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1 Introduction
During the last two decades, multirate filter banks have found various applications in many

different areas, such as speech coding, scrambling, adaptive signal processing, image
compression, signal and image processing applications as well as transmission of several signals
through the same channel (Malvar, 1992a; Vaidyanathan, 1993; Vetterli  amd Kova� evi � , 1995;
Fliege, 1994; Misiti, Misiti, Oppenheim, and Poggi, 1996). The main idea of using multirate
filter banks is the abili ty of the system to separate in the frequency domain the signal under
consideration into two or more signals or to compose two or more different signals into a single
signal.

When splitting the signal into two or more signals an analysis-synthesis system is used. The
analysis-synthesis systems under consideration in this chapter are critically sampled multi-
channel or M-channel uniform filter banks and octave filter banks as shown in Figures 1(a) and
1(b), respectively. In the analysis bank of the uniform bank, the signal is split with the aid of M
filters Hk(z) for k = 0,1,…, M−1 into M bands of the same bandwidth and each sub-signal is
decimated by a factor of M. In the case of octave fil ter banks, the overall signal is first split into
two bands of the same bandwidth and both sub-signals are decimated by a factor of two. After
that, the decimated lowpass filtered signal is split into two bands and so on. Doing this three
times gives rise to a three-level octave filter bank corresponding to the structure shown in Figure
1(b). In this case, H0(z) is a highpass filter with bandwidth equal to half the baseband and the
decimation factor is 2, H1(z) and H2(z) are bandpass filters with bandwidths equal to one fourth
and one eighth of the baseband, respectively, and the corresponding decimation factors are 4 and
8, whereas H3(z) is a lowpass filter with the same bandwidth and decimation factor as H2(z).

In many applications, the processing unit corresponds to storing the signal into the memory or
transferring it through the channel. The main goal is to significantly reduce, with the aid of
proper coding schemes, the number of bits representing the original signal for storing or
transferring purposes. When splitting the signal into various frequency bands with the aid of the
analysis filter bank, the signal characteristics are different in each band and various numbers of
bits can be used for coding and decoding the sub-signals. In some applications, the processing
unit is used for treating the sub-signal in order to obtain the desired operation for the output
signal of the overall system. A typical example is the use of the overall system for making
adaptive signal processing more efficient. Another example is the de-noising of a signal
performed with the aid of a special octave filter bank, called a discrete-time wavelet bank
(Vetterli and Kova� evi � , 1995; Misiti et al., 1996).
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Figure 1. Analysis-synthesis filter bank. (a) M-channel uniform filter bank. (b) Three-level
octave filter bank. Note that in the case of interpolation by a given factor, the corresponding fi lter
should approximate this factor in the passband in order to preserve the signal energy.

The role of the filters in the synthesis part is to approximately reconstruct the original signal.
This is performed in two steps. First, for the uniform filter bank, the M sub-signals at the output
of the processing unit are interpolated by a factor of M and filtered by M synthesis filters Fk(z)
for k = 0,1,…, M−1, whereas for the octave filter bank, the interpolation factors for the sub-
signals are the same as for the analysis part. Second, the outputs of these fi lters are added. In the
transferring and storing applications, the ultimate goal is to design the overall system such that,
despite of a significantly reduced number of bits used in the processing unit, the reconstructed
signal is either a delayed version of the original signal or suffers from a negligible lost of
information carried by the sub-signals.

There are two types of coding techniques, namely, lossy and lossless codings. For the lossless
coding, it is desired to design the overall system such that the output signal is si mply a delayed
version of the input signal or suffers from some phase distortion being tolerable in some
applications. For the lossy coding, it is beneficial to design the analysis-synthesis fi lter bank such
that some distortions, including amplitude distortion and aliasing errors, being less than those
caused by coding distortions are allowed. This increases the overall filter bank performance or,
alternatively, the same performance can be achieved by shorter filter orders or a shorter delay
caused for the input signal by the overall filter bank. These facts are very crucial for speech,
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audio, and communication applications. The coding techniques are not considered at all in this
chapter and we concentrate on the case where the processing unit does not cause any errors to the
sub-signals.

In the case of audio or speech signals, the goal is to design the overall system together with
coding such that our ears are not able to notice the errors caused by reducing the number of bits
used for storing or transferring purposes. In the case of images our eyes serve as “ referees” , that
is, the purpose is to reduce the number of bits to represent the image to the limit that is still
satisfactory to our eyes.

Depending on how many channels are used for the signal separation, there are two groups of
uniform filter banks, namely, multi-channel or M-channel filter banks (M > 2) and two-channel
filter banks (M = 2). In the first group, the signal is separated into M different channels and in the
second group into two channels. Using a tree-structure, two-channel filter banks can be used for
building M-channel filter banks in the case where M is a power of two. A more effective way of
building M-channel filter banks is to first design a prototype filter in a proper manner. The filters
in the analysis and synthesis banks are then generated with the aid of this prototype filter by
using a cosine-modulation or a modif ied discrete Fourier transform (MDFT) technique (Malvar,
1992b; Vaidyanathan, 1993; Fliege, 1993; Heller, Karp, and Nguyen 1999; Karp, Mertins, and
Schuller 2001).

Two-channel filter banks are very useful in generating octave filter banks. In this case, the
overall signal is first split with the aid of a two-channel filter bank into two bands. After that, the
decimated lowpass filtered signal is split into two bands using the same two-channel fil ter bank
and so on. There are two basic types of octave fi lter banks, namely, frequency-selective fi lter
banks mostly used for audio and telecommunications applications and discrete-time wavelet
banks used in applications where the signal waveform is desired to be preserved, like in the case
of images. For discrete-time wavelet banks, the frequency selectivity of the filters in the octave
analysis-synthesis filter banks is not so important due to their different applications. There are
other properties that are more important, as will be discussed in Subsection 4.2 and in more
details in Chapter 3. In these cases, the main goal is to preserve the waveform of the input signal
after treating it in an appropriate manner in the processing unit.

When two or more different signals are composed into a single signal, then a uniform
synthesis-analysis system is used, as shown in Figure 2. This system is also called a
transmultiplexer. In this system, all the M signals are interpolated by a factor of M and filtered by
M synthesis filters Fk(z) for k = 0,1,…, M−1. Then, the outputs are added to give a single signal
with sampling rate being M times that of the input signals. The next step is to transfer the signal
through a channel. Finally, in the analysis bank the original signals are reconstructed with the aid
of M analysis filters Hk(z) for k = 0,1,…, M−1. These signals have the original sampling rates due
to the decimation by a factor of M. If the output signal in the analysis-synthesis system is just a
delayed version of the input signal, then for the corresponding transmultiplexer the output signals
in the case of the ideal channel are delayed versions of the inputs. Therefore, the design of a
transmultiplexer can be converted to the design of an analysis-synthesis filter bank. Based on this
fact, this chapter does not consider the design of transmultiplexers. An interested reader is
referred to the textbook written by Fliege (1993).
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Figure 2. Synthesis-analysis filter bank: Transmultiplexer.

The outline of this chapter is as follows. Section 2 reviews various types of existing finite
impulse response (FIR) and infinite impulse response (IIR) two-channel filter banks. The basic
operations of these filter banks are considered and the requirements are stated for alias-free,
perfect-reconstruction (PR), and nearly perfect-reconstruction (NPR) filter banks. Also some
eff icient synthesis techniques are referred to. Furthermore, examples are included to compare
various two-channel filter banks with each other. Section 3 concentrates on the design of multi-
channel (M-channel) uniform filter banks. The main emphasis is laid on designing these banks
using tree-structured filter banks with the aid of two-channel filter banks and on generating the
overall bank with the aid of a single prototype filter and a proper cosine-modulation or MDFT
technique. In Section 4, it is shown how octave filter banks can be generated using a single two-
channel filter bank as the basic building block. Also, the relations between the frequency-
selective octave filter banks and discrete-time wavelet banks are briefly discussed. Finally,
concluding remarks are given in Section 5.

2 Two-Channel Filter Banks
This section considers the synthesis of two-channel filter banks based on the use of FIR and

IIR filters. First, basic operation principles are discussed and the necessary requirements for
alias-free, perfect-reconstruction (PR), and nearly PR (NPR) filter banks are stated. Second, an
overview of the most important filter bank types and references to some existing synthesis
schemes are given.

2.1 Basic Operation of a Two-Channel Filter Bank
The block diagram of a two-channel filter bank is shown in Figure 3. This system consists of

an analysis and a synthesis bank as well as a processing unit between these two banks.
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Figure 3. Two-channel filter bank.
2.1.1 Operation of the analysis bank

The role of the analysis bank is to split the input signal x[n] into lowpass and highpass filtered
channel signals, denoted by x0[n] and x1[n] in Figure 3, using a lowpass−highpass filter pair with
transfer functions H0(z) and H1(z). Hence, the z-transforms of these signals are expressible as

( ) ( ) ( ) 1,0for      == kzXzHzX kk . (1)
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After filtering, the signals in both channels are down-sampled by a factor of two by picking up
every second sample, resulting in two subband signal components, denoted by v0[n] and v1[n] in
Figure 3. If the input sampling rate is Fs, then the sampling rates of v0[n] and v1[n] are Fs/2. The
z-transforms of these components are given by

( ) ( ) ( ) ( ) ( )[ ] .1,0for         
2

1 2/12/12/12/1 =−−+= kzXzHzXzHzV kkk (2)

Typically, H0(z) and H1(z) have the same transition band region with the band edges being
located around f = Fs/4 at f = (1−ρ1)Fs/4 and f = (1+ρ2)Fs/4 with ρ1 > 0 and ρ2 > 0, as shown in
Figure 4(b). In order to give a pictorial viewpoint of what is happening in the frequency domain,
Figure 4(a) shows the Fourier transforms of an input signal x[n], whereas Figure 5 shows those
of signals x0[n], x1[n], v0[n], and v1[n]. These transforms are obtained from the corresponding z-
transform by simply using the substitution z = e

j2πf/Fs. It is seen that after decimation Vk(z) for
k = 0, 1 contain two overlapping components Xk(z1/2) and Xk(−z1/2). This overlapping can,
however, be eliminated in the overall system of Figure 3 by properly designing the transfer
functions H0(z), H1(z), F0(z), and F1(z), as will be seen later on.
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Figure 4. (a) Magnitude of the Fourier transform of an input signal x[n]. (b) Amplitude responses
for H0(z) and H1(z). (c) Amplitude responses for F0(z) and F1(z).

2.1.2 Operation of the processing unit
In the processing unit, the signals v0[n] and v1[n] are compressed and coded suitably for either

transmission or storage purposes. Before using the synthesis part, signals in both channels are
decoded. The resulting signals denoted by w0[n] and w1[n] in Figure 3 may differ from the
original signals v0[n] and v1[n] due to possible distortions caused by coding and quantization
errors as well as channel impairments. In the sequel, it is supposed, for simplici ty, that there are
no coding, quantization, or channel degradations, that is, w0[n] ≡ v0[n] and w1[n] ≡ v1[n].
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Figure 5. Magnitudes of the Fourier transforms of the signals in the two-channel filter bank of
Figure 3. (a), (f) Transforms of x0[n] and x1[n]. (b), (g) Transforms of v0[n] and v1[n]. (c), (h)
Transforms of u0[n] and u1[n]. (d), (i) Transforms of unaliased components of y0[n] and y1[n].
(e), (j) Transforms of aliased components of y0[n] and y1[n].

2.1.3 Operation of the synthesis bank
The role of the synthesis bank is to approximately reconstruct in three steps the delayed

version of the original signal from the signal components w0[n] and w1[n]. In the first step, these
signals are up-sampled by a factor of two by inserting zero-valued samples between the existing
samples yielding two components, denoted by u0[n] and u1[n] in Figure 3. In the w0[n] ≡ v0[n]
and w1[n] ≡ v1[n] case, the z-transforms of these signals are expressible as

( ) ( ) ( ) ( )[ ] 1,0for      
2

1
 2 =−+== kzXzXzVzU kkkk . (3)

Simultaneously, the sampling rate is increased from Fs/2 to Fs and the baseband from [0, Fs/4] to
[0, Fs/2]. Therefore, u0[n] and u1[n] contain in their basebands, in addition to the frequency
components of v0[n] and v1[n] in their baseband [0, Fs/4], the components in [Fs/4, Fs/2], as
il lustrated in Figure 5. In Equation (3), Xk(z) is the z-transform of the desired unaliased signal
component, whereas Xk(−z) is the z-transform of the unwanted aliased signal component that
should be eliminated.
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The second step involves processing u0[n] and u1[n] by a lowpass−highpass filter pair with
transfer functions F0(z) and F1(z), whereas the third step is to add the filtered signals, denoted by
y0[n] and y1[n] in Figure 3, to yield the overall output y[n]. The z-transform of y[n] is given by

( ) ( ) ( )zYzYzY 21 += , (4)

where

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 1,0for      
2

1
 2 =−+== kzXzFzXzFzVzFzY kkkkkkk . (5)

The role of the synthesis filters with transfer functions F0(z) and F1(z) is twofold. First, it is
desired that Y(z) does not contain the terms X0(−z) and X1(−z ). This is achieved by requiring that
F0(z)X0(−z) = −F1(z)X1(−z). Second, if it is desired that y[n] is approximately a delayed version of
x[n], that is, y[n] ≈ x[n − K], then F0(z)X0(z) + F1(z)X1(z) ≈ z − KX(z) should be satisfied.

In order to satisfy these requirements, F0(z) and F1(z) should generate a lowpass−highpass
filter pair in a manner similar to H0(z) and H1(z). There exist two main differences. First, due to
the alias-free conditions to be considered in the next subsection, the lower and upper edges of
this filter pair are located at f = (1−ρ2)Fs/4 and f = (1+ρ1)Fs/4, as shown in Figure 4(c). Second,
because of interpolation, the amplitude responses should approximate two in the passbands. The
last subfigures on the left and right sides of Figure 5 show how the above conditions can be
satisfied in the frequency domain. The exact simultaneous conditions for H0(z), H1(z), F0(z), and
F1(z) to satisfy the above-mentioned two conditions wil l be given in the following subsections.

2.2 Alias-Free Filter Banks
Combining Equations (1), (4), and (5) the relation between the input and the output signals of

Figure 3 is expressible as

( ) ( ) ( ) ( ) ( )zXzAzXzTzY −+= , (6)
where

( ) [ ])()()()(
2

1
1100 zFzHzFzHzT += (7)

is the overall distortion transfer function and

( ) [ ])()()()(
2

1
1100 zFzHzFzHzA −+−= (8)

is the aliasing transfer function. In order to generate an alias-free filter bank, this term has to be
canceled, that is, A(z) ≡ 0. The most straightforward way of achieving this is to select F0(z) and
F1(z) as follows:

( ) ( )zHzF −= 10 2 (9)

( ) ( )zHzF −−= 01 2 . (10)

In the sequel, these conditions are used except for Subsection 2.5.2 where the filter bank is
constructed with the aid of causal and anti-causal IIR filters. After fixing F0(z) and F1(z) in the
above manner, the input-output relation of Equation (6) takes the following simplified form:

( ) ( ) ( )zXzTzY = , (11)
where

( ) )()()()( 1010 zHzHzHzHzT −−−= . (12)
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There are two important reasons for concentrating on the synthesis of two-channel filter banks
in such a manner that they are alias-free. First, relating F0(z) and F1(z) to H0(z) and H1(z)
according to Equations (9) and (10) makes both the design and implementation of the overall
system more efficient compared to the nearly alias-free case. Second, it has been observed that
when synthesizing the bank without the exact alias-free condition leads to a system that is
practically alias-free. This fact can be seen, for instance, from the results given by Nayebi,
Barnwell III , and Smith in (1992).

2.3 Perfect-Reconstruction (PR) and Nearly Perfect-Reconstruction (NPR) Filter Banks
The following subsection states the necessary and sufficient conditions for an FIR two-

channel filter bank to satisfy the PR conditions and describes their connections to the linear-
phase half-band FIR filters. Furthermore, these conditions are extended to their IIR counterparts.
2.3.1 Theorem for the PR Property

The PR property, that is, y[n] = x[n − K], is the ability of a system to produce an output signal
that is a delayed replica of the input signal. The necessary conditions for the PR property are
given for a two-channel FIR filter bank by the following theorem:

Theorem for the PR property: Consider the ali as-free two-channel filter bank shown in Figure
3 with w0[n] ≡ v0[n] and w1[n] ≡ v1[n] and let H0(z) and H1(z) be the transfer functions of FIR

filters given by [ ]∑ =
−= 0

0 00 )(
N

n

nznhzH  and [ ]∑ =
−= 1

0 11 )(
N

n

nznhzH . Then, y[n] = x[n−K] with K

being an odd integer, that is, T(z) = z
−K, is met provided that the impulse-response coeff icients of

( ) [ ]∑
+

=

−=−=
10

0
10 )()(

NN

n

nznezHzHzE (13)

satisfy

[ ]




≠
=

=
 . and odd is  for         0

for     2/1

Knn

Kn
ne (14)

In order to prove this theorem, Equation (12) is rewritten as

( ) [ ] [ ] [ ] [ ]( )∑∑
+

=

−
+

=

− +=−−+==
1010

00

ˆ)()(
NN

n

n
NN

n

n znenezEzEzntzT , (15)

where

[ ] [ ]
[ ]


−

=
 . odd  for          

even   for       
ˆ

nne

nne
ne (16)

The impulse-response coeff icients of this T(z) satisfy

[ ] [ ] [ ]




≠
=

=+=
 ,for        0

for         1
ˆ

Kn

Kn
nenent (17)

yielding

( ) KzzEzEzT −=−−= )()( . (18)

This implies that the output signal is the replica of the input signal delayed by K samples, as is
desired.
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It is well known that the PR property can be satisfied only when K is an odd integer and
N0+N1 is two times an odd integer (see, e.g., (Vaidyanathan, 1993)). There are two basic
alternatives to achieve the PR property, namely, K = (N0+N1)/2 and K < (N0+N1)/2, as illustrated
in Figures 6(a) and 6(b), respectively. In the first case, E(z) is an FIR filter transfer function with
a symmetric impulse response and the impulse-response value occurring at the odd central point
n = K being equal to 1/2, whereas the other values occurring at odd values of n are zero. Hence,
E(z) is the transfer function of a linear-phase FIR half-band filter (see, e.g., (Saramäki, 1993)). In
the second case, the impulse-response values at odd values of n are also zero except for one odd
value n = K, where the impulse response takes on the value of 1/2. The K = (N0+N1)/2 case is
attractive when the overall delay of K samples is tolerable, whereas the K < (N0+N1)/2 case is
used for reducing the delay caused by the filter bank to the overall signal.
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Figure 6. Impulse responses for E(z), E(−z), and T(z) for PR filter banks with N0+N1 = 22. (a)
K = 11 = (N0+N1)/2. (b) K = 7 < (N0+N1)/2.

In the PR case, there is no amplitude or phase distortion. This is due to the fact that t[n] is
nonzero only at n = K achieving the value of unity. In the NPR case, the impulse response values
t[n] differ slightly from zero for n ≠ K and slightly from 1 for n = K so that there exists some
amplitude and/or phase distortions. These distortions are tolerable in many practical applications
(lossy channel coding and quantization) provided that they are smaller than the errors introduced
in the processing unit. Moreover, by slightly releasing the PR condition, filter banks with better
selectivities can be synthesized, as will be seen later on.

The above criteria for the PR and NPR property are also valid for IIR fi lter banks to be
considered in Subsection 2.5 (except for the banks to be described in Subsection 2.5.1). The
main difference is that the impulse responses of IIR analysis filters are of infinite length.
Therefore, the impulse response e[n] of E(z) and the response t[n] of T(z) are also of infinite
length. For a PR system e[n] and t[n] must satisfy the conditions of Equations (14) and (17) for
0 ≤ n < ∞ , whereas in the NPR case these conditions should be approximately satisfied.

2.3.2 PR Filter Bank Design and the Theorem for the PR Reconstruction
Consider

T. Saramäki and R. Bregovi � , ”Multirate Systems and Filter Banks,” Chapter 2 in Multirate Systems: Design
and Applications edited by G. Jovanovic-Dolecek. Hershey PA: Idea Group Publishing.

10

( ) [ ] ( )∏∑
+

=

−−
+

=
−==

1010

1

1

0

1
NN

k
k

n
NN

n

zzSznezE (19)

with the impulse-response coefficients satisfying the conditions of Equations (14). The
factorization of E(z) as E(z) = H0(z) H1(−z) can be performed as follows. First, the zeros zk of E(z)
for k = 1,2,…, N0 + N1 are divided into two groups αk for k = 1,2,…, N0 and βk for k = 1,2,…, N1 in
such a manner that the zeros in both groups are either real or occur in complex-conjugate pairs.
Second, the constant S of E(z) is factorized as S = S0⋅S1. Then, according to the theorem of the
previous subsection, the transfer functions given by
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can be used for generating a PR two-channel filter bank. In the above, H0(z) is directly the
transfer function of the lowpass analysis filter. The corresponding highpass filter transfer

function H1(z) is obtained from ( )zH1
ˆ  by selecting the impulse-response coefficients to be

[ ] ( ) [ ]nhnh n
11
ˆ1−=  for n = 0,1,…, N1. The amplitude responses of these two filters are related

through ( ) ( )( )ωπω −= jj eHeH 11
ˆ  so that ( )zH1

ˆ  and H1(z) form a lowpass−highpass filter pair

with the amplitude responses obtained from each other using a lowpass-to-highpass
transformation ω → π−ω.

According to the above discussion, the synthesis of a PR two-channel filter bank can be stated
as follows: Given an odd integer K and integers N0 and N1 such that their sum is two times an
odd integer, find E(z) of order N0 + N1 such that its impulse-response coeff icients satisfy the
conditions of Equation (14) and H0(z) and H1(z) generated using the above factorization scheme
form a lowpass−highpass filter pair with the desired properties.

In general, this problem statement cannot be exploi ted in a straightforward manner for
designing two-channel FIR filter banks. However, there are two exceptional cases. In the first
case, K = (N0+N1)/2 and this problem statement is widely used for designing start-up two-channel
filter banks for generating discrete-time wavelet banks (Vetterli and Herley, 1992; Vetterli and
Kova� evi �  1995; Misiti et al., 1996). In this case, half-band linear-phase FIR filter transfer
functions E(z) with the maximum numbers of zeros at z = −1 are of great importance. As a
curiosity, these filters are special cases of the maximally flat FIR filters introduced by Herrmann
(1971).

In the second exceptional case, the impulse-response coeff icients of H0(z) and ( )zH1
ˆ  are

time-reversed version of each other, that is, [ ] [ ]nNhnh −= 001
ˆ  for n = 0,1,…, N0 (see Figure 7).

Furthermore N0 = N1 = K. These conditions imply the following (see, e.g., (Herrmann and
Schussler, 1970; Saramäki, 1993)). If H0(z) has a real zero or a complex-conjugate zero pair

inside (outside) the unit circle, then ( )zH1
ˆ  has a reciprocal real zero or a complex-conjugate zero

pair outside (inside) the unit circle. Most importantly, if H0(z) has zeros on the unit circle, then

( )zH1
ˆ  has the same zeros on the unit circle meaning that ( )zHzHzE 10

ˆ)()( =  is a linear-phase
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half-band FIR filter with the restriction that the zeros occurring on the unit circle are double

zeros (see Figure 7). Furthermore, ( ) ( ) ( ) 2
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Figure 7. Factorization of a half-band E(z) having double zeros on the unit circle into H0(z) and

( )zH1
ˆ  having time-reversed impulse responses.

This alternative for constructing PR FIR two-channel filter banks, called later on in this
chapter as orthogonal banks, was independently observed by Mintzer (Mintzer, 1985) and Smith
and Barnwell (Smith, 1986). In their design schemes, E(z) of order 2N0 having double zeros on
the unit circle is designed to exhibit an equiripple amplitude response in the stopband [ωs, π]
with ωs > π/2. The actual synthesis is performed by fi rst designing, by means of the Remez
algorithm (McClellan, Parks, and Rabiner 1973), a conventional half-band filter of the same
order to have a minimax behavior in the same stopband. Then, the coeff icients of this fil ter are
modified to give a rise to the desired half-band fi lter. After knowing E(z), all what is needed is to

share the zeros between H0(z) and ( )zH1
ˆ  as described above (see Figure 7) as well as to factorize

S as S = S0⋅S1 so that the resulting impulse responses are time-reversed versions of each other.
This technique results in analysis transfer functions H0(z) and H1(z) such that the maximum

amplitude value of H0(z) [H1(z)] in the stopband [ωs, π] ([0, π−ωs]) is sδ  with δs being the

stopband ripple of E(z).

2.4 FIR Filter Banks and Their Design
This subsection reviews the synthesis of various two-channel filter banks where both H0(z)

and H1(z) are transfer functions of FIR filters as given by

( ) [ ]∑
=

−=
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0
00

N

n

nznhzH (22)

( ) [ ]∑
=

−=
1

0
11

N

n

nznhzH . (23)

Moreover, in order to obtain an alias-free system, F0(z) and F1(z) are also FIR filters satisfying
Equations (9) and (10).
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2.4.1 FIR Filter Bank Classification
Alias-free two-channel FIR filter banks can be classified into several filter bank  types

according to Table I. The type depends first on the relation between the analysis transfer
functions H0(z) and H1(z), second on whether these transfer functions are linear-phase FIR filters
or not, and third on whether the PR or NPR property is desired to be achieved. In addition to
these properties, Table I shows for each type the number of unknowns to be optimized, whether
the order(s) must be odd or even, and the relation of the overall filter bank delay to the filter
orders. Filter banks with the filter bank elay less than N0 (for QMF banks) and (N0+N1)/2 (for
biorthogonal banks) are later on referred to as low-delay two-channel filter banks.

Table I Classification of two-channel FIR filter banks

Filter bank
type

Filter relation Phase Filter
order

Number of
unknowns

Filter bank
delay

PR

linear-
phase

(N0+1)/2 N0

QMF H1(z) = H0(−z)
nonlinear
-phase

odd
N0+1 <N0

NPR

Orthogonal
H1(z) =
  −z−N0⋅H0(−z−1)

nonlinear
-phase

odd N0+1 N0
PR

NPR

odd-odd (N0+N1)/2+1linear-
phase even-even (N0+N1)/2+2

(N0+N1)/2

odd-odd
Biorthogonal H0(z), H1(z) nonlinear

-phase even-even
N0+N1+2 <(N0+N1)/2

PR
NPR

In the following subsections the definition of each filter bank type is given in more details
along with their properties and a short review of the existing synthesis schemes. Examples
comparing the various filter types with each other will be given in Subsection 2.4.7. We start by
stating a general optimization problem including all FIR filter banks of Table I.
2.4.2 General FIR Filter Bank Design Problem
It has turned out to be beneficial to state a general optimization problem including all the filter
types of Table I as follows (Bregovi �  and Saramäki, 1999, 2000b): Given the type of two-
channel filter bank, the filter orders N0 and N1, the passband and stopband band frequencies

/2)0( πω <p  and /2)0( πω >s  for H0(z) as well as /2)1( πω >p  and /2)1( πω <s  for H1(z), the

reconstruction error δa, and the passband ripple δp as well as the filter bank delay K, find the
adjustable coefficients of H0(z) and H1(z), as given by Equations (22) and (23), to minimize

( ) ( ) 











= ∫∫

)1(

)0( 0
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s

deHdeH jj
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ω
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and

[ ]
( ) a

jKj eeT δωω

πω

≤− −

∈

 max
,0

, (27)

where

( ) )()()()( 1
)(

0
)(

10
ωπωπωωω jjjjj eHeHeHeHeT ++ −= . (28)

The main objective is to minimize the maximum of the stopband energies of H0(z) and H1(z)
subject to some constraints, as il lustrated in Figure 8. First, the amplitude responses of both H0(z)
and H1(z) have to stay in the passband within the given limits 1±δp. Second, the maximum
allowable value for these amplitude responses in the transition bands is 1+δp. Third, the
maximum of the absolute value of the deviation between the overall frequency response and the
constant delay of K samples has to be in the overall frequency range less than or equal to δa. For
the PR filter banks, this deviation is zero. As will be seen later, some of the constraints are
automatically satisfied by some of the above-mentioned types of two-channel filter banks.

The above optimization problem has been stated in terms of the angular frequency ω that is
related to the “real” frequency f and the sampling rate Fs trough ω = 2πf/Fs. The problem
formulation is very general. For instance, the band edges for H0(z) and H1(z) can be selected
arbitrarily unlike in the case of Figure 4(b), where the edges for H0(z) and H1(z) are the same.
The special feature of the problem statement is that the maximum of the stopband energies of the
two filters is minimized, allowing us to treat both filters in a similar manner. In most other
existing statements the sum of these energies is minimized. The above problem has been stated
in such a manner that the optimum solution can be found using a two step-procedure proposed in
Bregovi �  and Saramäki (1999, 2000b). In the first step, a good starting-point filter bank for
further optimization is generated using a simple design scheme for the selected filter bank type.
The second step involves optimizing the filter bank with the aid of an efficient constrained
nonlinear optimization algorithm (Dutta, 1977; Saramäki, 1998).

0
π

0

1
1+δp

1−δp

)0(
pω )0(

sω)1(
pω)1(

sω

|H0(e
jω)| |H1(e

jω)|

ω

π/2

Figure 8. Specifications for H0(z) and H1(z).

2.4.3 NPR Quadrature Mirror Filter (QMF) Banks
Quadrature mirror filter (QMF) banks were the first type of fi lter banks used in signal

processing applications for separating signals into subbands and for reconstructing them from
individual subbands (Esteban and Galand, 1977). For a QMF bank, H1(z) = H0(−z) so that H0(z),
as given by Equation (22), is the only transfer function to be optimized. In this case, T(z), as
given by Equation (12), becomes

T. Saramäki and R. Bregovi � , ”Multirate Systems and Filter Banks,” Chapter 2 in Multirate Systems: Design
and Applications edited by G. Jovanovic-Dolecek. Hershey PA: Idea Group Publishing.

14

( ) [ ] [ ] [ ]2
0

2
0

2

0

)()(
0

zHzHzntzT
N

n

n −−== ∑
=

−
. (29)

This transfer function is desired to approximate the delay z −K with K being an odd integer
satisfying K ≤ N0. It is well-known that in this case the PR property cannot be satisfied except for
the trivial case with H0(z) = (1+z−1)/2 that does not provide good attenuation characteristics
(Vaidyanathan, 1993).

Using the decomposition H0(z) = G0(z
2) + z

−1G1(z
2), the overall bank can be effectively

implemented as shown in Figure 9 (Malvar, 1992a). According to Table I, there are two types of
QMF banks to be considered next.
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Figure 9. Eff icient implementation for a QMF two-channel bank.

2.4.3.1 QMF banks with linear-phase subfilters.
For these banks, the impulse-response coeff icients of H0(z) possess an even symmetry, that is,
h0[N0 − n] = h0[n] for n = 0 , 1 ,…, (N0−1)/2 and K = N0. Hence, for the overall filter bank, there
are only (N0+1)/2 unknowns. Based on the linear-phase property of H0(z), the transfer function
between the output and input of the overall system has also an impulse response of an even
symmetry, that is, t[2N0 − n] = t[n] for n = 0 , 1 ,…, N0–1 in Equation (29). Hence, it suffers only
from the amplitude distortion.

The first systematic approach for synthesizing QMF banks was proposed by Johnston
(Johnston, 1980). In his synthesis technique, the weighted sum of the filter stopband energy and

the integral of ( )[ ]2
1−ωjeT  over the band [0, π/2] is minimized. The resulting reconstruction

error is not equiripple. An iterative technique resulting in an equiripple reconstruction error has
been proposed by Chen and Lee (1992). Further generalizations of this method described by
Lim, Yang, and Koh (1993), and Goh, Lim, and Ng (1999a) enable us to obtain also equiripple
behaviors in the filter stopbands. It has turned out that in many applications it is beneficial to
design filter banks in such a way that the reconstruction error exhibits an equiripple (minimax)
behavior, whereas the stopband energies of the filters are minimized (Bregovi �  and Saramäki
1999, 2000b). This problem can be solved conveniently using the general problem statement
described in Subsection 2.4.2 as well as the two-step optimization scheme mentioned in the same
subsection. In this case, the problem takes a simpl ified form since the stopband energies of both
filters are the same and there is no need to control the passband and transition band behaviors.
All what is needed is to find a good start-up solution. For this purpose, eff icient iterative methods
described by Xu, Lu, and Antoniou (1998) and Lu, Xu, and Antoniou (1998) can be used. It
should be emphasized that the proper use of constrained optimization algorithms guarantees the
convergence at least to a good local optimum solution. However, if such an algorithm together
with a good initial solution is not available, then iterative methods are of a practical value. This
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is because they give in many cases with a small computation workload a satisfactory sub-optimal
solution.

2.4.3.2 Low-delay QMF banks with nonlinear-phase subfilters.
In this case, H0(z) is a nonlinear-phase filter. Hence, all the impulse-response values h0[n] for

n = 0 , 1 ,· ··, N0 are unknowns. The filter bank delay K is no more equal to the fil ter order N0. This
enables us to increase the filter orders to improve the filter banks performance without increasing
the overall filter bank delay.

The reconstruction error is now given by

( ) ( )[ ] ( )( )[ ] ωπωωωω jKjjjKj eeHeHeeT −+− −−=−
2

0

2

0 , (30)

that is desired to be made small in the overall baseband  [0, π]. Due to the nonlinear-phase
characteristics, the performance of H0(z) in the passband must also be controlled unlike for the
linear-phase case, where a good stopband characteristics together with a small overall amplitude
distortion automatically guarantees that the passband amplitude response of H0(z) approximates
unity with a small tolerance.

Similar to the linear-phase QMF banks, iterative methods described by Xu et al. (1998) and
Lu et al. (1998) exist for designing low-delay QMF banks. These filter banks can be used as
start-up solutions for the general optimization problem stated in Subsection 2.4.2. For this
problem, the stopband energy of only one filter has to be minimized, but all the remaining
constraints must be included.
2.4.4 PR Orthogonal Filter Banks

These filter banks were considered in Subsection 2.3.2. According to this discussion, the
relation between the analysis filters is defined as

( ) ( )1
01

0 −− −−= zHzzH N
, (31)

where H0(z) is given by Equation (22) and N0 , the filter order, is an odd integer. This makes the
impulse response coefficients of H0(z) and H1(−z) time-reversed versions of each other, that is,
h1[n] = (−1)n·h0[N0−n] for n = 0,1,…,N0. Furthermore, the PR property implies that in this case the
following conditions are satisfied:

1. E(z) = H0(z)H1(−z) is a linear-phase half-band FIR filter of order 2N0.
2. The zeros of E(z) occurring on the unit circle are double zeros.
As was pointed out in Subsection 2.3.2, this enables us to factorize E(z) into two transfer

functions H0(z) and H1(−z) of order N0 in such a manner that their impulse response are time-
reversed versions of each other and the amplitude response of the corresponding H1(z) is related

to that of H0(z) trough ( ) ( )( )ωπω −= jj eHeH 01 . In Subsection 2.3.2, a synthesis scheme was

briefly described for designing H0(z) and H1(z) to exhibit minimax amplitude behaviors in the
stopbands. For designing corresponding filters with least-mean-square error behaviors in the
stopbands, the most efficient way is to use iterative algorithms described by Blu (1998) and
Bregovi �  and Saramäki (2000a). These algorithms are fast and the convergence to the optimum
solution is independent of the initial solution.

Besides of the direct form implementation of Figure 3, orthogonal filter banks can be also
realized using a lattice form as shown in Figure 10. This structure is a slightly modif ied version
of those proposed by Vaidyanathan and Hoang (1988). For a given odd order N0, there are
(N0+1)/2 unknown lattice coefficients αk as well as the scaling constants β and 2β. The role of
the scaling constants is to make the amplitude responses of the analysis and synthesis filters to
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approximate one and two in their passband regions, respectively. The advantage of using a lattice
structure is that the PR property is satisfied for any combination of the lattice coeff icients that is
very attractive in the case of coefficient quantization. For the conversion between the lattice
coefficients and the original coeff icients, see Vaidyanathan and Hoang (1988) and Goh and Lim
(1999b).
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Figure 10. Lattice structure for orthogonal filter banks.

2.4.5 PR Biorthogonal Filter Banks
For biorthogonal filter banks, H0(z) and H1(z) are different transfer functions being related to
each other through the PR property. According to the linear-phase property of the filters, they are
divided into two types (see Table I), namely, filter banks with linear-phase subfilters and filter
banks with nonlinear-phase subfilters. These two types will be considered next.

2.4.5.1 PR biorthogonal filter banks with linear-phase subfilters.
For PR biorthogonal filter banks with linear-phase subfilters, H0(z) and H1(z) satisfy the

following conditions:
1. The impulse responses of H0(z) and H1(−z) possess an even symmetry, meaning that the

coefficients of H0(z) and H1(z) satisfy h0[N0 − n] = h0[n] for n = 0 , 1 ,…, N0 and
h1[N1 − n] = (−1)N1·h1[n] for n = 0 , 1 ,…, N1, respectively (for N1 even (odd), the impulse
response of H1(z) possesses an even (odd) symmetry).

2. The sum of the filter orders N0
  and N1 is two times an odd integer, that is, N0 + N1 = 2K

with K being an odd integer.
3. E(z) = H0(z)H1(−z) is a half-band linear-phase FIR filter of order N0 + N1.

There exist only the following two cases to meet these conditions:
Case A: N0

  and N1 are odd integers and their sum is two times an odd integer K.
Case B: N0

  and N1 are even integers and their sum is two times an odd integer K.
In both cases, the filter bank delay is K = (N0

  + N1)/2.
The first effective iterative algorithm for designing biorthogonal filter banks has been

proposed by Horng and Wil lson (1992). An iterative algorithm giving rise to analysis fi lters
exhibiting equiripple amplitude performances in their stopbands has been proposed by Yang,
Lee, and Chieu (1998). The results of the above-mentioned algorithms can be used as start-up
solutions for the general optimization problem stated in Subsection 2.4.2. In this case, all the
constraints are needed. It has turned out that, instead of using δa = 0 in Equation (27), δa = 10−13

gives a very accurate solution.
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For implementing biorthogonal filter banks, like in the case of the orthogonal banks, there
exists also a lattice structure as shown in Figure 11 (Nguyen and Vaidyanathan, 1989) that can
be used in some cases (Vaidyanathan, 1993). The coefficient values for the lattice structure can
be found by direct optimization (Vaidyanathan, 1993) or by transforming the optimized direct-
form coeff icients to those used in the lattice structure (Nguyen, 1992b, 1995).

A very useful alternative for designing and implementing biorthogonal two-channel filter
banks is to use the lif ting scheme that was introduced by Sweldens (1996) and Daubechies and
Sweldens (1998) for designing biorthogonal two-channel banks for generating discrete-time
wavelet banks. As shown by Daubechies and Sweldens (1998), any PR biorthogonal and
orthogonal two-channel filter bank can be implemented using this technique. The main
advantage of the resulting structure is that the PR property is still remaining after the
quantization of the lifting coefficients into very simple representation forms (without any extra
scaling). When applying the lifting scheme for designing biorthogonal two-channel filter banks,
a PR filter bank with short analysis and synthesis filters is used as a starting point. After that, PR
filter banks with higher filter orders are successively generated applying the so-called lifting and
dual lifting steps. For more details, see Sweldens (1996) and Daubechies and Sweldens (1998).
The lifting scheme has been also used for designing cosine-modulated low-delay biorthogonal
filter banks by Karp and Mertins (1997).
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Figure 11. Lattice structure for biorthogonal filter banks.

2.4.5.2 Low-delay PR biorthogonal filter banks with nonlinear-phase subfilters.
For low-delay PR biorthogonal filter banks with nonlinear-phase subfilters, H0(z) and H1(z)

satisfy the following conditions:
1. The impulse responses of H0(z) and H1(z) are not symmetric.

2. The impulse response of ( ) ( ) [ ]∑ +

=
−=−= 10

010)(
NN

n
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where K is an odd integer with K < (N0 + N1)/2.
An example for an impulse response of E(z) is shown on Figure 6(b). The second condition

implies that the overall transfer function between the output and input is T(z) = z−K with K less
than  (N0 + N1)/2. The sum of the filter orders must be two times an odd integer. Since the overall
system delay is less than half the sum of the filter orders, the impulse responses of H0(z) and
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H1(z) cannot possess symmetries. Due to the nonlinearity, all the impulse response values are
unknowns. The high number of unknowns (altogether N0+N1+2) and the PR condition with the
delay less than half the sum of the filter orders makes the synthesis of the overall system very
nonlinear and complicated.

Low-delay PR biorthogonal filter banks have been first introduced by Nayebi, Barnwell, and
Smith (1992, 1994). The filter banks obtained by using their design scheme are suboptimal, as
has been shown in some later papers. However, they have made several important observations
concerning the properties of low-delay filter banks. First, it is not advisable to design filter banks
with a very small delay compared to the filter orders. The efficiency of such systems is low in
the sense that after certain filter orders for the same overall delay, the use of larger filter orders
result only in a negligible improvement in the performance of the filter bank. Second, additional
constraints are necessary in the transition bands of the filters due to the artifacts often occurring
in these bands.

Similar to the linear-phase case for designing this type of fil ter banks, to obtain a good result,
the problem formulation according to Subsection 2.4.2 together with a two-step design method
described there is recommended. In this case, a good initial solution is obtained using an iterative
method described by Abdel-Raheem, El-Guibaly, and Antoniou in (1996). Other methods for
designing low-delay PR biorthogonal filter banks have been proposed by Schuller and Smith
(1995, 1996).
2.4.6 Generalized NPR Filter Banks
As mentioned earlier, it is beneficial in many cases to release the PR condition until the errors
caused by the non-idealities of the filter bank to the signal are lower than those caused by the
processing unit. The ul timate goal is to achieve better filter bank properties. According to Table
I, there are two types of NPR banks that will be considered next.

2.4.6.1 NPR filter banks with linear-phase subfilters.
For an NPR filter bank with linear-phase subfilters, H0(z) and H1(z) satisfy the same

conditions as for the corresponding PR bank (see Subsection 2.4.5.1) with the exception that now

in Condition 3 ( ) ( ) [ ]∑ +
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nznezHzHzE  is nearly a half-band linear-phase FIR

filter of order N0
  + N1, that is, its impulse response coefficients satisfy
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where K = (N0 + N1)/2.
Consequently, the overall transfer function T(z) approximates the delay term z−K. Like for the

QMF banks with linear-phase subfilters, the impulse-response coefficients of T(z) possess an
even symmetry so that the reconstruction error consists only of an amplitude error. The actual
design of these filters can be accomplished by first stating the optimization problem according to
Subsection 2.4.2 and then solving the problem with the aid of the two-step design technique
mentioned in the same subsection. As an initial solution for the second step, the corresponding
PR filter bank can be used.

2.4.6.2 Low-delay NPR filter banks with nonlinear-phase subfilters.
For a low-delay NPR filter bank with nonlinear-phase subfilters, H0(z) and H1(z) satisfy the

following conditions:
1. The impulse responses of H0(z) and H1(z) are not symmetric.

2. The impulse response of ( ) ( ) [ ]∑ +

=
−== 10

010)(
NN

n

nznezHzHzE satisfies
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where K is an odd integer with K ≤ (N0 + N1)/2.
The optimization of these banks can be performed like for the corresponding banks with

linear-phase subfilters. The difference is that now the reconstruction error consists of both
amplitude and phase errors.
2.4.7 FIR filter bank examples

This subsection compares, in terms of examples, various FIR filter banks considered in this
section. An overview of all designs under consideration is given in Table II . For all filter banks,
the filter bank delay is K = 31 and the passband and stopband edges are located at

πωω 414.0)1()0( == sp  and πωω 586.0)1()0( == ps . For the banks with linear-phase subfilters and

for the orthogonal banks, the orders of both H0(z) and H1(z) are N0 = N1 = 31. For the low-delay
banks, N0 = N1 = 63. Additionally, in the low-delay NPR biorthogonal case, the solution for
N0 = N1 = 33 is also included. For the biorthogonal banks, Table II  shows δp, the allowable
passband ripple of H0(z) and H1(z) as well the maximum allowable overshoot in the transition
band, and δa, the allowable reconstruction error for NPR banks. Furthermore, the table shows the
figure where amplitude responses of the analysis filters of the corresponding filter bank are
given. For the NPR banks, the reconstruction error is also included in the figures.

Figure 12(a) shows how the amplitude responses of the analysis filters of a QMF bank can be
improved compared to the Johnston 32D design (Johnston, 1980) given in Figure 12(b) by
minimizing the stopband energies of the filters subject to the maximum reconstruction error of
the Johnston design. As seen from Figure 12(a), this optimization approach results in a minimax
reconstruction error. As ill ustrated in Figure 13, the channel selectivi ty can further be improved
for the same filter bank delay by using, instead of linear-phase filters, nonlinear-phase filters of
higher orders.

Figures 14(a) and 14(b) compare orthogonal filter banks where the stopband behaviors of the
analysis filters have been optimized in the least-mean-square and minimax senses, respectively.
As can be expected, the attenuations provided by the filters designed in the least-mean-square
sense are lower near the stopband edges, but become higher for frequencies further away from
the edges.

Table II  FIR filter bank examples

Filter bank
type

PR Phase N0 δp δa Figure Design

(a) minimax
linear-phase 31 Figure 12

(b) Johnston 32DQMF NPR
low-delay 63

- 3.23·10−3

Figure 13 low-delay
(a) least-squares

Orthogonal PR nonlinear 31 - 0 Figure 14
(b) minimax

linear-phase 31 0.01 (a) li near-phase
PR

low-delay 63 0.1
0 Figure 15

(b) low-delay

10−3 (a) δa = 10−3

li near-phase 31 0.1
10−5 Figure 16

(b) δa = 10−5

33 (a) N0 = 33

Biorthogonal
NPR

low-delay
63

0.01 10−5 Figure 17
(b) N0 = 63
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Figures 15(a) and 15(b) provide a comparison between a linear-phase and a low-delay PR
biorthogonal filter bank, respectively. For designing these filters, the overall problem has been
stated according to Subsection 2.4.2 and the two-step optimization scheme mentioned there has
been used. As can be expected, the stopband attenuations of the analysis filters in the low-delay
filter bank are higher due to their higher orders.

Figure 16 shows the amplitude responses of the analysis filters as well as the reconstruction
errors for two NPR biorthogonal two-channel filter banks with linear-phase subfilters. It is
clearly seen that a larger allowable reconstruction error results in higher stopband attenuations.
NPR low-delay biorthogonal two-channel filter banks with nonlinear-phase subfilters provide
higher attenuations even with a smaller passband ripple (see Table II ) as shown in Figure 17.
This figure shows the amplitude characteristics of the analysis fi lters and the reconstruction
errors for filter banks with two different filter orders.
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Figure 12. QMF banks with linear-phase filters.
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Figure 13. Low-delay QMF bank.
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Figure 15. PR biorthogonal filter banks with linear-phase and nonlinear-phase filters.
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Figure 16. NPR biorthogonal filter banks with linear-phase filters.
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Figure 17. NPR biorthogonal filter banks with nonlinear-phase filters.

2.5 IIR Filter Banks and Their Design
This subsection reviews four alternatives for synthesizing two-channel IIR filter banks. In the

first two alternatives, half-band IIR filters are used as building blocks, in the third alternative
special IIR filters are used, whereas the fourth alternative uses a special structure.
2.5.1 IIR Filter Banks With Phase Distortion Generated by Using Half-Band IIR Filters

In this case, the analysis fil ters H0(z) and H1(z) in Figure 3 are constructed as (Wegener, 1979,
Renfors, 1987)

( ) ( ) ( )[ ]2
1

12
00 2

1
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are allpass filters of orders K0 and K1, respectively. The orders of H0(z) and H1(z) are 2(K0+K1)+1
and it is required that K0 = K1 or K0 = K1+1. As it can be seen H0(z) and H1(z) are related to each
other trough H1(z) = H0(−z). To obtain an alias-free system the synthesis filters F0(z) and F1(z)
are selected according to Equations (9) and (10), yielding

( ) ( ) ( )2
1

12
00 zAzzAzF −+= (39)

( ) ( ) ( )2
1

12
01 zAzzAzF −+−= . (40)

In this case, the filter bank distortion function T(z), as given by Equation (12), becomes

( ) )()( 2
1

2
0

1 zAzAzzT −= (41)

that is an allpass transfer function. Hence, the input-output relation suffers only from a phase
distortion. This distortion is tolerable in audio applications provided that the distortion is not too
large. The distortion can be reduced by adding an additional allpass filter at the end of the filter
bank (Zhang and Iwakura, 1995). Figure 18 shows implementations for the overall system. The
second one using the commutative models is the most eff icient one (Crochiere and Rabiner,
1983).
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Figure 18. Eff icient implementations for a two-channel filter bank based on the use of causal
half-band IIR filters.

In order to compare the performance of the above IIR filter banks with the FIR banks, it is
desired to design a filter bank with the stopband edge of the lowpass analysis filter being located
at ω s = 0.586π. If the required minimum stopband attenuation is 80 dB, then the given criteria are
met by K0 = 3 and K1 = 2. This is a special lowpass−highpass ell iptic filter pair of order 11
designed by a routine written by Renfors and Saramäki (1987). The characteristics of the
resulting two-channel IIR filter bank is shown in Figure 19. When comparing the amplitude
responses of Figure 19 to the corresponding response of FIR filter banks considered in the
previous subsection, significantly higher attenuations (80 dB) are achieved with fewer
coefficients. When using wave digital filter structures with adaptor coeff icients (see, e.g., Gazsi,
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1985) for implementing the first-order allpass filters, only five coeff icients are needed for both
the analysis bank and the synthesis bank in Figure 18.
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Figure 19. Two-channel IIR filter bank. (a) Amplitude responses for the analysis filters. (b)
Input-output phase response for the overall filter bank.

2.5.2 PR IIR Filter Banks Using Causal and Anti-Causal Half-Band Filters
In this case, the analysis fil ters are constructed in the same way as in the previous subsection

(Equations (35) and (36)), whereas the synthesis filters are constructed as follows:
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yielding Y(z) ≡ X(z) when substituting Equations (35), (36), (42), and (43) into Equations (6), (7),
and (8). Figure 20 shows an implementation for the overall filter bank. The main problem in the
proposed implementation is that both F0(z) and F1(z) are anti-causal filters. For finite length
signals, like images, there exist several ways of implementing the filter bank using the
corresponding causal filters (Ramstad, 1988; Uto, Okuda, Ikehara, and Takahashi, 1999). There
exist also implementations for infinite length signals (Mitra, Creusere, and Babi � , 1992). It
should be pointed out that in these implementations, there is a need to produce a time-reversed
version of the input data before and after filtering. This introduces an additional delay. When
using the allpass filters of Figure 19 we arrive at the same amplitude responses as with the
structure of Figure 18 with the exception that now there exists only a pure delay for the overall
input-output response.
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Figure 20. Implementation for a two-channel filter bank based on the use of causal and anti-
causal half-band IIR filters.

2.5.3 PR IIR Filter Banks Using Special IIR Filters
The PR property is also achievable by using causal IIR filters by properly synthesizing the

analysis transfer functions and relating the synthesis transfer functions to them according to
Equations (9) and (10). One alternative is to construct H0(z) and H1(z) as follows:
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In this case, T(z), as given by Equation (12), becomes
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and the PR property implies that T(z) = z
−K with K being an odd integer.

Filter banks of this type have been originally proposed by Basu, Chiang, and Choi (1995) but
no practical design methods have been given. Afterwards, optimization (Mao, Chan, and Ho,
1999) and some transformation approaches (Tay, 1998) have been introduced for synthesizing
these filter banks.

Due to the use of IIR filters, the desired channel selectivity compared to FIR filter banks can
be achieved using fewer coeff icients. As an example, consider the design of a fi lter bank with
M0 = M1 = 21, N0 = N1 = 2, K = 19, and the passband and stopband edges being located at 0.414π
and 0.586π, like in the previous examples. The maximum allowable passband ripple is 0.01 and
the maximum amplitude value in the transition bands is 1.01. The use of constrained
optimization minimizing the maximum of the stopband energies of the analysis filters subject to
the given constraints results in the responses shown in Figure 21 (Bregovi �  and Saramäki
2001b).
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Figure 21. IIR filter bank using special IIR filters.

2.5.4 PR IIR Filter Banks Based on a Special Structure
Another alternative to generate a PR filter bank using causal IIR fi lters is to construct the

analysis and synthesis filters as shown in Figure 22. This structure has been introduced by Kim
and Ansari (1991) and later modified by Phoong, Kim, and Vaidyanthan (1995).

↓2

↓2

  z−1

 z−N

  α(z)  -β(z)

 z-M

x[n]
 z-M

  β(z)  -α(z)

 z−N

↑2

↑2

 z−1

y[n]

Figure 22. Special structure for two-channel IIR filter banks.
For this structure, the analysis fi lter transfer functions are constructed as follows:
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whereas the synthesis filter transfer functions are related to these functions according to
Equations (9) and (10). The above transfer functions are constructed such that T(z), as given by
Equation (12), is z−2N−2M−1 independent of the selection of the transfer functions α(z) and β(z).
Therefore, the design of the PR filter bank can concentrate only on generating good frequency
responses for H0(z) and H1(z). Hence, for causal filter banks, α(z) and β(z) can be selected to be
any causal IIR or FIR filter transfer functions.

Two basic approaches have been proposed for selecting α(z) and β(z). In the first approach,
α(z) ≡ β(z) and M = 2N−1 (Phoong, Kim, and Vaiduanathan, 1995) with β(z) being an allpass
transfer function of order N or N−1 or a linear-phase FIR transfer function of order 2N−1 having
a symmetrical impulse response. In both cases, there is always a bump in the amplitude response
of H1(z) in the transition band of approximately 4 dB. In the second approach, α(z) and β(z) are
different transfer functions. In this case, α(z) and β(z) are a causal allpass filter transfer function
and a linear-phase FIR filter function with symmetrical impulse response, respectively (Chan,
Mao, and Ho, 2000). They can also be selected to be nonlinear-phase FIR filter transfer functions
(Mao, Chan, and Ho, 2000). In addition to the structure depicted in Figure 22, a slightly modified
structure has been proposed by Zhang and Yoshikawa in (1998, 1999).

3 Multi-Channel (M-Channel) Filter Banks
There exist three basic approaches for designing multi-channel uniform filter bank. In the first

technique, all the analysis and synthesis filters are considered to be independent and they are
optimized simultaneously to meet the PR or NPR property. For the PR case see, e.g.,
Vaidyanathan et al. (1989). The second approach is based on building the filter bank using a tree-
structure with two-channel filter banks as building blocks. In the third technique, a single
prototype filter is synthesized and the overall bank is generated with the aid of a cosine-
modulation or a modified discrete Fourier transform (MDFT) technique. This section
concentrates on the last two approaches.

3.1 Tree-Structured Filter Banks Using Two-Channel Filter Banks as Building Blocks
When generating a tree-structured filter bank, a two-channel filter bank as shown in Figure

23(a) is used as a starting point. For this bank, the analysis and synthesis fi lters are denoted by
)()1(

0 zH , )()1(
1 zH , )()1(

0 zF , and )()1(
1 zF . The next step is to remove the processing unit in Figure

23(a) and produce [ ]ny )1(
0  { [ ]ny )1(

1 } from [ ]nx )1(
0  { [ ]nx )1(

1 } using a two-channel filter bank shown

in Figure 23(b). For this bank, the analysis and synthesis filters are denoted by )()2(
0 zH ,

)()2(
1 zH , )()2(

0 zF , and )()2(
1 zF . This results in the two-level, tree-structured filter bank shown in

Figure 23(c).
The three-level tree-structured filter bank shown in Figure 24 is obtained by removing the

processing unit in Figure 23(c) and producing [ ]nyk
)2(  from [ ]nxk

)2(  for k = 0,1,2,3 using a two-

channel filter bank with the analysis and synthesis filters being )()3(
0 zH , )()3(

1 zH , )()3(
0 zF , and

)()3(
1 zF . In order to analyze the performance of the three-level tree-structured filter bank of
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Figure 24, it can be redrawn as the equivalent form also shown in Figure 24. Hence, it
corresponds to a uniform analysis-synthesis bank with 8 channels. Four-level tree-structured
filter banks can be generated by removing the processing unit and producing [ ]nwk

)3(  from [ ]nvk
)3(

for k = 0,1,…,7 using a two-channel filter bank. In this case, the number of channels is 16. In
general, for a K-level tree-structured filter bank, the number of channels is 2K.
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Figure 23. Generation of a two-level tree-structured filter bank.

Next an example will be given illustrating how to select the building-block two-channel filter
banks. It is desired to generate an analysis-synthesis filter bank with 8 channels by using a three-
level tree-structured filter bank. The required transition bandwidth and the attenuation are 0.05π
and 60 dB, respectively. As two-channel fi lter banks, causal half-band IIR fi lters considered in
Subsection 2.5.1 are used. For all the banks, the required attenuation is 60 dB, whereas the
required stopband edges are located at 0.525π, 0.55π, and 0.6π for the first, second, and third
two-channel banks, respectively. The given criteria are met by K0 = K1 = 3; K0 = 3 and K1  = 2; and
K0 = K1 = 2; respectively. It should be pointed out that when using a tree-structured filter bank in
general, the transition bandwidth for the first building block is the specif ied one, whereas for the
kth block, it is 2k −1 times that of the specified one. This is basically due to the equivalent
structure of Figure 24, where, instead of a unit delay, a block of 2k −1 delay elements is used. For
the influence of this fact, see, e.g., Saramäki (1993).

The amplitude responses of the three two-channel filter banks as well as the amplitude
responses between the input x[n] and vk[n] for k = 0,1,…,7 (see Figure 24) are depicted in Figure
25. The numbers in the figure indicate the corresponding responses. The responses between
wk[n] for k = 0,1,…,7 and the output y[n] are the same with the exception that they are obtained
by multiplying the responses of Figure 25(b) by eight.
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Figure 24. Three-level tree-structured filter bank.
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Figure 25. Three-level tree-structured filter bank. (a) Amplitude responses for the analysis filters
in the three building blocks. Filters with the narrowest, the second narrowest, and the widest
transition band correspond to the first, second, and third building blocks, respectively, that is, for

)()(
0 zH k  and )()(

1 zH k  for k = 0,1,3. (b) Amplitude responses for the resulting filters between the

input x[n] and vk[n] for k = 0,1,…,7 in Figure 24. The numbers in the figure indicate the
corresponding responses.
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3.2 Cosine-Modulated Filter Banks
Among different classes of M-channel critically sampled filter banks, cosine-modulated and

MDFT filter banks have become very popular in many applications due to the following reasons.
First, both the analysis and synthesis filters for these banks can be generated using one or two
prototype filters by exploiting proper transformations, making the overall implementation
effective. Second, the overall synthesis can concentrate on optimizing only the prototype
filter(s). This subsection considers the design and properties of PR and NPR cosine-modulated
filter banks. The properties of MDFT banks will then be discussed in Subsection 3.3. As has
been pointed out by Karp and Fliege (1999) and Heller, Karp, and Nguyen (1999), the same
prototype filter with a proper scaling can be used for both filter bank types mentioned above.

One of the first observations on how to generate NPR M-channel critically sampled filter
banks with the aid of a single prototype filter and a proper cosine modulation was made by
Rothweiler (1983). Since then, intensive research has been performed for designing and
implementing PR and NPR cosine-modulated filter banks. Historically, the first cosine-
modulated filter banks were generated from a single linear-phase prototype filter in such a way
that the impulse responses of the corresponding analysis and synthesis filters were flipped
versions of each other (Malvar, 1990, 1991, 1992a, 1992b; Ramstad and Tanem, 1991; Koilpil lai
and Vaidyanathan, 1991, 1992; Saramäki, 1992; Nguyen, 1992b, 1994, 1995; Vaidyanathan,
1993; Creusere and Mitra 1995; Nguyen and Koilpil lai, 1996; Mertins, 1998; Saramäki and
Bregovi � , 2001; Bregovi �  and Saramäki, 2001a). Later on, these filter banks are referred to as
orthogonal cosine-modulated banks. In this case, the filter bank delay is equal to the order of the
prototype filter. More recently, new synthesis schemes have been proposed for synthesizing
cosine-modulated filter banks where the filter bank delay is lower than the order of the prototype
filter (Nguyen, 1992a; Xu et al., 1996; Schuller, 1997; Karp and Mertins, 1997; Goh and Lim,
1999b; Heller, Karp, and Nguyen, 1999; Argenti and Del Re, 2000; Schuller and Karp, 2000;
Karp, Mertins, and Schuller, 2001). For these banks the prototype filter for generating the
analysis and synthesis filters may be different. These filter banks are referred to as low-delay
biorthogonal cosine-modulated filter banks.
3.2.1 Input-output relations for M-channel critically sampled filter banks

A general M-channel critically sampled filter bank is shown in Figure 1(a). For this system,
the input-output relation in the z-domain is expressible as
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Here, T0(z) is called the distortion transfer function and determines the distortion caused by the
overall system for the unaliased component X(z) of the input signal. The remaining transfer
functions Tl(z) for l = 1, 2, …, M−1 are called the alias transfer functions and determine how well
the aliased components X(ze−j2πl / M) of the input signal are attenuated.
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For the PR property, it is required that T0(z) = z
−K with K being an integer and Tl(z) = 0 for

l = 1, 2, …, M−1. If these conditions are satisfied, then the output signal is a delayed version of
the input signal, that is, y[n] = x[n−K]. It should be noted that PR is exactly achieved only in the
case of lossless coding. For a lossy coding, PR is not achieved. Therefore, amplitude and aliasing
errors being less than those caused by coding are allowed. In these NPR cases, the above-
mentioned conditions should be satisfied within given tolerances.
3.2.2 PR and NPR cosine-modulated filters banks

The impulse responses of the analysis and synthesis transfer functions Hk(z) and Fk(z) for
k = 0, 1, …, M−1 for PR and NPR M-channel critically-sampled cosine-modulated filter banks as
shown in Figure 1(a) can be generated with the aid of an FIR prototype filter with the following
transfer function:
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for n = 0, 1, …, N.
It should be pointed out that in the most general case, the prototype filters for generating the

analysis and synthesis filters could be different (Heller et al., 1999; Karp et al., 2001). However,
without loss of generality, they can be selected to be equal in most practical cases. In the above
equations, K is the filter bank delay and is usually expressed as K = 2sM + d where s is an integer
larger than or equal to zero and 0 ≤ d < 2M. In general, K can be chosen arbitrarily in the range
K ∈ [M−1, 2N−M+3]. However, in order to obtain a low-delay biorthogonal filter bank, K must
be less than the prototype filter order N (K < N). In the case of orthogonal cosine-modulated filter
banks, K = N and the impulse response of the prototype filter Hp(z) has an even symmetry, that is,
hp[N−n] = hp [n] for n = 0, 1, …, N. Furthermore, fk[n] = hk [N−n] for k = 0, 1, …, M−1 and for
n = 0, 1, …, N.

It should be pointed out that because of interpolation by a factor of M, the amplitude
responses of both the analysis and synthesis fil ters resul ting when using the design schemes, to

be described later on in this chapter, approximate M in their passbands. This means that if the
peak scaling for the fixed-point arithmetic is desired to be used, the analysis (synthesis) filters
should be divided (multiplied) by this constant. In the sequel, when giving the amplitude
responses of the prototype filter as well as those of the analysis and synthesis filters they are
normalized to approximate unity in the passbands.

The key idea of designing the prototype filter and using the above-mentioned modulation
scheme is based on the following facts. First, the prototype filter is designed in such a manner
that its amplitude response Hp(ejω) achieves approximately the value of 1/2 at ω = ± π/(2M) and
the stopband edges are located at ω = ± ω s with ω s= π(1+ρ)/(2M), ρ > 0 as shown in Figure 26(a)
in the M = 4 case. Then, due to the cosine-modulation, the amplitude responses of the analysis
filters are given by Hk(ejω) =  Hp(ej[ω − (2k+1)π/(2M)])+  Hp(ej[ω + (2k+1)π/(2M)]) as shown in Figure
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26(b). Hence, for the kth analysis filter, the amplitude response is obtained by shif ting that of the
prototype filter to the left and right in the frequency axis by ω k = (2k+1)π/(2M). Therefore, for
the kth bandpass analysis filter with transfer function Hk(z) with 1≤ k ≤ M−2, the passband center
is located at ω = ω k and the stopband edges at ω = ω k ± ω s. For the lowpass filter with transfer
function H0(z), the value of unity is approximately achieved at ω = 0 since both shifted versions
achieve the value of 1/2 at this angular frequency and the stopband edge is located at
ω = π/(2M) + ω s = π(2+ρ)/(2M). This is approximately true for the orthogonal filter banks, but not
for low-delay biorthogonal filter banks, as will be seen in connection with examples. Similarly,
for the highpass filter HM−1(z), the value of unity is approximately achieved at ω = π and the
stopband edge is located at ω = π − π(2+ρ)/(2M).

Second, the above-mentioned cosine-modulation technique has the attractive property that if
the prototype filter is designed in the proper manner, then the overall uniform filter bank will
achieve the PR property. This is based on the fact that the aliasing components generated in the
analysis bank are compensated in the synthesis bank, like explained earlier in the case of two-
channel filter banks (see Subsection 2.1 and 2.2).

π/2M
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ω
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π−π

Figure 26. Frequency responses of a four-channel cosine-modulated filter bank. (a) Prototype
filter. (b) Analysis filters.

3.2.3 PR cosine-modulated filter banks and their implementation
The criteria for the PR property can be conveniently stated by decomposing the prototype

filter transfer function, as given by Eq. (51), into 2M polyphase components (Malvar, 1992a,
Vaidyanathan, 1993) as follows:
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There are the following two cases of interest depending on the value of d in K = 2sM + d (Heller
et al., 1999; Karp et al., 2001):

1) PR constraints for 0 ≤ d < M:
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These conditions can be directly exploited in optimizing the prototype filters for
simultaneously achieving the PR property and generating filter banks with high frequency
selectivities. Furthermore, the above polyphase decomposition can be utili zed in developing
eff icient realizations for the overall filter bank. One alternative realization form is shown in
Figure 27 with the elements of the cosine-transform matrices given by Heller et al. (1999) and
Karp et al. (2001)
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for 0 ≤ k < M and 0 ≤ l < 2M. In this figure, the left side generates, with the aid of the polyphase
components and the M × 2M transform matrix C1, the analysis bank with M decimated sub-
signals that are used as inputs to the processing unit of Figure 1(a). Similarly, the right side of
Figure 27 forms the synthesis bank of Figure 1(a). The actual 2M × M transform matrix C2

T is the
transpose of the M × 2M matrix C2. After some rearrangements, the above transforms can be
implemented effectively using a Type III or a Type IV discrete cosine transform (a DCT-III or a
DCT-IV) (Vaidyanathan 1993; Heller et al., 1999; Karp et al., 2001) depending on whether the
overall filter bank delay K is even or odd, respectively. As shown in Karp et al. (2001), in the
structure of Figure 27 the transform matrices can be reduced to be of size M × M after some
modifications.
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Figure 27. Realization of the analysis and synthesis filters for the cosine-modulated fi lter bank
with the aid of the polyphase components of the prototype filter and transform matrices C1 and
C2

T.

There exist two alternatives for generating the component pairs Gl(−z2) and Gl+M(−z2) of the
analysis and synthesis filters for l = 0, 1, …, M−1 in the biorthogonal case. The simplest way to
implement the polyphase components Gl(−z2) for l = 0, 1, …, 2M−1 is to use direct-form
realizations. Computationally more efficient realizations have been developed by Schuller
(1997), Karp and Mertins (1997), Schuller and Karp (2000), and Karp, Mertins, and Schuller
(2001). Among them, the realization introduced by Karp, Mertins, and Schuller (2001) is the
most general (can be used for any values of N and K) and computationally the most eff icient.
Compared to the direct-form implementations of the polyphase components, the number of
multipliers and adders required by their structure is approximately halved. An attractive feature
of this structure is that the PR condition is preserved independent of the coefficient values,
thereby enabling us to express them in very simple representation forms. For the orthogonal case
(K = N), the component pairs Gl(−z2) and Gl+M(−z2) for l = 0, 1, …, M−1 can be implemented
simultaneously using two-channel lossless lattice structures (Koilpil lai and Vaidyanathan, 1992;
Vaidyanathan, 1993; Nguyen and Koilpil lai, 1996). A computationally very efficient realization
has been developed by Malvar in (Malvar 1992a, 1992b) in the case where N = K = 2LM−1 with
L being an integer. It is based on the use of special butterflies and the DCT-IV. This has been
achieved by using a sli ghtly different cosine-modulation technique.

It should be pointed out that in the NPR orthogonal and low-delay biothogonal cases, the only
alternative to implement the polyphase components Gl(−z2) for l = 0, 1, …, 2M−1 is to use direct-
form realizations. Also, in the case of Malvar’s structure (Malvar 1992a, 1992b), the butterflies
cannot be used and there is a need to modify the structure.
3.2.4 Orthogonal and biorthogonal cosine-modulated filter banks under consideration

In theory, the PR orthogonal (PR low-delay biorthogonal) cosine-modulated filter bank can be
optimized for any values of M and N = K (any values of M, N, and K). However, it has turned out
that the best filter bank performances are achieved by selecting these integers such that there are
no constraints on the impulse-response coefficients of the prototype filter. These selections result
in filter banks with highest channel selectivities and highest attenuations. The other choices may
give rise to filters with a lower filter bank delay and lower orders for the analysis and synthesis
filters. The price to be paid for the additional constraints on the impulse-response coefficients of
the prototype filter (some coefficient values are restricted to take on the predetermined values or
they are restricted to be zero-valued) is that the resul ting fil ter performances are worse than for
the cases without constraints. This section concentrates on the following two cases:
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1. Orthogonal banks with arbitrary M and N = K = 2LM−1 with L being an integer.
2. Biorthogonal banks with even M, N =  2LM−1 with L being an integer, and d = 2M−1, that

is, K = 2sM+d = 2(s+1)M−1.
It has been observed by Koilpil lai and Vaidyanathan (1992) that it is straightforward to design

orthogonal filter banks with an odd number of channels and a good overall performance, even
though there are constraints on the impulse-response coefficients of the prototype fi lter. More
research work should be done to find out whether the same is true for low-delay biorthogonal
filter banks.

3.2.5 Statement of the optimization problem for PR and NPR cosine-modulated filter
banks

The optimization problem can be stated for both PR and NPR filter banks in the following
two ways:

Least-Squares Optimization Problem: Given )2/()1( Ms πρω += , M, and N as well as K for

the low-delay biorthogonal case, find the coeff icients of the prototype filter transfer function
Hp(z), as given by Equation (51) to minimize
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for l = 1, 2, …, M−1. (59)
Minimax Optimization Problem: Given )2/()1( Ms πρω += , M, and N as well as K for the

low-delay biorthogonal case, find the coefficients of Hp(z) to minimize

[ ]
)(max

,

ω

πωω

j
p eHE

s∈
∞ = (60)

subject to the conditions of Equations (58) and (59).
In these optimization problems, the main goal is to minimize the stopband response of the

prototype filter either in the least-mean-square sense or in the minimax sense subject to two
constraints. First, the maximum of the absolute value of the deviation between the overall
frequency response for the unaliased term and the delay of K samples should be in the baseband
less than or equal to δ 1. Second, the maximum value of the worst-case aliasing term should be
less than or equal to δ 2. For the NPR orthogonal case, the phase response of T0(z) is linear (−Kω)
and δ 1 is directly the maximum deviation of the amplitude response from unity. For the NPR
low-delay biorthogonal case, T0(z) suffers from both phase and amplitude distortions.
3.2.6 Design of PR and NPR orthogonal and biorthogonal cosine-modulated filter banks

For the PR case, it is required that δ 1 = δ 2 ≡ 0. Optimizing the prototype filter in such a
manner that the overall filter bank becomes PR is a nonlinear problem. To solve this problem
conveniently in the orthogonal case where N = K = 2LM−1 with L being an integer, the angles for
the lattice structures in the prototype filter for PR cosine-modulated filter banks (Koilpil lai et al.,
1992, Malvar, 1992a) can be used as unknowns. In this case, the PR property is achieved
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independent of the angle values. Simultaneously, the original constrained optimization problem
becomes unconstrained and the number of unknowns reduces to L M/2 ( x stands for the
integer part of x). Despite of this simplification, there exist several local optima when
minimizing the stopband response of the prototype filter in the minimax or in the least-mean-
square sense. To alleviate this problem Saramäki (1992, 1998) and Bregovi � , and Saramäki
(2001a) have proposed systematic multi-step approaches to arrive at least at a good local
optimum for large values of M and L.

For the PR biorthogonal case, there exist two principal approaches to arrive at a good l ocal
optimum. Similarly to the orthogonal case mentioned above, Schuller and Smith (1996), Schuller
(1997), Schuller and Karp (2000), and Karp et al. (2001) have developed a technique where the
actual design can concentrate on optimizing the proper parameters, uniquely specifying the filter
bank performance, in such a way that the PR property is guaranteed independent of their values.
Hence, the overall optimization problem becomes unconstrained. In the second approach,
Nguyen (1992b, 1995) and Heller et al. (1999) use constrained least-squares optimization. In this
technique, the stopband energy of the prototype filter is optimized subject the PR constraints
mentioned in Subsection 3.2.3.

For synthesizing NPR orthogonal filter banks, an eff icient two-step procedure has been
described by Saramäki and Bregovi �  (2001). In the first step, a good start-up solution is
generated with the aid of a prototype filter for the PR case. In the second step, nonlinear
optimization is applied for further optimizing the prototype filter subject to the given constraints.
A similar technique has also been applied for designing NPR low-delay biorthogonal filter banks
by Bregovi �  and Saramäki (2001c). In addition to the above-mentioned design methods, an
iterative technique has been proposed by Xu et al. (1996) for designing NPR orthogonal and low-
delay biorthogonal filter banks. This design scheme gives very fast suboptimal filter banks. In
addition, it allows us to control the artifacts of low-delay biortgonal banks to be considered in
connection with examples.

3.2.7 Comparison between PR and NPR cosine-modulated filter banks
For comparison purposes, several orthogonal filter banks have been optimized for M = 32

channels and ρ = 1, that is, the stopband edge of the prototype filter is located at ω s = π/32. The
results are summarized in Table III . In all cases under consideration, the order of the prototype
filter is N = 2LM −1, where L is an integer and the stopband response has been optimized in
either the minimax or least-mean-square (LSQ) sense. δ 1 shows the maximum deviation of the
amplitude response of the distortion transfer function T0(z) from unity, whereas δ 2 is the
maximum amplitude value of the worst-case aliasing transfer function Tl (z). The boldface
numbers indicate those parameters that have been fixed in the optimization. E∞ and E2 give the
maximum stopband amplitude value of the prototype filter and its stopband energy, respectively.

Designs 1 and 2 in Table III  are PR filter banks, whereas designs 4, 5, and 6 have been
optimized subject to the given amplitude error for T0(z) without taking into account the aliasing
errors. For designs 7 and 8, the optimization has been performed subject to the given amplitude
and aliasing errors.



T. Saramäki and R. Bregovi � , ”Multirate Systems and Filter Banks,” Chapter 2 in Multirate Systems: Design
and Applications edited by G. Jovanovic-Dolecek. Hershey PA: Idea Group Publishing.

35

Table III  Comparison between orthogonal filter banks with M = 32 and ρ = 1. Boldface numbers
indicate those parameters that have been fixed in the optimization.

Design Criterion N δ1 δ2 E∞ E2

1 LSQ 511 0 0 (−−−−∞∞∞∞ dB) 1.2⋅10−3 (−58 dB) 7.4⋅10−9

2 Minimax 511 0 0 (−−−−∞∞∞∞ dB) 2.3⋅10−4 (−73 dB) 7.5⋅10−8

3 LSQ 511 10−−−−4 2.3⋅10−6 (−113 dB) 1.0⋅10−5 (−100 dB) 5.6⋅10−13

4 Minimax 511 10−−−−4 1.1⋅10−5 (−99 dB) 5.1⋅10−6 (−106 dB) 3.8⋅10−11

5 LSQ 511 0 9.1⋅10−5 (−81 dB) 4.5⋅10−4 (−67 dB) 5.4⋅10−10

6 LSQ 511 10−−−−2 5.3⋅10−7 (−126 dB) 2.4⋅10−6 (−112 dB) 4.5⋅10−14

7 LSQ 383 10−−−−3 10−−−−5 (−−−−100 dB) 1.7⋅10−4 (−75 dB) 8.8⋅10−10

8 LSQ 319 10−−−−2 10−−−−4 (−−−−80 dB) 8.4⋅10−4 (−62 dB) 2.7⋅10−9

Some characteristics of designs 1 and 3 are depicted in Figure 28(a) and Figures 28(b) and
28(c), respectively. From these figures as well as from Table III , it is seen that the NPR filter
banks provide significantly improved filter bank performances at the expense of a small
amplitude error and very small aliasing errors. When comparing designs 2 and 4 in Table III , it is
seen that the same is true for the corresponding minimax designs.
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Figure 28. Characteristics of PR and NPR cosine-modulated orthogonal filter banks of M = 32
filters for ρ = 1 designed in the least-mean-square sense. (a) PR filter bank with filter orders
N = 511 (design 1 in Table III ). (b) and (c) NPR filter bank with filter orders N = 511 designed
subject to the constraint δ1 = 0.0001 (design 3 in Table III ). (d) NPR filter bank with filter orders
N = 319 designed subject to the constraints δ1 = 0.01 and δ2 = 0.0001 (design 6 in Table III ).
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When comparing designs 1 and 5 in Table III , it is observed that even an optimized NPR filter
bank without any amplitude error for T0(z) (also considered in Nguyen, 1994) provides a
considerably better performance than the PR filter bank. Furthermore, it is seen that the
performance of the NPR filter bank significantly improves when a higher amplitude error is
allowed (design 6 in Table III ). Some of the characteristics of design 8 are depicted Figure 28(d).
When comparing this solution with design 1 of Table III  (see also Figure 28(a)), it is observed
that the same or even a better filter bank performance can be achieved with a significantly lower
filter order (319 compared with 511) when small amplitude and aliasing errors are allowed.

Table IV compares PR orthogonal, PR low-delay biorthogonal, and NPR low-delay
biorthogonal cosine-modulated filter banks for M = 32 channels and ρ = 1, like in the case of
Table III . Designs 1, and 4 are PR orthogonal banks and designs 2 and 5 PR low-delay
biorthogonal filter banks, whereas designs 3 and 6 are NPR low-delay biorthogonal banks. Some
characteristics of designs 3 are depicted in Figure 29. Several interesting observations can be
made based on the results of Table IV. When comparing designs 1 and 2, it is seen that design 2
provides a significant improvement in the selectivity by increasing the prototype filter order by
approximately 50 %. Similarly, design 5 provides a considerable improvement compared to
design 4 by increasing the prototype filter order by approximately 100 %. For the NPR low-delay
designs 3 and 6, the performances of the prototype filters are signif icantly better than for the
corresponding PR designs (designs 2 and 5) at the expense of a small error for T0(z) and small
aliasing errors. For design 3 (design 6), the group delay response for the unaliased component
approximates 255 with tolerance equal to 0.31 (191 with tolerance equal to 2.4).

Its very interesting to observe that the prototype filters for the NPR designs 3 and 6 are
slightly better than that for design 1 of Table III . It should be noted that for design 3 of Table IV
(design 6 of Table IV), the prototype filter order and the filter bank delay are only approximately
75 % (75 %) and 50 % (37 %) compared to those of design 1 of Table III .

Table IV Comparison between PR orthogonal, PR low-delay biorthogonal, and NPR low-delay
biorthogonal cosine-modulated filter banks with M = 32 and ρ = 1. Boldface numbers indicate
those parameters that have been fixed in the optimization.

Design N K δ1 δ2 E∞ E2

1 255 255 0 0 (−−−−∞∞∞∞ dB) 2.3⋅10−2 (−33 dB) 4.2⋅10−6

2 383 255 0 0 (−−−−∞∞∞∞ dB)) 8.3⋅10−3 (−41 dB) 5.2⋅10−7

3 383 255 0.001 10−−−−5 (−−−−100 dB) 1.1⋅10−3 (−59 dB) 2.7⋅10−9

4 191 191 0 0 (−−−−∞∞∞∞ dB) 4.2⋅10−2 (−28 dB) 2.9⋅10−5

5 383 191 0 0 (−−−−∞∞∞∞ dB) 8.4⋅10−3 (−41 dB) 6.2⋅10−7

6 383 191 0.01 10−−−−4 (−−−−80 dB) 1.3⋅10−3 (-58 dB) 4.2⋅10−9

Compared to orthogonal cosine-modulated filter banks, the improvements provided by low-
delay biorthogonal filter banks cannot be achieved without artifacts, as has been pointed out by
Xu et al. (1996). First, the amplitude response of the (normalized) prototype filter achieves an
overshoot in the transition band. Second, the amplitude response of the (normalized) lowpass
(highpass) analysis filter does not achieve the value of unity at ω = 0 (ω = π). For instance, for the
prototype filter of Figure 29, the maximum amplitude value in the transition band is 0.62 dB,
whereas the lowpass (highpass) analysis filter achieves the value of –5.1 dB at ω = 0 (5.1 dB at
ω = π). As shown by Xu et al. (1996) and Karp et al. (2001), these artifacts can be reduced at the
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expense of lower attenuations for the analysis and synthesis filters by imposing extra constraints
in the filter bank design.
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Figure 29. Characteristics of NPR low-delay biorthogonal filter bank of M = 32 filters for ρ = 1
designed in the least-mean-square sense. δ1 = 0.001 and δ2 = 10−5 (design 3 in Table IV).

3.3 Modified DFT Filter Banks

For implementing an M-channel (M is even) MDFT filter bank, a prototype filter for an M/2-
channel cosine-modulated filter bank can be used directly in both PR and NPR cases after

scaling it by a factor of 2  (Karp and Fliege, 1999). Therefore, this subsection concentrates
mainly on the properties of MDFT filter banks and their relations to cosine-modulated filter
banks. First, these banks are developed for a complex-valued input signal. After that, it is shown
how this bank can be simplified for a real-valued input data.
3.3.1 MDFT filter banks for complex-valued input data

In the original MDFT filter banks introduced by Fliege (1993) and Karp and Fliege (1999) it
is assumed that both the input and output signals for the filter bank as shown in Figure 1(a) are
complex-valued. Furthermore, M is restricted to be even. The overall bank is constructed with
the aid of the prototype filter Hp(z) of order N as given by Equation (51). The transfer functions
Hk(z) = Fk(z) for k = 0, 1, …, M−1 in the analysis and synthesis banks of Figure 1(a) are generated
by the aid of a DFT modulation of the prototype filter to have the following complex-valued
impulse responses:

[ ] [ ] [ ] ,,...,0for    2 /)2/(2 Nnenhnfnh MNnkj
pkk === −π

(61)

where hp[n] for n = 0, 1, …, N are the impulse response coeff icients for an M/2–channel PR or
NPR cosine-modulated filter bank. The frequency responses of the analysis filters of an M-
channel MDFT filter bank are shown in Figure 30(b), whereas Figure 30(a) shows that of the
prototype filter. The analysis-synthesis filter bank of Figure 1(a) using these filters is not suitable
without modifications since it does not provide the desired alias cancellation.
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Figure 30. Frequency responses of an eight-channel MDFT bank. (a) Prototype filter. (b)
Complex-valued analysis filters.

The most severe aliasing terms can be removed by modifying the original structure in the
proper manner as proposed by Fliege and Karp in (Fliege, 1993, Karp, 1999), resulting in the
MDFT filter bank. The key idea is to use a two-step decimation and a two-step interpolation for
each sub-band signal in the analysis and synthesis parts, respectively, as shown in Figure 31.
After forming the analysis filters as described above, the signal is first decimated by a factor of
M/2 (M is even). The resulting signals are then decimated by a factor of two with and without a
unit delay. In the resulting sub-bands, either the real or imaginary part is used. Without loss of
generality, it can be assumed that the real (imaginary) part is taken in the upper undelayed
branch of all even (odd) sub-bands. In the synthesis bank, a similar modification is performed as
shown in Figure 31. This results in a cri tically sampled complex-modulated PR or NPR M-
channel filter bank provided that the prototype filter for an M/2-channel cosine-modulated filter
bank possesses the same property (Fliege, 1993; Karp and Fliege, 1999). The price to be paid for
this modifications is that the filter banks delay increases from N to N+M/2. For a complex-valued
input sequence x[n], the analysis bank maps this signal into M real and M imaginary sequences at
the sampling rate reduced by a factor of M. The advantage of the resul ting fil ter bank for a
linear-phase Hp(z) is that all these mappings can be regarded as processes where each sequence is
first generated by filtering the input signal by linear-phase complex-coefficient FIR fi lters Hk(z)
and z−M/2Hk(z) for k = 0, 1, …, M−1, depending on whether the unit delay is used or not, before
decimating by a factor of M and selecting the real or imaginary part of the output. As will be
seen in Subsection 3.3.2, this property leads for a real input data to a filter bank where all the
analysis and synthesis filters are linear-phase real-coefficient FIR filters, which is of great
importance, for instance, in image processing.
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T
his subsection concentrates m
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M
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 being an integer

since in this case there are no
 constraints for the prototype filter to have fixed

 im
pulse-response

values. It should be pointed out that in the m
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 in E
quation (61), other

integers can be used (H
eller et al., 1999). T

his subse
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 original form
 of

E
quation (61) because in this case the real and im

aginary parts of the transfer functions H
k (z) and

F
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 filters provided that the prototype filter H
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k
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In the above, it is assum
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A
n exam

ple of am
plitude responses for an eight-channel M

D
FT

 filter bank w
ith a prototype

filter of odd order is given in F
igure 34.

It should be em
phasized that E

quations (62)−(68) have be
en derived for the case

 w
here

E
quation (61) w

ith a linear-phase prototype filter of order N
 is used as a starting point. In

 this
case, all the analysis and

 synthesis filters are line
ar-phase F

IR
 filters. Sim

ilar equations have
been derived by H

eller et al. (1999) for the case w
here, instead

 of N
, K

 <
 N

 is used in E
quation

(61) and the prototype filter is a nonlinear-phase FIR
 filter of order N

. A
 slightly different

approach for generating filter banks for processing real-valued input signals w
ith linear-phase

FIR
 filters has been proposed by L

in and V
aidyanathan (1995).

W
hen com

paring M
D

FT
 filter banks and cosine-m

odulated filter banks the follow
ing

properties sho
uld be em

phasized. F
irst, prototype filters for a 2

M
-channel M

D
FT

 filter bank and
for an M

-channel cosine-m
odulated filter bank are the sam

e. S
econd, for processing real-valued

signals, a 2M
 M

D
FT

 filter bank is needed to
 obtain sim

ilar co
ding gain

 (L
in and V

aidyanathan,
1995) like for an M

-channel cosine-m
odulated filter bank. In this case, both filter banks have
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approximately the same delay and complexity. Third, in an MDFT filter bank analysis and
synthesis filters can be linear-phase filters, that is not the case for cosine-modulated filter banks.
This makes MDFT filter banks very useful in image processing applications.
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Figure 33. Equivalent filter bank for processing real-valued input data. N is odd.
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Figure 34. MDFT filter bank for processing real-valued input data. M = 8 and N is odd. (a)
Analysis filters for real subbands. (b) Analysis filters for imaginary subbands.

As an example Figure 35 shows the amplitude responses of the real and the imaginary
channels for the analysis part, for a 64-channel PR MDFT filter bank, when processing real-
valued input signals with the analysis and synthesis filters given by Equations (62)−(68). The
prototype filter is the same as design 1 in Table III  for a 32-channel cosine-modulated filter
bank.
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Figure 35. Amplitude responses of the analysis filters for 64-channel PR MDFT fil ter bank for
processing real-valued input signals.
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4 Octave Filter Banks
There exist two basic classes of octave fi lter banks, namely, frequency-selective octave fi lter

banks and discrete-time wavelet banks. This section starts with frequency-selective banks and
then connections to discrete-time wavelet banks are briefly discussed.

4.1 Octave Filter Banks Using Two-Channel FIR and IIR Filter Banks as Building
Blocks

When generating an octave filter bank, a two-channel filter bank shown in Figure 36(a) is
used as a starting point. In this figure, the processing unit is omitted. The first step is to use a
two-channel filter bank after the decimated lowpass filtered signal in the original filter bank as
shown in Figure 36(b). This bank is exactly the same as the original one, as shown in Figure
36(a). If the transfer function for this bank is T(z), then the decimated highpass filtered signal,
denoted by y1[r] in Figure 36(b), should be filtered by C1(z) = T(z) in order to make the overall
input-output transfer function equal to T(z)T(z2). If the two-channel filter bank is constructed
using causal IIR half-band filters, this transfer function is an allpass filter. For the PR FIR two-
channel filter bank with T(z) = z

−K, the overall delay is 3K samples. The second diagram in Figure
36(b) shows an equivalent structure that is useful for the analysis purposes.
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(a) (b)
Figure 36. Generating a two-level octave filter bank. (a) Starting-point two-channel filter bank.
(b) Two-level octave filter bank and its equivalent structure for the analysis purposes.

In order to generate a multil evel octave bank, the last decimated lowpass filtered signal of
Figure 36(b) is treated in the same manner. This process can be repeated several times. The
number of steps depends on the appli cation. Figure 37(a) shows the structure for the analysis part
in the case where the band splitting has been performed five times. This figure shows also the
equivalent structure where the input data is filtered by six filters followed by decimation by
different factors. Figure 37(b) shows the corresponding synthesis part. Finally, the overall system
is depicted in Figure 38. In Figure 38, additional transfer functions Ck(z) for k = 1,2,…,6 are
included in order to make the overall transfer function equal to T(z)T(z2)T(z4)T(z8)T(z16). This
goal is achieved by C1(z) =T(z) T(z2) T(z4) T(z8), C2(z) =T(z) T(z2) T(z4), C3(z) =T(z) T(z2), C4(z)
=T(z), and C5(z) = C6(z) =1. For a PR two-channel FIR filter bank with T(z) = z

−K, C1(z) = z−15K,
C2(z) = z−7K, C3(z) = z−3K, C4(z) = z−K, and the overall delay is 31K samples.
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Figure 37. Generation of a five-level octave filter bank. (a) Analysis part. (b) Synthesis part.
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Figure 38. Overall five-level octave bank. (a) Overall implementation. (b) Equivalent structure.

As an example, consider the design of a five-level FIR filter bank built using the minimax
orthogonal PR two-channel filter bank with the stopband edge of the lowpass analysis filter
being located at 0.586π and the filter orders being 61. Figure 39 shows the amplitude responses
for the Ek(z)’s (see Figures 37 and 38). The amplitude responses for the Gk(z)’s are obtained from
those of the Ek(z)’s by multiplying the responses by the corresponding interpolation factors.
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Figure 39. Amplitude responses for the analysis and synthesis filters in an example five-level
octave FIR filter bank.
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4.2 Generation of Discrete-Time Wavelet Banks from Octave Filter Banks
Discrete-time wavelet banks (Vetterli and Herley, 1992; Vetterli and Kova� evi � , 1995; Misiti

et al., 1996) can be regarded as special cases of octave filter banks considered in the previous
subsection. The common feature is that they are both constructed with the aid of a single two-
channel PR filter bank. In the previous section, the goal was to design this building block in such
a manner that the filters in the overall bank provide a good channel separation together with high
enough attenuations. Discrete-time wavelet banks are used in applications where the waveform
of the input signal is desired to be preserved when performing modifications to the sub-signals in
the processing unit. The applications include, among others, detecting discontinui ties and
breakdown points of one-dimensional (1-D) signals, detecting long-term evolution of 1-D
signals, detecting self-similarities of 1-D signals and images, de-noising and compression of 1-D
signals and images, and extracting some special features of 1-D signals and images. The need for
nearly preserving the waveforms states completely new criteria for designing the building-block
two-channel filter bank for discrete-time wavelet banks. Instead of the frequency-selectivity of
the resulting overall bank, there are other measures of “goodness” . These include, among others,
the orders of the filters in the building-block bank, the number of levels in the octave bank, the
phase linearity, the number of vanishing moments, the regularity of the corresponding
continuous-time analysis and synthesis wavelets and scaling functions. These topics wil l be
considered in more details in Chapter 3.

5 Concluding Remarks
This chapter gave an overview on how to synthesize critically sampled multirate filter banks.

We concentrated on three main topics. First, various two-channel filter banks based on the use of
FIR and IIR filters were reviewed. Second, uniform multi-channel (M-channel) filter banks were
constructed in two basic ways. The first approach was based on using a tree-structure with two-
channel filter banks as building blocks. In the second approach, these banks were generated with
the aid of a single prototype filter and a proper cosine-modulation or MDFT technique. As has
been mentioned, MDFT banks are more attractive in the case where the goal is to preserve the
waveform of the original signal, like in the case of images. This is due to the fact that, despite of
having more filters in the bank, all the sub-filters can have linear-phase impulse responses.
Third, octave filter banks were constructed using a two-channel filter bank as a building block.
Two extreme cases of octave filter banks were considered, namely, frequency-selective banks
and discrete-time wavelet banks that concentrate on providing good channel selectivi ty or on
preserving the waveform of the original signal, respectively.

There exist still several open questions regarding to the multirate filter banks considered in
this chapter. First, there are various alternatives to construct PR and NPR two-channel filter
banks. What is the best selection when these banks are used alone or building a tree-structured or
octave filter banks? Second, in the case of multi-channel uniform filter banks when to use the
orthogonal cosine-modulated, low-delay cosine-modulated, or MDFT banks? Third, in the case
of octave filter banks, are there proper compromises between the frequency-selective banks and
discrete-time wavelet banks? The proper selection depends strongly on the appli cation.

Empirical work must still be done in order to find a proper multirate filter banks for a specific
application. As mentioned in the introduction, in the case of audio signals, our ears are the final
“referees” and in the case of images or video signals, our eyes play the same role. Therefore, in
many applications, the ultimate goal is to design the overall system with the minimum
complexity and/or the minimum number of bits required for transferring or storing the data in



T. Saramäki and R. Bregovi � , ”Multirate Systems and Filter Banks,” Chapter 2 in Multirate Systems: Design
and Applications edited by G. Jovanovic-Dolecek. Hershey PA: Idea Group Publishing.

45

such a manner that the resulting output signal is still satisfactory to our ears or eyes. It is well
known that for our ears in the case of a mono or stereo signal, multirate filter banks with high
channel selectivity are preferred. In the case of our eyes and images, it is desired to use multirate
filter banks approximately preserving the waveform of the image.
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