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80558 MULTIRATE SIGNAL PROCESSING

Part V: Multirate Filter Banks

• During the last two decades, filter banks have found various
applications in many areas, such as speech coding, scram-
bling, image compression, adaptive signal processing, and
transmission of several signals through the same channel.

• The main idea of using filter banks is the ability of the sys-
tem to separate in the frequency domain the signal under
consideration into two or more signals or to compose two or
more different signals into a single signal.

• When splitting the signal into two or more signals an analy-
sis-synthesis system is used, as shown on the next page in
the case where, for simplicity, only 4 sub-signals are used.

• In the analysis bank, the signal is split with the aid of four
filters Hk(z) for 3,2,1,0=k  into 4 bands of the same band-
widths and each sub-signal is decimated by a factor of 4.

• When splitting the signal into various frequency bands, the
signal characteristics are different in each band and the vari-
ous numbers of bits can be used for coding of the sub-
signals in the processing unit.

• The processing unit corresponds to storing the signal into
the memory or transferring it through the channel.

• The main goal is to significantly reduce, with the aid of
proper coding schemes, the number of bits representing the
original signal for storing or transferring purposes.
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Analysis-Synthesis Filter Bank
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Analysis-Synthesis Filter Bank

• The role of the filters in the synthesis part is to reconstruct
the original signal. In the case of the figure of the previous
page, this is performed in two steps.

• First, the 4 sub-signals at the output of the processing unit
are interpolated by a factor of 4 and filtered by 4 synthesis
filters Fk(z) for 3,2,1,0=k .

• Second, the outputs of these four filters are added.

• The target is to design the overall system in such a manner
that, despite of a significantly reduced number of bits for
storing and transferring purposes, the reconstructed signal is
either the delayed version of the original signal or suffers
from a negligible lost of the information carried by the sub-
signals.

• There are two types of coding techniques, namely, lossy and
lossless codings. In the second case, it is possible to design
the overall system such that the output signal is simply a
delayed version of the input signal.

• The coding techniques are not at all considered in this
course. In the sequel, we concentrate on the case where the
processing unit does not cause any errors for the sub-signals.

• In the case of audio or speech signals, the goal is to design
the overall system together with coding such that our ear is
not able to notice the errors caused by reducing the number
of bits used for storing or transferring purposes.
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• In the case of images, our eyes serve as “ referees” , that is,

reduce the number of bits to represent the image to the limit
it is satisfactory to our eyes. No more bits are needed!

• Depending on how many channels are used for the signal
separation, there are two groups of f ilter banks: multi -
channel or M-channel filter banks (M > 2) and two-channel
filter banks: M = 2.

• In the first group, the signal is separated into M different
channels and in the second group into two channels.

• We start with the two-channel case.

• Using a tree-structure, two-channel filter banks can be used
for building M-channel filter banks in the case where M is a
power of two, as we shall see later on.

• A more effective way of building M-channel filter banks is
to first design a prototype filter in a proper manner. The fil-
ters in the analysis and synthesis banks are then generated
with the aid of this prototype filter by using a cosine modu-
lation or a modified DFT.

• Two-channel filter banks are very useful in generating oc-
tave filter banks and discrete-time wavelet banks.

• In these cases,  the overall signal is first split i nto two bands.
After that, the lowpass filtered signal is split i nto two bands
and so on.

• In the case of discrete-time wavelet banks, the frequency
selectivity of the filters in the octave analysis-synthesis filter
banks is not so important due to their different applications.
There are other properties that are more important, as will be
pointed out later on.
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• When two or more different signals are composed into a

single signal, then a synthesis-analysis system is used, as
shown on the next page for the case of 4 signals.

• This is also called a transmultiplexer.

• In this system, all the 4 signals are interpolated by a factor of
4 and filtered by 4 synthesis filters Fk(z) for 3,2,1,0=k .

• Then, the outputs are added to give a single signal with
sampling rate being 4 times that of the input signals.

• The next step is to transfer the signal through a channel.

• Finally, in the analysis bank the original signals are recon-
structed with the aid of 4 analysis filters Hk(z) for

3,2,1,0=k .

• These signals have the original sampling rates due to the
decimation be a factor of 4.

• In the sequel, it is assumed that the channel is ideal. If not,
some compensation filters are needed in the synthesis bank.

• If the output signal in the analysis-synthesis system (without
coding) is just a delayed version of the input signal, then for
the corresponding transmultiplexer the output signals (in the
case of the ideal channel) are delayed versions of the inputs.

• Therefore, the design of a transmultiplexer can be converted
to the design of an analysis-synthesis filter bank.

• In the sequel, we concentrate only on designing analysis-
synthesis banks.  If you are interested in transmultiplexers,
please read the textbook written by Prof. Fliege (see Page 7).
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Synthesis- Analysis Filter Bank, Transmultiplexer
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Material about Filter and Wavelet Banks

• H. S. Malvar, Signal processing with Lapped Transforms.
Norwood: Artec House, 1992.

• P. P. Vaidyanathan, Multirate Systems and Filter Banks.
Englewood Cli ffs, N.J.: Prentice Hall , 1993.

• N. J. Fliege, Multirate Digital Signal Processing. Chicester:
John Wiley and Sons, 1994.

• M. Vettereli and J. Kovacevic, Wavelets and Subband Cod-
ing. Englewood Cli ffs, N.J.: Prentice Hall , 1995.

• R. Bregoviü and T. Saramäki, “Two-channel FIR filter
banks – A tutorial review and new results,” in Proc. Second
Int. Workshop on Transforms and Filter Banks, Branden-
burg, Germany, March 1999.
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Multirate Filter Banks to be Considered

• This part of the course is divided into the following sub-
parts:

I. Part V.A: Two-Channel FIR Filter Banks

II. Part V.B: Two-Channel IIR Filter Banks

III. Part V.C: Tree-Structured Filter Banks

IV. Part V.E: Discrete-Time Wavelet banks

V. Part V.D: Octave Filter Banks

VI. Part. V.F: Cosine-Modulated Filter Banks
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Part V.A: Two-Channel FIR Filter Banks

• A two-channel filter bank consists of the analysis and the
synthesis banks as well as the processing unit between these
two banks, as shown below.
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                 Figure 1. Two-channel filter bank

1. Analysis bank

• The analysis bank splits the input signal x[n] into lowpass
and highpass filtered channel signals x0[n] and x1[n] using a
lowpass−highpass filter pair with transfer functions H0(z)
and H1(z).

• The z-transforms of these signals are expressible in terms of
X(z), the z-transform of x[n], as

( ) ( ) ( ) .1,0for        == kzXzHzX kk (1)

• Then, the signals in both channels are down-sampled by a
factor of two by picking up every second sample, resulting
into two sub-band signal components v0[n] and v1[n].
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• The z-transforms of these components are given by

( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] .1,0for    

2

1
   

(2)                                      
2

1
 

2/12/12/12/1

2/12/1

=−−+=

−+=

kzXzHzXzH

zXzXzV

kk

kkk

• If the input sampling rate is Fs, then the sampling rates of
v0[n] and v1[n] are 2/sF .

• The corresponding relations between the Fourier transforms
are obtained by using the substitution sFfjez /2 π= in Eq. (1)
and )2//(2 sFfjez π= in Eq. (2) as well as the identity −1 = e jπ.

•  This yields  for k = 0,1

( ) ( ) ( ) /2/2/2 sss FfjFfj
k

Ffj
k eXeHeX πππ = (3a)

   and

( ) ( )[ ]ssss FFfj
k

Ffj
k

Ffj
k eXeXeV /)2/(2/2)2//(2 )(

2
1

   ++= πππ  . (3b)

• H0(z) and H1(z) usually have the same transition band region
with the band edges located around 4/sFf =  at

4/)1( 1 sFf ρ−=  and 4/)1( 2 sFf ρ+=  with ρ1 > 0 and

ρ2 > 0, as shown in Figure 2(b).

• In order to give a pictorial viewpoint of what is happening in
the frequency domain, Figure 2(a) shows the Fourier trans-
forms of an input signal x[n], whereas Figure 3 shows those
of the signals x0[n], x1[n], v0[n], and v1[n].
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Figure 2. (a) Fourier transform of an input signal x[n].
(b) Amplitude responses for H0((z)) and H1((z)). (c) Amplitude
responses for F0((z)) and F1((z)).
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Figure 3. Magnitudes of the Fourier transforms of the
signals in the two-channel filter bank of Figure 1.
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• As shown in Figures 3(b) and 3(g), )( )2//(2 sFfj

k eV π  for

k = 0, 1 contains in the baseband [ ]4/,0 sF  two overlapping
frequency compo-
nents )( /2 sFfj

k eX π and )( /)2/(2 ss FFfj
k eX +π .

•  This overlapping can, however, be totally or partially elimi-
nated in the overall system of Figure 1 by properly relating
the transfer functions H0(z), H1(z), F0(z), and F1(z) to each
other, as will be seen later on.
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2. Processing Unit

• In the processing unit, the signals v0[n] and v1[n] are com-
pressed and coded suitably for either transmission or storage
purposes.

• Before using the synthesis part, both channel signals are de-
coded.

• The resulting signals denoted by w0[n] and w1[n] in Figure 1
may differ from the original signals v0[n] and v1[n] due to
possible distortions caused by coding and quantization errors
as well as channel impairments.

• In the sequel, it is supposed, for simplicity, that there are no
coding, quantization, or channel degradations, that is,
w0[n] ≡ v0[n] and w1[n] ≡ v1[n].
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3. Synthesis Bank

• The role of the synthesis bank is to approximately recon-
struct in three steps the delayed version of the original signal
from the signal components w0[n] and w1[n].

• First, these signals are up-sampled by a factor of two by in-
serting zero-valued samples between the existing samples
yielding two components u0[n] and u1[n] (see Figure 1).

• In the w0[n] ≡ v0[n] and w1[n] ≡ v1[n] case, the z- and Fourier
transforms of these signals are expressible as

( ) ( ) ( ) ( )[ ] 1,0for       
2

1
 2 =−+== kzXzXzVzU kkkk (4a)

   and
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(4b)

• Simultaneously, the sampling rate is increased from  2/sF
to Fs as well as the baseband from [ ]4/,0 sF  to [ ]2/,0 sF .

• Therefore, u0[n] and u1[n] contain in their basebands
[ ]2/,0 sF , in addition to the frequency components of v0[n]

and v1[n] in their basebands [ ]4/,0 sF , the components in
[ ]2/,4/ ss FF , as ill ustrated in Figures 3(c) and 3(h).

• In the time domain, the relations between the uk[n]’ s and
xk[n]’ s are given by

[ ] [ ] ( ) [ ] .1,0for        212 =−+= knxnxnu k
n

kk (5)
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• Here, xk[n] is the desired unaliased signal component with

the z-transform being Xk(z), whereas (−1)nxk[n] is the un-
wanted aliased signal component with the z-transform being
Xk(−z).

• The second step involves processing u0[n] and u1[n] by a
lowpass−highpass filter pair with transfer functions F0(z)
and F1(z)

• The third step is to add the filtered signals, denoted by y0[n]
and y1[n] in Figure 1, to yield the overall output y[n]. The z-
transform of y[n] is thus given by

( ) ( ) ( )zYzYzY 21 += (6a)

   where for k = 0, 1

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]zXzFzXzFzVzFzY kkkkkkk −+==
2

1
    2 (6b)

• The corresponding Fourier transform is expressible as

( ) ( ) ( )sss FfjFfjFfj eYeYeY /2
1

/2
0

/2 πππ += (7a)

   where for k = 0, 1
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  (7b)

• The role of the synthesis filters with transfer functions F0(z)
and F1(z) is twofold.
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• First, it is desired that )( /2 sFfjeY π  does not contain the

terms ( )   /)2/(2
0

ss FFfjeX +π and ( )   . /)2/(2
1

ss FFfjeX +π

• This is achieved if [see Figures 3(e) and 3(j)]
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• Second, y[n] is desired to be approximately a delayed ver-
sion of x[n], that is, y[n] ≈ x[n − K].

• This is achieved if [see Figures 3(d) and 3(i)]

( ) ( ) ( ) ( )
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ssss
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ππ
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−

≈+

• In order to satisfy these requirements, the first condition is
that F0(z) and F1(z) generate a lowpass−highpass filter pair
having the same transition band region with the band edges
at 4/)1( 2 sFf ρ−=  and 4/)1( 1 sFf ρ+= , as shown in
Figure 2(c).

• As shown in Figure 2(c), the main difference is that now,
because of interpolation, the amplitude responses should ap-
proximate two in the passbands. Furthermore, the edges
have changed due to the fact F0(z) [F1(z)] is related to H1(z)
[H0(z)] in the manner to be seen later on.

• The exact simultaneous conditions for H0(z), H1(z), F0(z),
and F1(z) to satisfy the above-mentioned two conditions will
be given next in the case where the filters are finite-impulse
response (FIR) filters.
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Alias-Free Two-Channel FIR Filter Banks

• Combining Eqs. (1) and (6) yields the following relation
between the z-transforms of the input and output signals of
Figure 1:

( ) ( ) ( ) ( ) ( )zXzAzXzTzY −+= (8a)

   where

( ) [ ])()()()(
2

1
1100 zFzHzFzHzT += (8b)

    and

( ) [ ])()()()(
2

1
1100 zFzHzFzHzA −+−= . (8c)

• In the above equation, X(−z) is the z-transform the undesired
aliased signal being related to the original input signal x[n]
in the time domain through (−1)n x[n] .

• In the sequel, we concentrate on designing filter banks
where this term is absent, that is, A(z) ≡ 0. The most straight-
forward way of achieved this is to select F0(z) and F1(z) as
follows:

( ) ( )zHzF −= 10 2 (9a)

   and

( ) ( )zHzF −−= 01 2 . (9b)

• In this case, the input-output relation of Equation (8a) takes
the following simplified form:
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( ) ( ) ( )zXzTzY = (10a)

   where

( ) )()()()( 1010 zHzHzHzHzT −−−= (10b)

• The restrictions of Eq. (9) convert the overall problem to de-
signing the analysis filter pair.

• In the sequel, we concentrate on the banks where both H0(z)
and H1(z) are transfer functions of FIR filters, that is, they
are of the following forms:

( ) [ ]∑
=

−=
0

0
00

N

n

nznhzH (11a)

   and

( ) [ ]∑
=

−=
1

0
11

N

n

nznhzH . (11b)

• Correspondingly, due to Eq. (9), F0(z) and F1(z) are of the
forms:

( ) [ ]∑
=

−=
1

0
00

N

n
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   and

( ) [ ]∑
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0
11
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   where
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Perfect-Reconstruction (PR) Two-Channel FIR Filter
Banks

The necessary conditions for the Perfect-reconstruction (PR)
property are given in the following theorem:

   Theorem for the PR property: Consider the two-channel
filter bank shown in Figure 1 with w0[n] ≡ v0[n] and
w1[n] ≡ v1[n] and let H0(z), H1(z), F0(z) and F1(z) be given by
Eqs. (11) and (12). Then, y[n] = x[n−K] with K odd if the im-
pulse-response coeff icients of

( ) [ ]∑
+

=

−=−=
10

0
10 )()(

NN

n

nznezHzHzE (13)
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[ ]
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• In order to proof this theorem, Equation (10b) is rewritten as
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   where

[ ] [ ]
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• From Eqs. (14) and (15), it then follows that the impulse-

response coefficients of T(z) satisfy

[ ] [ ] [ ]




≠
=

=+=
 ,for         0

for         1
ˆ

Kn

Kn
nenent (16)

    yielding

( ) KzzT −= . (17)

• There are two basic alternatives to achieve the PR property,
namely, K = (N0+N1)/2 and K < (N0+N1)/2, as illustrated in
Figures 4(a) and 4(b), respectively.

• In the first case, E(z) is an FIR filter transfer function with a
symmetric impulse response and the impulse-response value
occurring at the odd central point n = K is equal to 1/2,
whereas the other values occurring at odd values of n are
zero. Hence, E(z) is a transfer function of an FIR half-band
filter.

• In the second case, the impulse-response values at odd val-
ues of n are also zero except for one odd value of n = K,
where the impulse response takes on the value of 1/2.

• The K = (N0+N1)/2 case is attractive when the overall delay
of K samples is tolerable, whereas the K < (N0+N1)/2 case is
used for reducing the delay caused by the filter bank to the
overall signal.
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Figure 4. Impulse responses for E((z)), E((−−z)), and T((z)) for
PR filter banks. (a) K == ((N0++N1))//22. (b) K << ((N0++N1))//22.
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Nearly Perfect-Reconstruction (NPR) Two-Channel
FIR Filter Banks

• The frequency response between the input and output signal
for the alias-free banks is expressible as

( ) ( )   , ˆ ωωω jjKj eTeeT −= (18a)

   where

( ) [ ]∑
+

=

−−=
10

0

)(ˆ
NN

n

Knjj enteT ωω . (18b)

• Here, [ ] [ ] [ ]nenent ˆ+=  with the [ ]ne ’s n=0,1 ,···, N0
 + N1

being the impulse-response coeff icients of H0(z)H1(−z) and
the [ ]nê ’s being related to the [ ]ne ’s according to Eq. (15b). 

• In the PR case, ( ) 1ˆ ≡ωjeT  so that there is no amplitude or
phase distortion. This is due to the fact that [ ]nt  is nonzero
only at n = K achieving the value of unity.

• In the nearly perfect-reconstruction (NPR) case, the impulse-
response values t[n] differ slightly from zero for n ≠ K and
slightly from 1 for n = K so that there exists some amplitude
distortion and phase distortion.

• As will be seen later on, the phase distortion takes place
only for K < (N0+N1)/2. For K = (N0+N1)/2, [ ] [ ]ntnKt =−2

for n=0,1 ,···, K − 1, making ( )ωjeT̂  a real-valued function.

• As a matter of fact, T(z) as given by Equation (15a) becomes
in this case a transfer function of a linear-phase filter of or-
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der 2K and ( )ωjeT̂  is the zero-phase frequency response of
this filter.

• In the above, the substitution ωjez = , instead of
sFfjez /2 π= , is used for simplicity to express the frequency

response in terms of the angular frequency ./2 sFfπω =

• In the sequel, in order to simplify the equations, the same
substitution will be used.
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Primary Transfer Functions under Consideration

• In order to simply the synthesis of two-channel FIR filter
banks, we concentrate on designing the following transfer
functions:

( ) [ ] ( ) [ ]∑∑
=

−

=

− =≡=
00

0
00

0
00

N

n

n
N

n

n znhzHzngzG (19a)

    and

( ) [ ] ( ) ( ) [ ]∑∑
=

−

=

− −=−≡=
11

0
11

0
11 1

N

n

nn
N

n

n znhzHzngzG . (19b)

• In the above, G0(z) and H0(z) are identical with g0[n] ≡ h0[n]
for n=0,1 ,· · ·, N0.

• For the filters with transfer functions G1(z) and H1(z), the
frequency responses, the amplitude responses, and the im-
pulse-response coefficients are related through
G1(e jω ) = H1(e j(ω+π) ) or H1(e jω ) = G1(e j(ω+π) ) ; |G1(e jω )| =
 |H1(e j(π −ω) )| or |H1(e jω )| = |G1(e j(π − ω) )|; and g1[n]
 = (−1)nh1[n] or h1[n] = (−1)ng1[n] for n=0,1 ,· · ·, N1, respec-
tively.

• Based on the these relations, G1(z) is a transfer function of a
lowpass filter with the amplitude response obtained from the
corresponding highpass filter with transfer function H1(z)
reversing the frequency response using the substitution
π − ω → ω.
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• Figure 5 exemplifies the above relations in addition to

showing the constraints for G0(z) and G1(z) to be stated in
the general optimization problem to be considered later.

• The basic reason for taking the transfer functions G0(z) and
G1(z) as preliminary ones lies in the fact that both of them
are lowpass transfer functions, making the synthesis of two-
channel FIR filter banks more straightforward, as will be
seen later.

• Once G0(z) and G1(z) have been designed, then the corre-
sponding impulse-response coefficients of H0(z) and H1(z)
are given by h0[n] ≡ g0[n] for n=0,1 ,· · ·, N0 and
h1[n] = (−1)ng1[n] for n=0,1 ,· · ·, N1, respectively.

• In terms of G0(z) and G1(z), the overall transfer function is
given by

( ) )()()()( 1010 zGzGzGzGzT −−−= . (20)

• The perfect reconstruction implies now that the impulse-
response coefficients of

( ) [ ]∑
+

=

−==
10

0
10 )()(

NN

n

nznezGzGzE (21a)

    satisfy for an odd integer K

[ ]




≠
=

=
 . and odd is  for         0

for     2/1

Knn

Kn
ne (21b)

• Furthermore N0+N1 should be two times an odd integer.
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Figure 5. Specifications for G0(z) and G1(z) as well as the
relations between  H0(z) and G0(z) and H1(z) and G1(z).
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Two-Channel FIR Filter Banks Under Consideration

• We concentrate on the following alias-free two-channel FIR
filter banks:

1.  NPR quadrature mirror filter banks: G1(z) = G0(z):
a)  G0(z) is a linear-phase FIR filter and the overall delay

satisfies K = N0.

b)  G0(z) is a nonlinear-phase FIR filter and the overall
delay satisfies K < N0.

2.  PR orthogonal filter banks: )()( 1
01

0 −−= zGzzG N  and

K = N0.

3.  PR biorthogonal filter banks:
a) G0(z) and G1(z) are different linear-phase FIR filters
    and K = (N0+N1)/2.
b)  G0(z) and G1(z) are different nonlinear-phase FIR fil-

ters and K < (N0+N1)/2.
4.  Generalized NPR filter banks:

a) G0(z) and G1(z) are different linear-phase FIR filters
and K = (N0+N1)/2.

b)  G0(z) and G1(z) are different nonlinear-phase FIR fil-
ters and K ≤ (N0+N1)/2.
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General Optimization Problem:

Given the class of two-channel filter banks, N0, N1, 
)(k

pρ  and
)(k

sρ  for k = 0, 1, δa, and δp as well as K, find the adjustable

coefficients of G0(z) and G1(z), as given by Equations (19a)
and (19b), to minimize

( )10 ,max εεε = , (22a)

where

( )    1,0for            
)(

2
== ∫ kdeG

k
s

j
kk

π

ω

ω ωε (22b)

subject to

[ ]
( )    , max

,0
a

jKj eeT δωω

πω

≤− −

∈

(22c)

[ ]
( ) ,1,0for            1 max

)(,0

=≤−
∈

keG p
j

k
k

p

δω

ωω

(22d)

and

( )
( ) .1,0for            1 max

)()( ,

=≤−
∈

keG p
j

k
k

s
k

p

δω

ωωω

(22e)

• Here,  /2) (1 and  /2)(1 )()()()( πρωπρω k
p

k
p

k
s

k
s −=+= for k = 

0,1 and ( ) ( ) ( ) ( )( ) ( )( ).   1010
πωπωωωω ++−= jjjjj eGeGeGeGeT

is the frequency response for the overall system of Figure 1.
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Comment on the Stated Problem

• In the stated problem, the passband and stopband regions of
Gk(z) for k = 0, 1 are [0, )(k

pω ] and [ )(k
sω , π]. The edges have

been defined in terms of the positive quantities )(k
pρ  and

)(k
sρ  for k = 0, 1 to make the passband edges [stopband

edges] less than [larger than] π/2.

• The main objective is to minimize the maximum of the stop-
band energies of G0(z) and G1(z) subject to some constraints,
as illustrated in Figure 5.

• First, the maximum of the absolute value of the deviation
between the overall frequency response and a constant delay
of K samples has to stay in the overall frequency range
within the given limits ±δa.

• For the PR filter banks, this deviation is zero.

• Second, amplitude responses of both G0(z) and G1(z) have to
stay in the passband within the given limits 1±δp.

• Third, the maximum allowable value for these amplitude re-
sponses in the transition bands is 1+δp.

• As will be seen later, some of the constraints are automati-
cally satisfied for some of the above-mentioned types of
two-channel filter banks.
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How to Proceed for the Rest of the Description of
Two-Channel FIR Filter Banks

• A very comprehensive review on the existing and new pro-
posed synthesis techniques can be found in:

• R. Bregoviü and T. Saramäki, “Two-channel FIR filter
banks – A tutorial review and new results,” in Proc. Second
Int. Workshop on Transforms and Filter Banks, Branden-
burg, Germany, March 1999, 51 pages

• It also shows how the general problem stated above can be
solved conveniently.

• The formulas in the article are too complicated to go through
in this course. A copy is available!

• In the sequel, we concentrate on defining the various types
of two-channel filter banks and on giving some ill ustrative
examples.
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Qudrature Mirror Filter (QMF) Banks with Linear-
Phase Subfilters

• For these filter banks,

( ) ( ) [ ]  ,
0

0
001 ∑

=

−==
N

n

nzngzGzG (23)

   where N0 is odd and g0[N0 − n] = g0[n] for n=0,1 ,
    · · ·, (N0−1)/2.
• Hence, for the overall filter bank, there are only (N0+1)/2

unknowns g0[n] for n=0,1 ,· · ·, (N0−1)/2.
• In this case the overall transfer function T(z) is given by

( ) ( )[ ] ( )[ ]2
0

2
0 zGzGzT −−= . (24)

• The frequency response of the low-pass filter with the trans-
fer function G0(z) is expressible as

( ) ( )ωωω
0

2/
0

ˆ0 GeeG Njj −= , (25a)

   where

( ) ( )[ ] [ ]∑
−

=
+−−=

2/)1(

0
000

0

)2/1(cos2/12ˆ
N

n

nnNgG ωω . (25b)

• The overall frequency response can be written as

( ) ( )ωωω TeeT jNj ˆ0−=  , (26a)

    where

( ) [ ] [ ]2
0

2
0 )(ˆ)(ˆˆ πωωω ++= GGT . (26b)
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Optimization Problem

• For QMF banks, ( )ωT̂  cannot be made equal to unity (PR
solution) except for the trivial solution where
G0(z) = (1+z−1)/2 that does not provide good attenuation
characteristics.

• The optimization problem can be stated as follows: Given an
odd integer N0 and ρ > 0 as well as δa, the maximum allow-
able reconstruction error, find the (N0+1)/2 unknowns g0[n]
of G0(z) to minimize

( )[ ]∫=
π

ω
ωωε

s

dG
2

0
ˆ (27a)

    subject to

[ ]
( )[ ] ( )[ ] aGG δπωω

πω

≤−++
∈

1ˆˆ max
2

0
2

0
,0

(27b)

    where ( )ω0Ĝ  is given by Equation (25b) and ωs = (1+ρ)π/2.
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Comparisons

• For comparison purposes, we consider the designs of
Johnston that is a real pioneer work of great value.

• Given ρ, α, and N0, the quantity to be minimized in
Johnston’s technique is given by

21 EEE α+= , (28a)

   where

( )[ ] ( )[ ]( )∫
=

−++=
π

ω
ωπωω

0

22
0

2
01 1ˆˆ dGGE (28b)

   and

( )[ ]∫=
π

ω
ωω

s

dGE
2

02
ˆ (28c)

   with . /2) (1 πρω +=s

• Two designs, namely, ρ  = 0.172, α = 2, N0 = 31; and
ρ  = 0.172, α = 5, N0 = 63, are compared with the proposed
designs in Figure 6. The stopband edge is thus ωs = 0.586π.

• For the proposed designs, δa is selected to be equal to the
maximum deviation of reconstruction error for Johnston’s
design. (δa = 3.23·10−3  for the first design and δa = 7.03·10−4

for the second design).

• As can be expected, the stop-band behaviors of the analysis
filters in the proposed designs are significantly improved.

• Figures 7 and 8 give some more details for the proposed de-
sign with N0 = 63.
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Figure 6. Ampli tude responses for the analysis fil ters in the
proposed designs (solid line) and in Johnston’s designs
(dot-dashed line).
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Figure 7. Amplitude responses for the analysis and
synthesis filters for the proposed design with N0  ==  63.
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Figure 8. Impulse responses for the analysis and synthesis
filters as well as the overall reconstruction error for the
proposed design with N0  ==  63.
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Low-Delay QMF Banks with Nonlinear-Phase
Subfilters

• For these filter banks,

1. ( ) ( ) [ ] ,
0

0
001 ∑

=

−==
N

n

nzngzGzG  where N0 is an odd integer.

2. |G0(e jω)| approximates zero on  [ωs, π], where ωs = 
(1+ρs)π/2 with ρs > 0, and unity on [0, ωp], where ωp = 
(1−ρp)π/2 with ρp > 0.

3. T(z) = [G0(z)]2 +[G0(−z)]2 approximates the delay z −K with
K is being an odd integer satisfying K < N0.

• The main purpose is to achieve a higher stopband attenua-
tion for the same overall delay at the expense of increased
filter orders.

• The impulse response of G0(z)  cannot be symmetric so that
all the impulse-response values g0[n] for n=0,1 ,· · ·, N0 are
unknowns.

• The second difference compared to the linear-phase case is
that the overall distortion function is now given by 

 ( ) ( )[ ] ( )( )[ ] ωπωωωω jKjjjKj eeGeGeeT −+− −−=−
2

0
2

0  . (29)

• It is desired to make this function very small in the overall
baseband  [0, π].

• The third difference, due to the nonlinear-phase characteris-
tics, is that the performance of G0(z) in the passband must be
controlled unlike for the linear-phase case.
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Optimization Problem

• The optimization problem can be stated as follows: Given an
odd order N0, an odd integer K <  N0, ρs, ρp, δp, and δa, find
the N0+1 unknown impulse-response coefficients g0[n] of

( ) [ ]  0

0 00 ∑ =
−= N

n
nzngzG to minimize
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s

deG j 2
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     and
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jeG
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ωωω
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1 max 0
,

, (30d)

      where ωp = (1−ρp)π/2 and ωs = (1+ρs)π/2.
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Example

• We consider the case where ρs = ρp = 0.172 (ωs = 0.414π
and ωs = 0.586π), δp = 0.01, δa =  3.23·10−3, N0 = 63, and
K = 31.

• These are the same criteria as for the first linear-phase de-
sign of Figure 6 with the exception that now the sub-filter
orders are increased from 31 to 63 while still achieving a
delay of 31 samples.

• Figure 9 shows the amplitude responses for the analysis and
the synthesis filters of the optimized design, whereas Figure
10 shows the corresponding impulse responses together with
the reconstruction error.

• When comparing the analysis filters with those of the first
filter bank of Figure 6, it is seen that the stopband attenua-
tions are higher for the new design, as can be expected.

• It should be pointed out that in the passbands and in the
transition bands the amplitude responses of the analysis fil-
ters stay well within the limit 1 ± δp with δp  = 0.01.

42
Figure 9. Amplitude responses for the analysis and
synthesis filters for the proposed  low-delay QMF bank
with N0  ==  63 and K  ==  31 .
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Figure 10. Impulse responses for the analysis and synthesis
filters as well as the overall reconstruction error for the
proposed  low-delay QMF bank with N0  ==  63 and K  ==  31 .
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Orthogonal Filter Banks

• For these filter banks,

( ) [ ]  ,
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0
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N

n

nzngzG (31a)

where N0 is an odd integer, and
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n . (31b)

In this case, the impulse-response coefficients of G1(z) are re-
lated to those of G0(z) via (see Figure 11)

[ ] [ ] 0001 ,,1,0for       NnnNgng �=−= . (31c)
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Figure 11. Relation between the impulse responses of G0(z)
and G1(z).
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• This makes the impulse responses of G0(z) and G1(z) time-

reversed versions of each other and the filter orders N0 and
N1 equal.

• It is well-known that filters having the time-reversed im-
pulse responses also possess the same amplitude responses,
that is, |G0(e

 jω )| = |G1(e
 jω )|.

• This fact also implies that the filter with transfer function
E(z) = G0(z)G1(z) is a linear-phase FIR filter of order 2N0

and having an impulse response of even symmetry.

• Furthermore, the frequency response of this filter is ex-
pressible as

( ) ( )ωωω EeeE jNj ˆ0−=  , (32a)

   where

( ) ( ) ( ) 2

1

2

0   ˆ ωωω jj eGeGE ≡= . (32b)

• This fact means that the zero-phase frequency response
( )ωÊ  is non-negative.

• On the other hand, if E(z) has a zero on the unit circle, then
it is a double zero, making it separable into two filters hav-
ing the same amplitude response and having the time-
reversed impulse responses.

• Therefore, the following two conditions are required for E(z)
for being factorizable into G0(z) and G1(z) giving an or-
thogonal filter bank:
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1. E(z) is of the form ( ) [ ]∑ =
−= 02

0
N

n
nznezE , where N0 is odd,

e[N0] = 1/2, and e[N0 ± 2r] = 0 for r=1,2 ,· · ·, (N0−1)/2, that
is, E(z) is a half-band filter of order 2N0.

2. The zero-phase frequency response of E(z) is non-negative.
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Mimax Design

• Based on the above facts, a two-channel orthogonal filter
bank for the given odd order N0 and for the stopband edge
ωs =  (1+ρ)π/2 with ρ > 0 can be accomplished as described
in Part II of this course (Part II .F: Half-Band FIR Filters,
Pages 234 –245).

• The main differences are the following:

1. Replace M by N0.

2.  Replace T(z) by G0(z).

3. Replace R(z) by G1(z).

• The amplitude responses of the resulting filters are orthogo-
nal and exhibit an equiripple performance in both the stop-
band and passband.

• The basic factorization results in minimum-phase and
maximum-phase transfer functions G0(z) and G1(z).

• By sharing the off- the-unit-circle zeros of E(z) between
G0(z) and G1(z) in a proper manner, mixed-phase filters can
be generated with a rather linear-phase response in the pass-
band.
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Least-Squared Designs

• In this case optimization is required and the problem can be
stated as follows: Given an odd order N0 and ρ > 0, find the

impulse-response coefficients of ( ) [ ]∑ =
−= 0

0 00
N
n

nzngzG to

minimize

( )∫=
π

ω

ω ωε
s

deG j 2

00   , (33a)

   where

( ) 21 ρω +=s (33b)

subject to the condition that the product of the transfer func-

tions ( ) [ ]∑ =
−= 0

0 00
N
n

nzngzG  and ( ) [ ]∑ =
−−= 0

0 001
N
n

nznNgzG

is a linear-phase half-band filter of order 2N0.
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Examples

• ρ = 0.172 is used for determining the edges of the filters in
the two-channel filter bank under the consideration.

• The stopband edge of G0(z) is thus located at
ωs = (1+ρ)π/2 =  0.586π.

• As examples, Figure 12 compares the minimax and the least-
squared designs in the N0 = 31 and N0 = 63 cases, respec-
tively.

• As can be expected, the attenuations provided by the least-
squared filters are lower near the stopband edges, but be-
come higher for frequencies further away from the edge fre-
quencies.

• Figures 13 and 14 show more details in the N0 = 63 case.

• Notice the extremely small passband ripples in the passband
regions with passband edges being located at ω = (1 − ρ)π/2
 =  0.414π and ω = (1 + ρ)π/2  =  0.586π .
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Figure 12. Amplitude responses for the analysis filters
designed in the least mean-square sense (solid line) and in
the minimax sense (dot-dashed line).
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Figure 13. Amplitude responses for the analysis and
synthesis filters for the example PR orthogonal filter
banks with N0  ==  63. The solid and dashes lines are for the
least-squared and minimax designs, respectively.
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Figure 14. Impulse responses for the analysis and synthesis
filters. The first and second figures are for the least-
squared and minimax designs, respectively.
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PR Biorthogonal Filter Banks with Linear-Phase
Subfilters

• For these filter banks, ( ) [ ]∑ =
−= 0

0 00
N
n

nzngzG  and

( ) [ ]∑ =
−= 1

0 11
N
n

nzngzG satisfy the following conditions:

1.  The impulse responses of G0(z) and G1(z) possess an even
symmetry, that is, g0[N0 − n] = g0[n] for n=0,1 ,· · ·, N0 and
g1[N1 − n] = g1[n] for n=0,1 ,· · ·, N1.

2.  The sum of the filter orders N0
  and N1 is two times an odd

integer, that is, N0 + N1 = 2K with K being an odd integer.

3.  E(z) = G0(z)G1(z) is a half-band FIR filter of order N0 + N1.

• There exist only the following two cases to meet these con-
ditions:
• Type A: N0

  and N1 are odd integers and their sum is two
times an odd integer K.

• Type B: N0
  and N1 are even integers and their sum is two

times an odd integer K.

• In both cases, the overall filter bank delay is an odd integer
given by K = (N0

  + N1)/2.
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• For both Type A and B, the frequency responses of Gk(z) for

k = 0, 1 are expressible as

( ) ( )ωωω
k

Njj
k GeeG k ˆ2/−= (34a)

where

( )

( )[ ] [ ][ ]

[ ] [ ] [ ][ ]
















−+

+−−

= ∑

∑

=

−

=

B. Typefor                                                 

cos2/22/

A Typefor                                    

  )2/1(cos2/1
2

ˆ
2/

1
kk

2/)1(

0

k

k

k

N

n
kk

N

n

k

k nnNgNg

nnNg

G ω

ω

ω (34b)

• The optimization of PR biorthogonal banks is very compli-
cated due to the fact that G0(z) and G1(z) are different trans-
fer functions.

• They are only connected together through the fact that
G0(z)G1(z) should be a linear-phase half-band filter.
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Optimization Problem:

For both Types A and B, we state the problem in the following
form: Given the filter type, N0, N1, 

)(k
pρ and )(k

sρ  for k = 0, 1,

and δp, find the adjustable coefficients of G0(z) and G1(z), to
minimize

( )10 ,max εεε = , (35a)

where

[ ]
( )

    ,1,0for            )(ˆ 2 == ∫ kdG
k

s

kk

π

ω

ωωε (35b)

subject to

[ ]
01)(ˆ)(ˆ)(ˆ)(ˆ max 1010

,0

=−−−+
∈

ωπωπωω
πω

GGGG , (35c)

[ ]
 1,0for            1)(ˆ max

)(,0

=≤−
∈

kG pk
k

p

δω
ωω

, (35d)

( )
1,0for            1)(ˆmax

)()( ,

=≤−
∈

kG pk
k

s
k

p

δω
ωωω

. (35e)

• Here,  /2) (1 and  /2)(1 )()()()( πρωπρω k
p

k
p

k
s

k
s −=+= for k = 

0,1 and )(ˆ)(ˆ)(ˆ)(ˆ   1010 ωπωπωω −−+ GGGG  the zero-phase
frequency response for the overall system of Figure 1.

• For the PR case, this should be identical equal to unity in the
overall frequency band.
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Example

• This example emphasizes the importance of the optimization
problem formulation in order to achieve PR linear-phase
biorthogonal banks with good selectivity properties.

• As examples we consider the design of filters in the N0 =
 N1 =31 case and in the N0 = N1 =63 case for )(k

pρ = )(k
sρ  =

 0.172 for k = 0, 1.

• The resulting passband and stopband edges for both G0(z)
and G1(z) are thus located at ωp = 0.414π and ωs = 0.586π, 
respectively.

• In both cases, two problem formulations have been used.

• In the first formulation, the error function under considera-
tion is given (Vaidyanathan and Nguen) by

[ ] [ ]

[ ] [ ] .1)(ˆ1)(ˆ       

 )(ˆ)(ˆ

)1()0(

)1()0(

0

2
1

0

2
0

2
1

2
0

∫∫

∫∫

==

==

−+−+

+=

pp

ss

dGdG

dGdGE

ω

ω

ω

ω

π

ωω

π

ωω

ωωωω

ωωωω

(36)

• For the second formulation, the proposed formulation is
used with δp = 0.17 (a 3-dB peak-to-peak passband ripple).

• Figure 15 shows that the second problem formulation results
in analysis filters having significantly higher stopband at-
tenuations.
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• Figures 16 and 17 show more details for the proposed design

with N0 = N1 =63. For this design there is a too large over-
shoot in the transition band.

• This is because the transition band behavior was not under
consideration when optimizing the filter bank.

• The overall reconstruction error is extremely small (zero in
theory) and is not shown in the figures.
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Figure 15. Amplitude responses for the analysis filters
designed using the proposed technique (solid line) and the
the technique of Vaidyanathan and Nguen(dot-dashed
line).
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Figure 16. Amplitude responses for the analysis and
synthesis filters for the example biorthogonal PR filter
bank with N0  == N1  ==  63.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

H
0
(z)=G

0
(z) (lowpass) and H

1
(z)=G

1
(−z) (highpass)

A
m

pl
itu

de
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−80

−60

−40

−20

0

F
0
(z)=2H

1
(−z) (lowpass) and F

1
(z)=−2H

0
(−z) (highpass)

Frequency as a fraction of π

A
m

pl
itu

de
 in

 d
B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1

1.1

1.2

1.3

Passband details for H
0
(z) and H

1
(z)

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.6

1.8

2

2.2

2.4

2.6

Passband details for F
0
(z) and F

1
(z)

Frequency as a fraction of π

A
m

pl
itu

de

60
Figure 17. Impulse responses for the analysis and synthesis
filters.
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Problem of selecting the orders of G0((z)) and G1((z))

• As mentioned above, the overall delay K is related to the
subfilter orders N0

  and N1 by K = (N0
  + N1)/2.

• The same delay is obtained by different selections of
N0

  and N1 and it is desired to find the selection minimizing
the maximum of the stopband energies of the two subfilters.

•  As an example, we consider the case where K = 31 and
)(k

pρ = )(k
sρ  = 0.172 for k = 0, 1.

• The resulting passband and stopband edges for both G0(z)
and G1(z) are thus ωp = 0.414π and ωs = 0.586π.

• For K = 31, the desired delay is obtained by selecting
N0

  and N1 as N0
  = 31 − l and N1

  = 31 + l for l = 0, 1, · · ·, 30.

• Three groups of filters have been optimized to minimize the
maximum of the stopband energies of G0(z) and G1(z).

• For these groups, the passband ripples are 0.01, 0.05, and
0.1, respectively.

• For each group, N0 varies from 17 to 31 and N1
  = 62 − N0.

• Some of the properties of the optimized filter banks are
summarized in Figure 18.

• The upper part shows for the three different values of the
passband ripple the maximum of the stopband energies of
G0(z) and G1(z).

• The lower part, in turn, shows the attenuations of both G0(z)
and G1(z) at the frequency point where the first stopband
maximum occurs.
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Figure 18. Dependences of the stopband behaviors of G0((z))
and G1((z)) on N0 and the passband ripple δδp [δδp = 0.1(x),
0.05(o), 0.01(∗∗)] for PR biorthogonal filter banks with K
==  (( N0

    ++  N1))//2  ==  31.
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• Note that the attenuation of G0(z) and G1(z) are different.

• Therefore, there are two curves, the first one corresponding
to G0(z) and the second one to G1(z).

• There is an error on the top of the figure: delete ‘G0 (solid),
G0 (solid)’.
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• Two interesting observations can be made.

• First, the stopband behaviors of the two subfilters depends
strongly on the given passband ripple.

• If the allowed ripple is higher, filters with improved stop-
band performances are achieved.

• Second, it is not straightforward to find the value of N0 that
gives the best stopband performances for the two subfilters.

• Furthermore, the best value of N0 depends on the given al-
lowable passband ripple.

• For δp = 0.1, δp = 0.05, and δp = 0.01, the best results are
achieved by N0 = 20 and N1 = 42; N0 = 27 and N1 = 35; and
N0 = 22 and N1 = 40, respectively.

• Therefore, the filter orders to give the desired overall delay
with the minimized stopband energy can be found only by
going through all possible order combinations.
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Low-Delay PR Biorthogonal Filter Banks with
Nonlinear-Phase Subfilters

• For these filter banks, ( ) [ ]∑ =
−= 0

0 00
N
n

nzngzG  and

( ) [ ]∑ =
−= 1

0 11
N
n

nzngzG satisfy the following conditions:

1. The impulse responses of G0(z) and G1(z) are not symmet-
ric.

2. The impulse response of

( ) ( ) [ ]∑ +
=

−== 10

010)( NN
n

nznezGzGzE satisfies

[ ]




≠
=

=
 , and odd is  for         0

for     2/1

Knn

Kn
ne (37)

       where K is an odd integer with K < (N0 + N1)/2.
• An example for an impulse response of E(z) is shown in

Figure 4(b) of Page 23.

• The second condition implies that the overall transfer func-
tion between the output and input is T(z) = z−K with K less
than  (N0 + N1)/2 and the sum of the orders must be two
times an odd integer L.

• Since the overall system delay is less than half the sum of
the filter orders, the impulse responses of G0(z) and G1(z)
cannot possess an even symmetry.

• The high number of unknowns (altogether N0+N1+2) and the
PR condition with the delay less than half the sum of the
filter orders makes the synthesis of the overall system very
nonlinear and complicated.
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Optimization Problem:

Given N0, N1, 
)(k

pρ and )(k
sρ  for k = 0, 1, and δp as well as K,

find the adjustable coefficients of G0(z) and G1(z) to minimize

( )10 ,max εεε = , (38a)

where

( )    ,1,0for            
)(

2
== ∫ kdeG

k
s

j
kk

π

ω

ω ωε (38b)

subject to

[ ]
( )    ,0 max

,0

=− −

∈

ωω

πω

jKj eeT (38c)

[ ]
( ) ,1,0for            1 max

)(,0

=≤−
∈

keG p
j

k
k

p

δω

ωω

(38d)

and

( )
( ) .1,0for            1 max

)()( ,

=≤−
∈

keG p
j

k
k

s
k

p

δω

ωωω

(38e)

Here,  /2) (1 and  /2)(1 )()()()( πρωπρω k
p

k
p

k
s

k
s −=+= for k =  0,1

and ( ) ( ) ( ) ( )( ) ( )( ).   1010
πωπωωωω ++−= jjjjj eGeGeGeGeT  is the

frequency response for the overall system of Figure 1. In the
PR case it should be equal to     ωjKe− in the overall frequency
range.
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Examples

• It is desired to design low-delay PR biorthogonal filter banks
for K = 31, δp = 0.01, and )(k

pρ  = )(k
sρ  = 0.172 for k = 0, 1.

• The passband and stopband edges for both G0(z) and G1(z)
are thus located at ωp = 0.414π and ωs = 0.586π.

•  Figure 19 compares the optimized low-delay PR filter banks
with the biorthogonal filter bank with linear phase subfilters
of orders N1 = N0 = 31 in the N1 = N0 = 33, N1 = N0 = 45, and
N1 = N0 = 63 cases.

•  As can be expected, the stopband attenuations of the analy-
sis filters in the low-delay filter banks increase when the fil-
ter orders are increased.

• Figures 20 and 21 show more details for the proposed design
with N0 = N1 = 45.
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Figure 19. Comparisons between low-delay biorthogonal
filters banks (solid lines) in the K=31 case with the linear-
phase biorthogonal case (dot-dashed lines).
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Figure 20. Amplitude responses for the analysis and
synthesis filters for the example low-delay  biorthogonal
PR filter bank with N0  == N1  ==  45.
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Figure 21. Impulse responses for the analysis and synthesis
filters.
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NPR Biorthogonal Filter Banks with Linear-Phase
Subfilters

• For these filter banks, ( ) [ ]∑ =
−= 0

0 00
N
n

nzngzG  and

( ) [ ]∑ =
−= 1

0 11
N
n

nzngzG satisfy the following conditions:

1. The impulse responses of G0(z) and G1(z) possess an even
symmetry, that is, g0[N0 − n] = g0[n] for n=0,1 ,· · ·, N0 and
g1[N1 − n] = g1[n] for n=0,1 ,· · ·, N1.

2. The sum of the filter orders N0
  and N1 is two times an odd

integer, that is, N0 + N1 = 2K with K being an odd integer.

3. ( ) ( ) [ ]∑ +
=

−== 10

010)( NN
n

nznezGzGzE is nearly a half-band

FIR filter of order N0
  + N1, that is, its impulse-response co-

efficients satisfy

[ ]




≠
=

≈
 , and odd is  for         0

for     2/1

Knn

Kn
ne (39)

  where K = (N0 + N1)/2.
• The main difference compared to the corresponding PR case

considered earlier is that now the overall transfer function
T(z) approximates the delay term z−K and there is some am-
plitude distortion.

• The optimization problem is also the same except that the
condition of Eq. (35c) is replaced by

      

[ ]
aGGGG δωπωπωω

πω

≤−−−+
∈

1)(ˆ)(ˆ)(ˆ)(ˆ max 1010

,0

, (40)

   where δa is the allowable amplitude distortion.
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Examples

• Several NPR biorthogonal two-channel filter banks with lin-
ear-phase subfilters of orders N1 = N0 = 31 have been opti-
mized for )(k

pρ = )(k
sρ  = 0.172 for k = 0, 1.

• The passband and stopband edges for both G0(z) and G1(z)
are thus located at ωp = 0.414π and ωs = 0.586π.

• These filters have been optimized for various values of the
reconstruction error δa and for three values of the passband
ripple, namely, δp = 0.1, δp = 0.01, and δp = 0.001.

• Figure 22 shows the amplitude responses of the analysis fil-
ters in the δp = 0.1 case for δa = 0.00001 and δa = 0.001.
Also, the overall amplitude distortions are shown in the fig-
ure.

• Figures 23 and 24 show more details in the δa = 0.001 case.

•  Figure 25 illustrates the dependence of the stopband be-
haviors of G0(z) and G1(z) on the reconstruction error and
the passband ripple.

• It is interesting to observe that the stopband behaviors of the
two subfilters become almost the same for the reconstruction
errors smaller than 10-5.

•  On the other hand, when the passband ripple is increased,
the stopband attenuations increase significantly.

• It is also interesting to observe that for large allowable re-
construction errors, the filter attenuations increase and the
dependence on the passband ripple decreases.
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Figure 22. Biorthogonal NPR linear-phase filter banks
with small reconstruction error for N1 = N0 = 31 and
δδp = 0.1. The solid and dot-dashed lines give the amplitude
responses of analysis filters and the reconstruction errors
for δδa = 0.001 and δδa = 0.00001, respectively.
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Figure 23. Amplitude responses for the analysis and
synthesis filters for the example NPR biorthogonal filter
bank with linear-phase subfilters.
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Figure 24. Impulse responses for the analysis and synthesis
filters as well as the overall reconstruction error for the
example NPR biorthogonal filter bank .
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Figure 25. Dependences of the stopband behaviors of G0((z))
and G1((z)) on the reconstruction error δδa  and the passband
ripple δδp  [δδp = 0.1(x), 0.01(o), 0.001(∗∗)] for NPR linear-
phase biorthogonal filter banks with N0  ==  N1  ==  31.
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• The upper part shows in each case the maximum of the
stopband energies of G0(z) and G1(z).

• The lower part, in turn, shows the attenuations of both G0(z)
and G1(z) at the frequency point where the first stopband
maximum occurs.

• Since these attenuation values are different for G0(z) and
G1(z), two curves are given in each case.

• Notice the same error as in Figure 18.
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Low-Delay NPR Biorthogonal Filter Banks with
Nonlinear-Phase Subfilters

• For these filter banks, ( ) [ ]∑ =
−= 0

0 00
N
n

nzngzG  and

( ) [ ]∑ =
−= 1

0 11
N
n

nzngzG satisfy the following conditions:

1. The impulse responses of G0(z) and G1(z) are not symmet-
ric.

2. The sum of the filter orders N0 and N1 is two times an odd
integer.

3. The impulse response of

( ) ( ) [ ]∑ +
=

−== 10

010)( NN
n

nznezGzGzE satisfies

[ ]




≠
=

≈
 , and odd is  for         0

for     2/1

Knn

Kn
ne (41)

      where K < (N0 + N1)/2.
• The difference compared to the corresponding low-delay PR

case is again that now T(z) approximates the delay term z−K

and there is some amplitude and phase distortion.

• The optimization problem is also the same except that the
condition of Eq. (38c) is replaced by

[ ]
( ) ( ) ( )( ) ( )( )
,          

 max 1010
,0

a

jKjjjj eeGeGeGeG

δ

ωπωπωωω

πω

≤

−− −++

∈ (42)

    where δa is the allowable distortion.
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Example

• Several NPR low-delay biorthogonal two-channel filter
banks with nonlinear-phase subfilters of orders N1 = N0 = 31
have been designed for K = 31 and for various reconstruc-
tion errors.

• Like in earlier examples, the passband and stopband edges
for both G0(z) and G1(z) are again located at ωp = 0.414π and
ωs = 0.586π, respectively.

• Since N1 = N0 = K = 31, the resulting filter banks are auto-
matically NPR orthogonal banks provided that the allowable
passband ripple in the optimization is large enough.

• Figure 26 shows the amplitude responses of the analysis fil-
ters in the δp = 0.1 case for δa = 0.00001 and δa = 0.001.
Also, the overall amplitude distortions are shown in the fig-
ure.

• Figure 27 illustrates the dependence of the stopband behav-
iors of G0(z) and G1(z) on the reconstruction error.

• It is interesting to notice that the filter attenuations are al-
most the same for the reconstruction errors smaller than 10-5.

• Only for large reconstruction errors, a higher attenuation is
achieved.

• The passband ripple depends directly on other filter bank
properties.
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Figure 27. Orthogonal NPR filter banks with small
reconstruction error for N1 = N0 = K=31 and δδp = 0.1. The
solid and dot-dashed lines give the amplitude responses of
analysis filters and the reconstruction errors for δδa = 0.001
and δδa = 0.00001, respectively.
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Figure 27. Dependences of the stopband behaviors of G0((z))
and G1((z)) on the reconstruction error δδa for NPR orthogo-
nal filter banks with N0  ==  N1  ==  31.
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• The upper part shows in each case the maximum of the
stopband energies of G0(z) and G1(z).

• The lower part, in turn, shows the attenuations of both G0(z)
and G1(z) at the frequency point where the first stopband
maximum occurs. In this case the attenuation are the same
for both G0(z) and G1(z).

• Notice the same error as in Figures 18 and 25.
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Another example

• Several NPR low-delay biorthogonal two-channel filter
banks with nonlinear-phase subfilters have been designed
for the overall delay K = 31 and for various reconstruction
errors and passband ripples.

• The passband and stopband edges for G0(z) and G1(z) are the
same as in earlier examples.

•  Two different subfilter orders are considered, namely,
N0 = N1 = 33 and N0 = N1 = 63.

• Figure 28 shows in these two cases amplitude characteristics
of the analysis filters and the reconstruction errors for δp = 
0.01 and δa = 10-5.

• Figures 29 and 30 illustrate the dependence of the stopband
behaviors of G0(z) and G1(z) on the reconstruction error and
the passband ripple for N1 = N0 = 33 and N1 = N0 = 63, re-
spectively.
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Figure 28. Low-delay filter banks for K = 31, δδp = 0.01, and
δδa = 10-5. The solid and dot-dashed lines give the amplitude
responses of analysis filters and the reconstruction errors
for N1 = N0 = 63  and N1 = N0 = 31, respectively.
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Figure  29. Dependences of the stopband behaviors of G0((z))
and G1((z)) on the reconstruction error δδa  and the passband
ripple δδp  [δδp = 0.1(x), 0.01(o), 0.001(∗∗)] for NPR nonlinear-
phase biorthogonal filter banks with N0  ==  N1  ==  33 for
K  ==  31.
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• The upper part shows in each case the maximum of the
stopband energies of G0(z) and G1(z).

• The lower part, in turn, shows the attenuations of both G0(z)
and G1(z) at the frequency point where the first stopband
maximum occurs.

• Since these attenuation values are different for G0(z) and
G1(z), two curves are given in each case. Notice the same er-
ror as in Figures 18, 25, and 27.
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Figure 30. Dependences of the stopband behaviors of G0((z))
and G1((z)) on the reconstruction error δδa  and the passband
ripple δδp  [δδp = 0.1(x), 0.01(o), 0.001(∗∗)] for NPR nonlinear-
phase biorthogonal filter banks with N0  ==  N1  ==  63 for
K  ==  31.
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• The comments given after Figure 29 are also valid after Page
30.
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Comments

• The practical implementation issues have been totally omit-
ted in this pile of lecture notes.

• They will be added in the next version.

• If there is a need to know about alternative implementation
form, please contact the lecturer.

• He has also plenty of  FORTRAN and MATLAB files.

• The reason for such a long pile of lecture notes on two-
channel FIR filter banks is due to the fact that Robert Bre-
goviü� and�the lecturer have written the tutorial article
mentioned on Page 7.

• Many thanks to Robert in helping in prepapring Part V.A.
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Part V.B: Two-Channel IIR Filter Banks

• This part shows how to generate two-channel IIR filter
banks using half-band IIR filters.

• These filters were considered earlier in details in Part II,
namely, Part II.G: Half-Band IIR Filters (Pages 246-266 in
Part II).

• There are also other types of two-channel IIR filter banks.

• If there is some interest, please contact the lecturer. He is
able to give some extra material.

• It should be pointed out that there is one project going on at
the Signal Processing Laboratory regarding these filter
banks. The results will appear in the next version of this pile
of lecture notes.

• We concentrate on the following two topics:

I. Two-Channel IIR Filter Banks with Phase Distortion.
These banks are generated directly by using half-band
IIR filters.

II. Perfect-Reconstruction Two-Channel IIR Filter Banks.
These banks are generated by using both causal and
anti-causal half-band IIR filters.
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Two-Channel IIR Filter Banks with Phase Distortion
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Figure 1. Two-channel filter bank.

• The above figure shows again a two-channel filter bank con-
sisting of analysis and synthesis parts as well as the proc-
essing unit.

• It is again assumed that the processing unit causes no distor-
tion, that is, w0[n] ≡ v0[n] and w1[n] ≡ v1[n].

• We recall that the relation between the z-transforms of the
input and output signals of Figure 1 is given by

( ) ( ) ( ) ( ) ( )zXzAzXzTzY −+=  , (1a)

where

( ) [ ])()()()(
2

1
1100 zFzHzFzHzT += (1b)

and

( ) [ ])()()()(
2

1
1100 zFzHzFzHzA −+−= . (1c)
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•  We select ( )zH0  and ( )zH1  to be a power-complementary

lowpass−highpass half-band IIR filter pair.

• In this case (see Part II.G: Half-Band IIR Filters, Pages 246-
266 in Part II, for details),

( ) ( ) ( ) ( )[ ]2
1

12
00 2/1 zAzzAzH −+= (2a)

   and

( ) ( ) ( ) ( )[ ]2
1

12
00 2/1 zAzzAzH −+= (2b)

   with

( )
1)0(

1)0(

1
0

1

0

−

−

= +

+
= Π

za

za
zA

k

k
K

k

(2c)

   and

( )
1)1(

1)1(

1
1

1

1

−

−

= +
+

= Π
za

za
zA

k

k
K

k

(2d)

    being allpass filters of orders 0K  and 1K , respectively.

• The overall filter order is 1)(2 10 ++ KK  and it is required
that 10 KK =  or 110 += KK .

• Selecting

( ) ( ) ( ) ( ) ( )2
1

12
0010 22 zAzzAzHzHzF −−==−= (3a)

   and

( ) ( ) ( ) ( ) ( )2
1

12
0101 22 zAzzAzHzHzF −+−=−=−−=  (3b)
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  Equation (1) takes the following form:

( ) ( ) ( )zXzTzY = , (4a)

   where

( ) )()( 2
1

2
0

1 zAzAzzT −= .  (4b)

• Since )( 2
0 zA  and )( 2

1 zA  are allpass filters, the overall fre-
quency response is expressible, after some manipulations, as

( ) )(ωφω jj eeT = ,  (5a)

   where

( ) ( )
( )

( )
( )
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k

a

a

a

a
KK

 (5b)

• Hence, the amplitude response is identically equal to zero
and the input-output relation suffers only from a phase dis-
tortion.

• This distortion is tolerable in audio applications provided
that the distortion is not too large.

• Figure 2 shows implementations for the overall system.

• The second one using the commutative models is the most
efficient one.
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• The third implementation is obtained assuming the outputs
of the processing unit are identical to the inputs and it is re-
moved.

• Then, by rearranging the terms, we arrive at this structure.

• In this structure, the input-output relation is redrawn in a
form corresponding to the input-output relation as given by
Equation (4).
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Figure 2. Efficient Implementations for a Two-
Channel Filter Bank Based on the Use of
Conventional Causal Half-Band IIR Filters.
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Example: ωωs  ==  0.586ππ and the Minimum Stopband
Attenuation is at least 80 dB

• Here, the stopband edge is selected to be ωs =  0.586π in or-
der to make the comparison of the resulting bank with earlier
two-channel FIR filter bank designs possible.

• The given criteria are met by

( )
1)0(

1)0(3

1
0

1 −

−

= +

+
= Π

za

za
zA

k

k

k

   and

( )
1)1(

1)1(2

1
1

1 −

−

= +
+

= Π
za

za
zA

k

k

k

,

   where 0.059868,)0(
1 =a 0.424962,)0(

2 =a 0.874343,)0(
3 =a

0.217298,   )1(
1 =a and  0.645857.)1(

2 =a

• This is a special lowpass−highpass elli ptic filter pair of order
11 designed by a routine written by Renfors and Saramäki.

• The following three pages ill ustrate the characteristics of the
resulting overall two-channel IIR filter bank.

• It should be pointed out that the approximately linear-phase
half-band filters are not considered here. The main reason is
that they also cause some phase distortion for the overall
transfer function especially in the transition band region.
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Amplitude responses for the analysis and synthesis filters
in an example two-channel IIR filter bank
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Pole-zero plots for the analysis and synthesis filters in an
example two-channel IIR filter bank
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Responses for the input-output transfer function of an
example two-channel IIR filter bank
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Two-Channel IIR Filter Banks without Phase
Distortion

• We select

( ) ( ) ( ) ( )[ ]2
1

12
00 2/1 zAzzAzH −+= , (6a)

( ) ( ) ( ) ( ) ( )[ ]2
1

12
001 2/1 zAzzAzHzH −−=−= , (6b)

( ) ( ) ( ) ( )2
1

2
0

1
00 2 −−− +== zzAzAzHzF , (6c)

   and

( ) ( ) ( ) ( )2
1

2
0

1
11 2 −−− −== zzAzAzHzF  . (6d)

• Substituting these into Equation (1) yields

( ) )(zXzY ≡  . (7)

• Looks ideal! Figure 3 shows implementations for the overall
filter bank. The first one is the actual implementation and
the second one is an equivalent structure (not used for im-
plementation purposes).

• The main problem in the proposed implementation is that
both )(0 zF and )(1 zF  are anti-causal filters.

• For finite length signals (like images), there are several ways
of implementing the filter bank using the corresponding
causal filters. Implementations are also possible for infinite
length signals.

.
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• The explanation of these implementation forms is out the
scope of these lecture notes. If you interested in these forms,
contact the lecturer.

• It should be pointed out that in these implementations, there
is a need to produce a time-reversed version of the input data
before and after filtering.

• This introduces an extra delay. Delay-free systems cannot be
implemented!



97
Figure 3.  Implementations for a Two-Channel Filter
Bank Based on the Use of Causal and Anti-Causal
Half-Band IIR Filters.
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Part V.C: Tree-Structured Filter Banks

• When generating a tree-structured filter bank, we start with a
two-channel filter bank as shown in Figure 1(a). For this
bank, the analysis and synthesis filters are denoted by

)()1(
0 zH , )()1(

1 zH , )()1(
0 zF , and )()1(

1 zF .

• The next step is to remove the processing unit in Figure 1(a)
and produce )()1(

0 ny  [ )()1(
1 ny ] from )()1(

0 nx  [ )()1(
1 nx ] using a

two-channel filter bank as shown in Figure 1(b). For this
bank, the analysis and synthesis filters are denoted by

)()2(
0 zH , )()2(

1 zH , )()2(
0 zF , and )()2(

1 zF .

• This gives a two-level tree-structured filter bank shown in
Figure 1(c).

• The three-level tree-structured filter bank shown in Figure 2
is obtained by removing the processing unit in Figure 1(c)
and producing )()2( nyk  from )()2( nxk  for 3,2,1,0=k  using a
two-channel filter bank with the analysis and synthesis fil-
ters being )()3(

0 zH , )()3(
1 zH , )()3(

0 zF , and )()3(
1 zF .
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Figure 1. Generation of a Two-Level Tree-Structured
Filter Bank.
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Figure 2.  Three-Level Tree-Structured Filter Bank.
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Analysis of the Performance of the Tree-Structured
Filter Bank

• In order to analyze the performance of the three-level tree-
structure filter bank of Figure 2, it is redrawn into the
equivalent form shown in Figure 3.

• Hence, it corresponds to an analysis-synthesis bank with 8
channels.

• A four-level bank can be generated by removing the proc-
essing unit and producing )()3( nwk  from )()3( nvk  for

7,,1,0 �=k  using a two-channel filter bank with the analy-

sis and synthesis filters being )()4(
0 zH , )()4(

1 zH , )()4(
0 zF ,

and )()4(
1 zF .

• In this case, the number of channels is 16.

• In general for a M-level tree-structured filter bank, the num-
ber of channels is 2M.

• Next an example will be given illustrating how to select the
building-block two-channel filter banks.
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Figure 3. Equivalent Structure for the Three-Level
Tree-Structured Filter Bank of Figure 2.
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Example

• It is desired to generate an analysis-synthesis filter bank with
8 channels by using a three-level tree-structured filter bank.

•  The required transition bandwidth and the attenuation are
0.05π and 60 dB, respectively.

• This bank is constructed by using the following analysis and
synthesis filters for 3,2,1=k :

( ) ( ) ( ) ( )[ ]2)(
1

12)(
0

)(
0 2/1 zAzzAzH kkk −+=  , (1a)

( ) ( ) ( ) ( )[ ]2)(
1

12)(
0

)(
1 2/1 zAzzAzH kkk −+=  , (1b)

( ) ( ) ( )2)(
1

12)(
0

)(
0 zAzzAzF kkk −−=  , (1c)

   and

( ) ( ) ( )2)(
1

12)(
0

)(
1 zAzzAzF kkk −+−= (1d)

   with

( )
1)0(

,

1)0(
,

1

)(
0

1

)(
0

−

−

= +

+
= Π

za

za
zA

lk

lk
K

l

k
k

(1e)

   and

( )
1)1(

,

1)1(
,

1

)(
1

1

)(
1

−

−

= +

+
= Π

za

za
zA

lk

lk
K

l

k
k

 . (1f)
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•  Hence, IIR two-channel filter banks considered in Part V.B
are used.

• The desired overall performance is achieved by designing
the first, second, and third two-channel filter bank in such a
way that the stopband edges for the lowpass analysis filter
are located at ωs = 0.525π, ωs = 0.55π, and ωs = 0.6π, re-
spectively.

• Note that for the first filter, the transition bandwidth is the
specified one.

• For the second and third ones, they are two and four times
the specified one, respectively.

• For all the building-block two-channel filter banks, the re-
quired attenuation is the specified one, that is, 60 dB.

• For the first filter bank, ,3)1(
1

)1(
0 == KK  .0864110)0(

1,1 =a ,

.5229450)0(
2,1 =a , .8496100)1(

3,1 =a  , .2935920)1(
1,1 =a ,

.7119610)1(
2,1 =a  , and .9529060)1(

3,1 =a  .

• For the second filter bank, ,3)2(
0 =K  ,2)2(

1 =K

.0829470)0(
1,2 =a  , .5196440)0(

2,2 =a  , .9103310)1(
3,2 =a ,

.2856410)1(
1,2 =a  , 5.729130)1(

2,2 =a  .

• For the third filter bank, ,2)3(
1

)3(
0 == KK  .0798660)0(

1,3 =a ,

.5453240)0(
2,3 =a  , .283820)1(

1,3 =a , and .8344110)1(
2,3 =a  .
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• Figures 4 and 5 show the responses for the analysis and
synthesis filters in the three building-block two-channel IIR
filter banks.

• Figure 6 shows the amplitude responses between the input
)(nx  and )(nvk  for 7,,1,0 �=k (see Figures 2 and 3). The

numbers in the figure indicate the corresponding response.

• The responses between )(nwk  for 7,,1,0 �=k and the out-
put )(ny  are the same with the exception that they are multi-
plied by eight.

• Figure 7 shows how the fifth bank can be generated accord-
ing to the equivalent structure of Figure 3.

• The input-output tranfer function is given by

  ( ) ( ) ( ) ( ) ( ) ( ) ( )8)3(
1

8)3(
0

4)2(
1

4)2(
0

2)1(
1

2)1(
0

7 zAzAzAzAzAzAzzT −=  . (2)

•  Figure 8 shows various responses for this transfer function.
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Figure 4. Amplitude responses for the analysis and
synthesis filters in the first and second building blocks.
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Figure 5. Amplitude responses for the analysis and
synthesis filters in the third building block.
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Figure 6. Amplitude responses for the resulting filters
between the input )(nx  and )(nvk   for 7,,1,0 �=k . The

numbers in the figure indicate the corresponding
responses.
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Figure 7. Generation of the fifth bank according to the
equivalent structure of Figure 3.
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Figure 8. Responses for the input-output transfer function
of an example tree-structured IIR filter bank
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Part V.C: Discrete-Time Wavelet Banks

• The theory behind wavelets is very mathematical and com-
plicated especially in the case of continuous-time wavelets.

• This part shows what are discrete-time wavelet banks and
how to generate them easily from special two-channel filter
banks.

• The filter bank approach for explaining the wavelet theory is
for engineers easier to understand and makes the theory very
compact.

• In the end of this pile, some connections to continuous-time
wavelets are shown.

• Therefore, we proceed in the opposite manner: mathemati-
cians start with continuous-time wavelets and use them for
generating discrete-time wavelet banks

• We start with the discrete-time wavelet banks and show how
to generate continuous-time wavelets based on the use of
multilevel wavelet banks.

• We are not considering in details the applications. It would
be a topic of another course!

• Hopefully, this part helps the reader to somehow understand
the wavelet theory especially when applied to processing
discrete-time signals. After reading this pile, the reader is
encouraged to look at the MATLAB Wavelet Toolbox man-
ual. Good luck!
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Organization of This Pile of Lecture Notes

• We concentrate on the following topics:

I. Generation of wavelet banks based on the use of sev-
eral copies of the same two-channel filter bank

II. Orthogonal (paraunitary ) FIR wavelet banks derived
from maximally-flat half-band FIR filters

III. Biorthogonal  FIR wavelet banks derived from maxi-
mally-flat half-band FIR filters

IV. Generalized orthogonal FIR wavelet banks

V. Generalized biorthogonal FIR wavelet banks

VI. How to measure the “goodness” of wavelet banks

VII.  Comments


