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DESIGN OF FIR FILTERS WITH
CONSTRAINTS IN THE TIME OR FRE-
QUENCY DOMAIN

e Up to now, we have concentrated on designing FIR
filters to meet the given amplitude criteria in some
sense. However, there exist applications where there
are constraints in the time domain or in the fre-
quency domain.

e For example, in some applications the transient
part of the step response must be constrained to
vary within the given limits

e Another example is the design of Nyquist filters
or M-th band filters with every M-th impulse
response value being zero except for the central

value.

e Furthermore, in some cases, there are flatness con-

straints in the passband response of the filter.
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How to solve these problems 7

In some cases, the desired solution can be obtained
by properly modifying the design methods proposed

previously.

In the remaining cases, new techniques are re-

quired.

Perhaps the most flexible design method for finding
the optimum solution to various constrained ap-

proximation problems is linear programming.

The advantage of this technique is that the conver-

gence to the optimum solution is guaranteed.

With linear programming, it is also possible to find
the optimum solution to the unconstrained mini-

max approximation problems considered previously.

The disadvantage is, however, that the required
computation to arrive at the desired solution is

rather large.

Therefore, it is preferred to use linear programming
only in those cases which cannot be handled with

other faster design techniques.
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Linear Programming Approach for FIR Filter
Design

e Linear programming is a very flexible approach for
solving many constrained approximation problems

in the minimax sense.

e Mathematically, the linear programming problem
can be stated in the form of the following primal
problem: Find the unkowns zp, & = 1,2,..., NN,

subject to the constraints

x>0, k=12,...,N

N
Z’wkfﬁk =6, 1=12,....M (M <N)
k=1
such that
N
o= Z QLT )
k=1
1s minimized.

e In this problem, v, o, and §; are constants.



Dual Problem

e The above problem is mathematically equivalent to
the following dual problem: Find the unknowns y;,

l=1,2,...,M, subject to the constraints

M
> wy<on, k=12,...,N
=1

such that
M
p=>_ 6w
=1

1s maximized.

e For digital filter design problems, the dual problem
is the most natural form. There exist several well-
defined procedures arriving at the desired solution
within M + N iterations. Lim has introduced an ef-
ficient special purpose algorithm for designing FIR
filters. This is faster than general purpose algo-

rithms.
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When to apply linear programming

e Linear programming can be applied in a straight-
forward manner to those problems where the ap-
proximating function is linear, i.e. it can be ex-

pressed in the form

R
H(w) = 3 bnl@(w,n),
n=0

where the b[n]’s are unknowns.

e According to previous discussions the zero-phase
frequency response of a linear-phase FIR filter can
be expressed in all the four cases in the above
form (see page 50 in the beginning of the pile of
lecture notes for FIR filter synthesis).

e Also, in many other cases, the approximating func-
tion can be written in the above form. For
instance, 1n the conventional frequency-sampling
methods the approximating function is expressible

in this form.
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A General Constrained Frequency-Domain Ap-

proximation Problem

A general constrained frequency-domain approxima-
tion problem, which can be solved using linear pro-
gramming, can be stated in the form: Find the un-

knowns b[n| to minimize

61 = max |E(w)],
where
E(w) = W(w)[H(w) - D(w)]
subject to

max |E(w)| < 6.
weXo

Here, X; contains a part of the passband and stop-
band regions and X, contains the remaining part.
For instance, by selecting X; and X, to be the
stopband and passband regions of the filter, respec-
tively, the stopband variation can be minimized for

the given maximum allowable passband variation.

e Problems of this kind cannot be solved directly us-

ing the MPR algorithm.
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e By sampling W(w) and D(w) along a dense grid

of frequencies w&l),wgl),...,wgz on X; and along
a grid of frequencies wf),wéz) ,...,w% on Xs, the

problem can be stated in the form of the dual
problem as follows: Find b[0],b[1],...,b[R], and 6;

subject to the constraints

S bnle(wi, n)—6 /W (W) < D), i =1,..., K
n=0

(1a)
R

(1c)
R
- Zb[n]@(w§2),n) < —~D(wj(-2))—|—52/W(w§2)),] =1,..., K
n=0
(1d)
such that
p=—01 (Le)

1s maximized.



Comments

Note that in the dual problem the constraints are
formed in such a way that a linear combination of

the unknowns is less than or equal to a constant.

In the above problem, 69 is a constant and §; is an

unknown.
This explains the difference between the equations.

The above equations have been constructed such
that, after finding the optimum solution with the
minimum 6§, —6 < Ew)) < & and —& <
E(wj(-l)) < 61 at the selected grid points.

Note also that in the dual problem a linear com-
bination of unknowns is maximized and maximizing

—61 implies minimizing 6y.



Other constraints

e It is easily include in the dual problem various
constraints which are expressible in the desired

form.

e For instance, it is straightforward to add con-

straints of the form

le Zb dl <o (20

dlw lwzwj

or

A H (w Z b[n dl ™) >0,  (2b)

de !w o o

where [ is an integer and w; is a grid point.
e The constraint expressed by Eq. (2a) is directly in
the desired form. The constraint of Eq. (2b) can

be written in the desired form by multiplying the
left-hand side by —1 and replacing > by <.
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e By adding a constraint of the form of Eq. (2a)
with [ = 1 at all the grid points in the passband
region, the passband response of the filter can be
forced to be monotonically decreasing. Steiglitz has
presented a FORTRAN code for designing filters of
this kind.

o Furthermore, the first L derivatives of H(w) can
be forced to be zero at w = w; by simultaneously
adding the constraints of Eqgs. (la) and (1b) for
l=1,2,...,L.

e In addition, if it is desired that H(w) achieve ex-
actly the value A at w = w;, this condition can be

included by using the following two constraints:

R
Z b[n]@(wj, Z b w], < —A. (3>
n=0
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Illustrative Example 1

e Consider the design of a Type I linear-phase fil-
ter of order 70 having [0,0.37] and [0.47, 7] as the

passband and stopband regions, respectively.

e The filter has fixed zero pairs at the angular fre-
quencies £0.4m, £0.457w, =£0.bw, =£0.557, =£0.6m,
and +0.657, and H(w) achieves the value of unity
at w = 0 with its first four derivatives being zero

at this point.

e The maximum deviation from unity on [0,0.157]
is 0.002 and the maximum deviation from zero
on [0.47,0.67] is 0.0001, whereas the response is
desired to be optimized in the remaining regions
with weighting of unity on [0.157,0.371] and 10 on
0.67, 7].

e The last part of this problem can be expressed
in the form of Eq. (1) using X; = [0.157,0.37] U
(0.6, 7] and X = [0,0.157]U[0.67,7]. D(w) is 1 on
[0,0.37] and 0 on [0.4m,w]. W(w) is 1 on [0,0.37],
20 on [0.47,0.67], and 10 on [0.67, 7], whereas 62 =
0.002.
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e To include the first part, Eq. (2) is used with A =
0 at the frequency points where the filter has fixed
zeros and with A =1 at the zero frequency.

e Equations (2a) and (2b) are used with [ = 1,2,3,4
at the zero frequency.

e The optimized filter response is shown below. The

resulting ripple values on [0.157,0.37] and [0.67, 7]
are 0.00637 and 0.000637, respectively.
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Other Contraints

e [t is also easy to include time-domain constraints
in the approximation problem. For instance, some
of the unknowns bjn|, n € S can be fixed and the
remaining ones can be optimized. In this case, the
desired solution can be found by using the follow-

ing approximating function

R
H(w) = bnld(w,n)
o

and by including the effect of the fixed terms in
the desired function by changing it to be

R
D(w) = D(w) = Y _b[n]®(w,n).

nes
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Example 2

This example shows how linear programming can
be used for designing filters with constraints on
the step response, which is related to the impulse-

response coefficients h[n| through

gln] =) hlm]

In the following transparency, the figures on the
left give the amplitude and step responses for a fil-
ter of order 46 optimized without any constraints

in the time domain.

For this filter, the passband and stopband ripples
are related via 6, = v/100; and the maximum un-

dershoot of the step response occuring at n = 22 is

—0.0921 and g[n] = 0.9903 for n > 46.

It is desired that g[n| =1 for n > 46 and
_5step < g[n] < 6step for 0<n<K,

where K = 22 and égep = 0.05.

The first condition can be satisfied by requiring

that H(0) = 1.
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e The second constraint is linear in the h[n]’'s and

can thus be easily included in the dual problem.

e The second constraint is linear in the h[n]’s and
can thus be easily included in the dual problem.
Because of this condition, it is advantageous to ex-
press H(w) directly in terms of the h[n|’s as (M =
N/2 for Type 1 designs)

H(w) —I—Zh n)(2 cos nw),

so that ®(w,M) = 1 and ®(w,M — n) = 2cosnw,
n > 0.

e The amplitude and step responses for the filter op-
timized with the above constraints are shown in
the figures on the right in the previous trans-

parency.
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Design of L-th Band (Nyquist) Filters

Consider again a Type I linear-phase FIR filter with

transfer function

2M
H(z) =) h[n]e™"
n=0

This filter is defined to be an L-th band filter if its

coefficients satisfy
h(M)=1/L (4a)

h(M+7rL)=0 for r==1,%£2,... |[M/L|. (4b)

.TI IT ? )
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(b)
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Importance of Lth-Band Filters

e These filters, also called Nyquist filters, play an
important role in designing digital modem systems

and filter-banks.

e They can also be used as efficient decimators and
interpolators since every L-th impulse response co-

efficient is zero except for the central coefficient.

e They have also been used in designing alias-free

QMF filter banks.

e An important subclass of these filters are half-band
filters, which are considered in greater detail later

Oo1l.
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Properties

It can be shown that the time-domain conditions
state some limitations on the frequency response of

the filter.

First, the passband edge (in the lowpass case) is
restricted to be less than w/L and the stopband
edge to be larger than 7/L.

Usually, the edges are given in terms of an excess

bandwidth factor p as follows
wp=(1-p)n/L, ws=(1+p)7/L.

Second, if the maximum deviation of H(w) from
zero in [ws, 7| is 05, then the maximum deviation
of H(w) from unity in [0,wp] is in the worst case
6, = (L — 1)bs.

Usually, 6, is much smaller than the above upper

limit.
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Approxination Criteria

e Since 6, is guaranteed to be relatively small for a
small value of d5, it can be concentrated on shap-

ing the stopband response of the filter.

e The stopband response can be optimized either
in the minimax sense or in the least-mean-square

SeIise.

e In the case of the minimax criterion, the problem
is to find the coefficients of H(z) such that the

time-domain conditions of Eq. (4) are satisfied and

6s = max |W(w)H (w)]

wE|wg,T]
is minimized, where W(w) is a positive weighting
function.
e In the case of the least-mean-square criterion, the

quantity to be minimized is
By = / (W (w)H (w)]*dw.

e In some applications, it is desired to factorize
H(z) into the minimum-phase and maximum-phase

terms.
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e In this case, an additional constraint that H(w) be

nonnegative is required.
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Design of L-th Band Filters in the Minimax

Sense

e In order to find the filter H(z) minimizing stop-
band ripple 6, and simultaneously meeting the
time-domain conditions of Eq. (4), it is plit into

two parts as follows:

2K 2M-K)
H(z) = Hy(2)Hy(2) = Y hp[n]z™ > hn]z™",
n=0 n=0
where
K=|M/L|.

e Both H,(2) and Hy(z) are Type I linear-phase fil-

ters.

o H,(z) is determined such that the time-domain
conditions of are satisfied, whereas Hy(z) is used

for providing the desired stopband response.

o For any H(z), H,(#) can be determined such that
the overall filter H(z) = Hp(z)H(z) satisfies the

time-domain conditions.
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e This leads to a system of 2|M/L| + 1 linear equa-
tions in the 2|M /L] + 1 coefficients hy[n] of H,(z).
e Utilizing the fact that the coefficients of Hp,(z) as
well as the time-domain conditions are symmet-
ric, a system of |[M/L| + 1 equations needs to be

solved.

e The remaining problem is thus to find H,(z) to

give the minimum value of 0;.
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Design Algorithm

The algorithm for iteratively determining the desired

H(z) consists of the following steps:

1. Set Hp(w) = 1 and Q= {wi,wy, ...,WM—K+1}=
{0,0,...,0}.

2. Find H,(w) such that Hs(0) =1 and W (w)H,(w)H(w)
alternatingly achieves at least at M — K + 1
consecutive points on [ws, w] the extremum val-

ues =+6;. Store the extremal points into =
{001, @09, ..., OM—FK+1}-

3. Find Hp(z) such that the time-domain conditions
of Eq. (4.131) are satisfied.

4. If |wp — gl < afor k=1,2,.... M —K+1 (o is

a small number), then stop. Otherwise set 2 = )

and go to Step 2.
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About the Algorithm

The desired Hg(w) at Step 2 can be found using
the MPR algorithm.

The desired function is zero in |wy,w] and weight-
ing function is W (w)/Hpy(w).

H(w) can be forced to take the value unity at w =
0 by selecting a very narrow passband region |0, €],
setting D(w) = 1, and by using a large weighting
function in this region.

When a very narrow passband region is used, then
the MPR algorithm selects only one grid point in
this region.

Another approach for designing L-th band filters is
to use linear programming. However, linear pro-
gramming requires significantly more computation

time than the above simple algorithm.
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Example

e The specifications are: L = 4 and p = 0.2 (w, =
0.87/4 = 0.27 and ws; = 1.27/4 = 0.37), and &, =
0.01.

e The amplitude and the impulse responses for an

optimized filter of order 38 are shown below.
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Design of Factorizable Lth-Band Filters

If it is desired that H(z) be factorizable into
the minimum- and maximum-phase terms, then the

subfilter H,(z) is written in the form
H(z) = [Hy(2)?, H(z)= ) hsnlz™
n=0

Hy(z) is either a Type I linear-phase filter (M — K
is even) or a Type II filter (M — K is odd).

The resulting overall zero-phase frequency response

can be expressed as
H(w) = Hy(w)[H,(w)]*.

Since the zeros of Hp(z) are off the unit circle,
H(w) is non-negative, as is desired.

In this case, the minimization of the stopband rip-
ple can be performed by slightly modifying the

above algorithm.

The basic difference is that now H,(w) is de-
termined at Step 2 such that H,(0) = 1 and
W (w)H,(w)H,(w) oscillates within the limits =+6,

on [ws, 7.



s

e Correspondingly, W (w)H,(w)[H;(w)]? oscillates within
the limits 0 and 65 = (58)2 on [ws, .

e The advantage of this approach is that both the
minimum- and maximum-phase terms of H(z) con-
tain Hy(z) and only H,(z) must be factored in or-

der to get the overall maximum-phase and minimum-

phase terms.
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Example

e The specifications for the minimum-phase and maximu

phase terms are those in the previous example.

e The required stopband ripple for H(w) is (65)* =
0.0001.

e The amplitude responses for an optimized overall
filter of order 106 (solid line) and and for the
minimum-phase (or maximum-phase) term of order

53 are shown below.
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Design of Half-Band Filters

e A very important subclass of L-th band flters in
many applications are half-band filters (L = 2). For
these filters,

h(M)=1/2
h(M+2r)=0 for r==£1,£2,...,|M/2].

e A filter satisfying these conditions can be gener-
ated in two steps by starting with a Type II (M

is odd) transfer function
M
G(z) =) gln]z™", gln] =g[M —n.
n=0

e In the first step, zero-valued impulse-response val-
ues are inserted between the g[n|’s [see Figures (a)
and (b) in the following transparency|, giving the
following Type I transfer function of order 2M:

2M M
F(:)= 3 flnls™ = (3 = 3 gl
n=0 n=0
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Generation of the Impulse Response of a Half-

Band Filter
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e The second step is then to replace the zero-valued
impulse-response value at n = M by 1/2 [see Fig-
ure (c) in the previous transprency|, resulting in

the desired transfer function
M

Zh _ —z—M+F( ) = ;Z—M+Z gln]z2

n=0
e This gives h[M] = 1/2, h[n] = g[n/2] for n even,
and h[n] =0 for n odd and n # M, as is desired.
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Filter Design

e The zero-phase frequency responses of H(z), F(z),
and G(z) are related through

Hw)=1/2+ F(w) =1/2 + G(2w).

e Based on these relations, the design of a low-
pass half-band filter with passband edge at w, and
passband ripple of 6 can be accomplished by de-
termining G(z) such that G(w) bscillates within
1/2 £ 6 on [0,2w,] [see Figure (a) in the following

transprency].

e Since G(z) is a Type II transfer function, it has

one fixed zero at z = -1 (w = 7).

e G(z) can be designed directly with the aid of
the MPR algorithm using only one band [0, 2wy,
D(w)=1/2, and W(w) = 1.

e Since G(z) has a single zero at z = —1, G(w) is
odd about w = 7.

e Hence, G2 — w) = —G(w) and G(w) oscillates
within —1/2+ 6 on [27 — 2wy, 27].
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Design of A Lowpass Half-Band Filter
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Efficient Implementation of a Half-Band Filter

e An implementation for the half-band filter as a
parallel connection of G(z%) and (1/2)z= is shown

below.

e This implementation is very attractive as in this
case the complementary highpass output having the
zero-phase frequency response 1 — H(w) is obtained

~directly by subtracting G(z%) from (1/2)z7M.

e The term 2™ can be shared with G(2?).

e The number of non-zero coefficients in G(z?) is
M + 1. By exploiting the symmetry in these co-
efficients, only (M +1)/2 multipliers (M is odd) are
needed to implement a lowpass—highpass filter pair

of order 2M.

. G(zz) lowpass
output
In
——— @
Y |1\/2 highpass
- + output
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The corresponding F'(w) = G(2w) stays within 1/2+
6 on [0,w,] and within —1/2£6 on [7 — wy, 7] [see
Figure (b) in the previous transparency].

Finally, H(w) approximates unity on [0,w,] with
tolerance 6 and zero on [T — wp,m] with the same
tolerance ¢ [see Figure (c) in the previous trans-
parency|.

For the resulting H(w), the passband and stopband
ripples are thus the same and the passband and

stopband edges are related through ws =7 — w),.

In general, H(w) satisfies
Hw)+ H(r—w)=1.

This makes H(w) symmetric about the point w =
7w/2 such that the sum of the values H(w) at w =
o <w/2 and at w =7 —® > /2 is equal to unity

[see Figure (c¢) in the previous transparency].
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Responses for a complementary half-band filter

pair of order 34 for w, = 0.4rw.

The implementation of this filter pair requires only

nine multipliers.
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