the bright-field. Thus, the Fly benefits greatly
from both the extreme streak removal procedure of Section 3.4
and relaxing the stationarity assumption by performing PSD es-
timation and denoising in multiple parts for each sinogram as
described in Section 3.3.3. The denoising results of two differ-
ent sinograms are shown in Figure 12; the corresponding to-
mograms of the second sinogram of Figure 12 are shown in
Figure 13.

We also test the algorithm on a soft tissue sample 00076
displaying severe ring artifacts freely available in TomoBank
(De Carlo et al., 2018). The data contains 2000 projections with
2.2 µm pixels, 100ms exposure time obtained at the Advanced
Photon Source, 2-BM beamline; other experimental parame-
ters are X-ray energy of 60-70 keV, 10um LuAG Scintillator,
and sample-to-detector distance as 90mm. The sinograms are
2560px in width. Included are ten samples for bright- and dark-
fields, which are averaged to obtain a single bright-field and
dark-field. The denoising results of a single sinogram are shown
in Figure 14, and the corresponding tomograms in Figure 15.

4.1. Implementation details

We use the BM3D implementation for Python (available
from the PyPI package bm3d) with the ’refilter’ profile and in-
put PSD estimated as described in Section 3.3.2.

For the multiscale denoising procedure, we performed ver-
tical binning with mv=dm/dm/64ee≈64px; this value, being
slightly larger than the height of the BM3D search neighbor-
hood of Section 2.2.1 (39×39px), allows our method to atten-
uate streaks which change slowly across the angle – a larger
value of mv might be used to deal with streaks featuring faster
variation. The number of horizontal scales K for each sinogram
was set as K=blog2(n/40)c, which gives K=3 for Fly and the
Shepp-Logan phantom, and K=6 for 00076; these values offer
a compromise between denoising wide streaks versus preserv-
ing low-frequency signal components – larger values of K not
only result in ZK narrower than the BM3D search neighborhood,
but also in extremely coarse scales that naturally feature a very
high SNR that may lead to overestimating ςK and hence to over-
smoothing. For the localized processing of each scale (Section
3.3.3), we estimate ςk, K≥k≥0 and apply BM3D denoising on
39-pixel wide segments, following the width of BM3D search
neighborhood. For the attenuation of extreme streaks, we used
a 19×19px window.

To consider the computational cost, we note that the full de-
noising process of Fly (181×512×512px) run single-threaded
on AMD Ryzen 7 1700 processor takes about one hour, mostly
due to the BM3D denoising in CPU. A highly parallel GPU-
based implementation is expected to reduce this runtime to the
scale of seconds (Davy & Ehret, 2020). The complexity of
BM3D is linear with the number of pixels in the noisy image.
Thus, the computation time is directly proportional to the sino-
gram height after vertical binning. As each iteration of the hor-
izontal multiscale denoising halves the number of pixels, the
computational cost of BM3D for an extra iteration k > 0 is then

1/2kth of the cost of k=0, the total for all k=0, . . . ,K being at
most twice that of single scale denoising of Z0.

The correlation kernels gc and gB do not depend on the input
or scale, and can thus be pre-computed. To compute gB, we use
directly the definition (23) through a Monte Carlo simulation
of sample standard deviation in Fourier domain. We note that
as the kernel is vertically constant, it suffices to perform this
simulation in 1-D and repeat the kernel mv times in the vertical
dimension.

For Münch et al. (2009) and Vo et al. (2018), we use im-
plementations remove stripe fw and remove all stripe provided
by the tomopy Python library of Gürsoy et al. (2014). The to-
mograms of each experiment are reconstructed using the xpack
library (Marchesini et al., 2020).

5. Discussion and conclusions

We have presented a model for streak noise in sinogram do-
main as locally stationary correlated noise additive in logarith-
mic scale. Based on this model, we have described a BM3D-
based multiscale denoising procedure removing streak noise,
and consequently, the tomogram ring artifacts. The use of the
recently proposed variant (Mäkinen et al., 2020) of BM3D is
crucial for this work, as we deal with long-range noise correla-
tion which earlier BM3D designs could not handle satisfacto-
rily.

Tested on both synthetic and real data, our denoising pro-
cedure achieves state-of-the-art performance in streak removal.
Compared to the two popular streak removal algorithms Münch
et al. (2009) and Vo et al. (2018), our procedure achieves supe-
rior results both visually and quantitatively in terms of signal-
to-noise ratio. Although all tested algorithms manage to suc-
cessfully remove most streak noise, both Münch et al. (2009)
and Vo et al. (2018) tend to create large distortions especially
where the intensities of the underlying sinogram columns vary
significantly. This type of artifact hinders interpretation of the
results and subsequent analysis such as segmentation. In com-
parison, the proposed algorithm offers similar or better streak
removal without further distorting the sinogram.

The proposed multiscale framework, here using basic pixel
binning and debinning, could be extended to more sophisti-
cated scale decompositions, such as steerable pyramids, con-
tourlets, or dual-tree wavelets (Kovacevic & Chebira, 2008). In
this work, we have considered each sinogram as a separate input
for BM3D for simplicity, but the same mechanism can be used
for simultaneous filtering of the entire 3-D stack of sinograms.
In this way, the similarities between consecutive sinograms of
the stack could be utilized within the collaborative filter.

As the sinograms are commonly processed after a logarith-
mic transform, we have not discussed inversion of the loga-
rithm needed for denoising. Although the exponential function
is naturally the inverse of the logarithm, the nonlinearity of the
logarithm causes bias in a denoised sinogram if inverted this
way. Hence, if the sinogram should be reverted back from the
logarithmic domain after denoising, an exact unbiased inverse
(Mäkitalo & Foi, 2010; Mäkitalo et al., 2010) should be used
instead.
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Figure 12
Comparison of two sinograms of Fly after different denoising procedures. Top
to bottom: noisy sinogram Z, Münch et al. (2009), Vo et al. (2018), proposed
procedure based on BM3D denoising. Although Vo et al. (2018) is very effec-
tive at removing streaks, it also considerably affects the sinogram features; note,
for example, the considerably weaker bold diagonal line (indicated by the first
arrow) compared to the other algorithms. Both Münch et al. (2009) and Vo et al.
(2018) also distort larger areas of the sinograms, as pointed out by the second
arrow; these problems are absent from the BM3D-based result. Although not
visually obvious here, the differences cause severe artifacts in the tomograms,
as can be seen in Figure 13.

tomogram of Z

tomogram of Ŷ , Münch et al. (2009)

tomogram of Ŷ , Vo et al. (2018)

tomogram of Ŷ , proposed

Figure 13
Comparison of resulting tomograms after different denoising procedures on the
second sinogram of Fly shown in Figure 12. Top to bottom: noisy reconstructed
object, Münch et al. (2009), Vo et al. (2018), proposed procedure based on
BM3D denoising. Although all methods achieve good results in removing the
streaks, both Münch et al. (2009) and Vo et al. (2018) introduce strong shadows
absent from the proposed estimate, as indicated by the arrows.
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Figure 14
Comparison of sinograms after different denoising procedures on 00076. Top
to bottom: noisy sinogram Z, Münch et al. (2009), Vo et al. (2018), proposed
procedure based on BM3D denoising. Note how in the zoom in, the proposed
method manages to remove streak noise without creating additional artifacts.
Münch et al. (2009) creates a horizontal streak-like artifacts as seen in the mid-
dle of the zoom-in, not present in the noisy sinogram; Vo et al. (2018) does not
fully denoise the sinogram.

tomogram of Z

tomogram of Ŷ , Münch et al. (2009)

tomogram of Ŷ , Vo et al. (2018)

tomogram of Ŷ , proposed

Figure 15
Comparison of resulting tomograms after different denoising procedures on
00076. Top to bottom: noisy reconstructed object, Münch et al. (2009), Vo et al.
(2018), proposed procedure based on BM3D denoising. Münch et al. (2009)
manages to remove almost all noise in both low and high frequencies, but cre-
ates artifacts where the original did not have any, as seen from the rightmost
zoom. The proposed denoising procedure removes most of the noise (including
the wide streaks still present in Vo et al. (2018)), and does not introduce further
artifacts. Note also the central pixel, magnified in the middle, which is very
dark for both Münch et al. (2009) and Vo et al. (2018), whereas the proposed
procedure does not leave any visible artifact.
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